Narendra Jussien
email: fnarendra.jussien@emn.fr

Olivier Lhomme
email: olivier.lhommeg@emn.fr

The Path-repair algorithm

In this paper, we i n troduce a new solving algorithm for Constraint Satisfaction Problems: the path-repair algorithm. The two m a i n p o i n ts of that algorithm are: it makes use of a repair algorithm (local search) as a basis and it works on a partial instantiation in order to be able to use ltering techniques. Di erent v ersions are presented and rst experiments with both systematic and non systematic versions show promising results.

Introduction

Many industrial and engineering problems can be modeled as constraint satisfaction problems (csps). A csp is de ned as a set of variables each w i t h a n associated domain of possible values and a set of constraints over the variables.

Most of constraint solving algorithms are built upon backtracking mechanisms. Those algorithms usually explore the search space systematically, and thus guarantee to nd a solution if one exists. Backtracking-based search algorithms are usually improved by some ltering techniques which aim at pruning the search space in order to decrease the overall duration of the search.

Another series of constraint solving algorithms are local search algorithms. They perform a probabilistic exploration of the search space and therefore cannot guarantee to nd a solution. The interest of local algorithms (eg. Tabu search 12], GSAT 25]) is that, following local gradients in the search s p a c e , they may be far more e cient (wrt reponse time) than systematic ones to nd a solution.

Several works have studied cooperation between local and systematic search 6,8,20,22,23,30]. Those hybrid approaches have led to good results on large scale problems. Three categories of hybrid approaches can be found in the literature:

(1) performing a local search before or after a systematic search (2) performing a systematic search i m p r o ved with a local search a t s o m e points of the search (t ypically for optimisation problems, to try to improve the quality of a solution) (3) performing an overall local search, and using systematic search1 either to select a candidate neighbor or to prune the search space.

The hybrid approach presented in this paper falls in the third category. I t w i l l use ltering methods to both prune the search space and help in choosing the neighbor in a local search. This leads to a new search technique over csps which is called path-repair. Di erents variations of this search t e c hnique are discussed, some of them are shown to be complete. Very promising rst results are presented.

The paper is organized as follow s . S e c t i o n 2 g i v es some notations. Section 3 presents the path-repair algorithm. Section 4 discusses related works andnally section 5 summarizes the rst results obtained in the eld of open shop scheduling problems.

Preliminaries

A csp is a couple < V C > where V is a set of variables and C = fc 1 : : : c m g a set of constraints. Domains of the variables are handled as unary constraints.

For a given constraints set S = fc 1 : : : c k g, Ŝ will be the logical conjunction of the constraints in S: Ŝ = (c 1 ^: : : ^ck). By convention: ? = true.

Classical csp solving simultaneously involves a ltering algorithm (to a priori prune the search tree) and an enumeration mechanism (to overcome ltering algorithm incompleteness). For example, for binary csp over nite domains, arc-consistency can be used as ltering technique. After a ltering step, three situations may arise:

(1) the domain of a variable becomes empty: there is no feasible solution (2) all the domains are reduced to a single value: those values assigned to their respective v ariables provide a feasible solution for the considered problem (3) there exists at least one domain which c o n tains at least 2 values: search

has not yet been successful. In a classical approach, it would be time for enumeration through a backtrack-based mechanism.

In a more general way, f o r a n y ltering algorithm 2 applied on the set C of constraints of a given csp (let C 0 = (C)), there exists a function obviousInference which, when applied on C 0 , a n s w ers: noSolution i it is immediate to infer that no solution can be nd for C (as in situation 1 above). allSolution i the current constraints system 3 can immediately provide a solution that veri es all the constraints in C 0 (as in situation 2 above). ounder in all other situations (as in situation 3 above).

The function obviousInference has typically a low computational cost. Its aim is to make explicit the use of some properties that depends on the used ltering algorithm. The example of arc-consistency ltering with an empty domain or with only singleton domains has already been given, but a function obviousInference can be made explicit in many other ltering or pruning algorithms. For example, in integer linear programming, the aim is to nd an optimal integer solution. This can be done by using the simplex algorithm over the reals. If there is no real solution or if the real optimum has only integer values, then a obviousInference function would respectively return noSolution or allSolution.

Enumerating discrete binary csps is assigning a value 4 a to a variable v k i.e. adding a new constraint v k = a in the system. For other kinds of problems, enumerating may be di erent: for example, for numeric csp, e n umerating is adding a splitting constraint (eg. v `< a). When dealing with scheduling problems, enumerating is often adding a precedence constraint b e t ween two tasks of the problem.

In the next section, the path-repair algorithm is presented through an abstraction of the solved problems: they may be discrete binary csp, n umeric csp as well as scheduling problems. This will be possible thanks to:

(1) the parameter which represents the ltering algorithm used (2) the function obviousInference, t i g h tly related to the used ltering algorithm, that is able to examine a set of constraint in order to continue or not the computation (3) the concept of enumerating constraint. An hypothesis holds over the way such constraints are generated: there exists an integer5 N e such t h a t 2 A ltering algorithm applied on a set C of constraints returns a new set C 0 = (C) s u c h that C C 0 (redundant constraints may h a ve been added). [START_REF] Bliek | Generalizing partial order and dynamic backtracking[END_REF] We consider that domain reductions are added as redundant constraints in the constraint system. [START_REF] B R U C Ker | A branch and bound algorithm for the open-shop problem[END_REF] a is an element of the domain of variable v k .

whatever the set E of at least N e di erent e n umerating constraints, the call obviousInference((C E)) will not answer ounder. This condition is necessary to ensure termination (in the case of the systematic version of the algorithm), and is ful lled by a n y reasonnable search strategy.

3 The path-repair algorithm

The idea of the path-repair algorithm is very simple. First observe that: current local search algorithms mainly work upon a total instantiation of the variables backtracking-based search algorithms work upon a partial instantiation of the variables.

The ability of backtracking-based search algorithms to be combined with ltering techniques only comes from the fact that they work upon a partial instantiation of the variables. Thus, a l o cal search algorithm working upon a partial instantiation of the variables would have the same ability.

Indeed, the path-repair algorithm is such an algorithm. The considered partial instantiation is de ned by a set of enumerating constraints (as de ned above) upon the variables of the problem. Such a constraint set de nes a path in the search tree.

Principles of path-repair

The principle of the path-repair algorithm as shown in gure 1 is the following: let P be a path in the search tree. At e a c h node of that path, an enumerating constraint has been added. Let C P be the set of added enumerating constraints while moving along P.

The path-repair algorithm starts with an initial path (it may range from the empty path, to a path that de nes a complete assignment). The main loop rst checks the conditions of failure [START_REF] Codognet | A metalevel compiler of CLP(FD) and its combination with intelligent backtracking[END_REF] . A ltering algorithm is then applied on C C P giving a new set of constraints C 0 = (C C P). The function obviousInference is then called over C 0 . Three cases may occur: desired precision on the result. obviousInference(C 0) = flounder: t h e path-repair algorithm tries to extend the current p a t h P by adding an enumerating constraint. That behavior is similar to that of backtracking-based search algorithms. For that purpose, a function extend(P ,;) is assumed to exists that chooses an enumerating constraint to be added and adds it to P. The meaning of parameter ; will be made clear later. obviousInference(C 0) = noSolution: C C P is inconsistent. We will say that P is a dead-end, o r P is inconsistent: P cannot be extended. The pathrepair algorithm will thus try to repair the current path by c hoosing a new path through the function neighbor(P ,k,;). P arameters k a n d ; w i l l b e explained later.

The path-repair algorithm appears here as a search method that handles partial instantiations and uses ltering techniques to prune the search space. The key components of this algorithm are the neighboring computation functions (neighbor) and the extension functions (extend).

Properties of the neighborhood o f p ath-repair

In a local search algorithm such a s gsat (on boolean csps), an inconsistent instantiation is replaced by a new one built from the rst one by negating the value of one of its variables. That variable is choosen by a heuristic (for example: the one whose negation will allow the greatest number of clauses to become satis ed). More generally, a local search algorithm uses complete instantiations (called states) and replaces an inconsistent state with another state chosen among its neighbors.

The path-repair algorithm works in the same way except that it uses partial instantiations (paths): as soon as a path becomes inconsistent , o n e o f i t s neighbors needs to be chosen. A path (partial instantiation) synthetizes all the included complete instantiations. Switching paths is like setting aside many irrelevant complete instantiations in one movement.

Like a n y local search algorithm, path-repair may use a heuristic way to select an interesting neighbor. The algorithm can even choose a neighbor in order to implement a systematic search algorithm. Completeness comes from the fact that a path summarizes numerous complete instantiations.

The following sections discuss neighboring path, heuristic choices and speci c techniques leading to a systematic algorithm. We previously introduced a parameter ; in the neighboring computation functions (neighbor) and extension functions (extend). ; can be used to store a context that varies according to the chosen version of the algorithm. In the primitive v ersion that is being presented in this paper, that context is not used.

Neighboring path

It seems to be a good idea to select a neighboring path P 0 which d o e s n o t h a ve the drawbacks of the current path P (recall that in path-repair, neighbors of path P are computed i P is inconsistent). For example, it would be interesting to get to a consistent n e i g h bor P 0 i.e. such t h a t obviousInference((C C 0 P 0)) = allSolution. O b viously, that is not a ordable to compute in the general case.

Therefore, we m a y prefer to get at least to a partially consistent neighbor P 0 i.e. such t h a t obviousInference((C C 0 P 0))6 = noSolution. Unfortunately, the only way to get there (without using computing resources) is to get back to an already explored node but, doing so, we w ould achieve a kind of backtracking mechanism, what is not wanted in the path-repair algorithm.

Nevertheless, what can be done is to avoid the neighbors that can already be known as inconsistent. Such an information can be extracted from an inconsistent path P. Indeed, inconsistency means that Ĉ ^Ĉ P =) false. I t i s possible to compute a subset of C P that is alone inconsistent with C. S u c h a subset will be called a nogood 7].

De nition 1 (Nogood) A n o good k for a set of constraints C and a path P, is a set of constraints such that: k C P and Ĉ ^k =) false.

As long as constraints in a computed nogood k remain altogether in a given path P 0 , that path will remain inconsistent. Therefore, in order to get a path with some hopes to be consistent, we need to remove from the current p a t h P at least one of the constraints in k.

Note that if current path P is inconsistent, C P is a valid nogood. Obviously, a strict subset will be much more interesting and will give a more precise neighborhood. A minimal (for the inclusion) nogood would be the best, but it is very expensive to compute one 28]. Therefore, non minimal nogoods will be computed in practice.

As for now, our neighborhood remains very general. In the following, more interesting neighborhoods are described. Our point here is to show that the concept of nogood is crucial for path-repair: nogoods allow relevant neighborhoods to be considered, nogoods can be used to derive e cient neighbor selecting heuristics for a non-systematic path-repair algorithm, nogoods can be used to derive a complete path-repair algorithm.

Nogoods are provided by the ltering algorithm as soon as it can prove t h a t no solution exists in the subsequent complete paths derived from the current partial path. In ltering based constraint solving algorithms, a contradiction is raised as soon as the domain of a variable v becomes empty. Suppose that, for each v alue (or set of values) a i removed from the domain of v, a set of enumerating constraints k i C P is given. k i is called a removal explanation for a i and is such that: Ĉ ^k i =) v 6 = a i . If so, k = S i k i is a nogood since no value for v is allowed by the union of k i . Therefore, in order to compute nogoods, it is su cient to be able to compute an explanation for each v alue (or set of values) removal for the domain of the failing variable.

Value removals are direct consequences of the ltering algorithms. Therefore, value removal explanations can be easily computed by using a trace mechanism within the ltering algorithm and memorizing the reason why a removal is done 16].

For example, let us consider two v ariables v 1 and v 2 whose domains are both f1 2 3g. Let c 1 be the constraint: v 1 > 3 and let c 2 be the constraint: v 2 > v 1 . Let us assume the used ltering algorithm is arc-consistency ltering. The constraint c 1 explains the fact that f1 2g should be removed from v 1 . Afterwards, c 2 forces to remove f1 2g from v 2 . An explanation of the removal of f1 2g from v 2 will be: c 1 ^c2 because c 2 makes that removal only because previous removals occured in v 1 due to c 1 .

Path-repair instances

Heuristic choice of neighbors

In a local search algorithm, the neighbor selection is very important. Many heuristics may be used. For path-repair it is the same, di erent heuristics can be used.

As for now, we h a ve de ned a neighb o r o f a p a t h P according to a nogood k a s a p a t h t h a t d o e s n o t c o n tain at least one constraint from k. Indeed, a more precise neighborhood can be computed. Let c be a constraint to be removed from C P . As long as all the constraints in knc remain in the active p a t h , c will never be satis able. Thus, the negation of c can be added in the new path.

A possible neighborhood for an inconsistent set of constraints C P , according to a nogood k C P is made from the sets of constraints C P i di erent from C P by the negation of one constraint i n k. Let us take an example. Let P be the path (c 1 c 2 c 3 :c 4 c 5). Let the nogood k be the set fc 2 c 3 :c 4 g. The neighborhood so de ned is the set of the three paths (c 1 :c 2 c 3 :c 4 c 5), (c 1 c 2 :c 3 :c 4 c 5), and(c 1 c 2 c 3 c 4 c 5). Now, there remains to specify which neighbor to choose among the above de ned neighbors. That degree of freedom for the choice of the constraint in k to be negated allows the use heuristic techniques. In an initial version, we w anted to try to adapt the min-con ict heuristic 19] that minimizes t h e number of unveri ed constraints. But, when using a ltering algorithm such a mechanism may not be very e cient: the rst unveri ed constraint stops the algorithm.

In our current implementation, an integer (weight) is associated with each constraint counting the number of times that the constraint appeared in a nogood. The heuristic consists in choosing to negate the constraint with the greatest weight. A similar approach counting the number of times that a constraint has not been veri ed has been successfully used for gsat 24].

Tabu path-repair

The tabu version of path-repair u s e s a t a b u l i s t o f a g i v en size s. The s last computed nogoods are kept in a list ;. A valid neighb o r i s d e n e d a s a p a t h that does not completely contain any of the nogoods in ;. In other words, at least one constraint in each nogood of ; is not (or is negated) in the new neighbor. To compute such a neighbor in a reasonable time, a greedy algorithm can be used. Figure 2 shows an implementation of the neighbor function for tabu path-repair that has been used for solving scheduling problems. It chooses function neighbor(P , k, ;) /* precondition: k C P */ add k to the list of nogoods ; if sizeOf(;) > s then remove the oldest element o f ; L := ordered list (by decreasing weight) of constraints in k repeat remove the rst constraint c from L P 0 := P except that :c replaces c if C P 0 covers all nogoods in ; then return P 0 until L empty return stop (or extend the neighborhood) Fig. 2. The neighbor function for tabu path-repair to negate the constraint with the greatest weight that, when negated, makes the new path cover all the nogoods in ;. If such a constraint does not exist, the neighborhood could be extended (for example, we m a y try to negate 2 constraints). In our implementation for open shop problems (see section 5), this case is handled as a stopping criterion.

Note that, in the same way, the function extend(P ,;) should use ; in order to correctly extend the partially consistent current path.

A systematic instance

Backtracking-based approaches are interesting because they provide systematic search algorithms. Filtering techniques are then used for e ciency reasons. Using ltering techniques is even more interesting within local search algorithms: it can make them more e cient but also complete. Let's see how path-repair can become a systematic algorithm.

Nogoods bring that completeness. The easy way i s m e r e l y t o k eep all computed nogoods. If during the resolution no valid neighbor exists, the considered problem does not have a n y feasible solution. Of course, this leads to potentially exponential storage space in order to keep all the nogoods. It is possible to avoid this problem and to keep a polynomial storage space. That is what is done in algorithms such a s dynamic backtracking 10], partial order dynamic backtracking 11] and general partial order backtracking 2].

Those algorithms work on an instantiation of the variables which is locally repaired using nogoods. The used recording mechanism requires only polynomial space. For example, considering dynamic backtracking:

Only nogoods for which at most one constraint is not in the current p a t h are kept in ; the neighbor to be processed is completely deterministic (the chosen enumerating constraint to be undone is the most recent one in the lat encountered nogood).

In path-repair, such a nogood recording mechanism can be used thus providing a systematic search algorithm. Such algorithms can be found in a slightly di erent w ay in 16] for dynamic csps and 17] for numeric csps.

Related works

The path-repair algorithm takes its roots in many other works, among which 9] has probably been the most in uential by highlighting the relationships between local and systematic search, and by the use of nogoods to guide the search and make it systematic.

Two algorithms have been designed that have similarities with the non-systematic path-repair algorithm (see section 3.4.2):

The algorithm proposed by S c haerf 23] can be seen as an instance of the path-repair algorithm where the enumerating contraints are instantiations, there is no propagation and no pruning (the ltering algorithm only consists in checking if the constraints containing only instantiated variables are not violated), it does not make use of nogoods neither in the the neighbor function nor in the extend function. The common idea, which already exists in previous works 15], is essentially to extend a partial instantiation when it is consistent, and to perform a local change when the partial solution appears to be a dead-end. The idea to use a ltering algorithm during the running of a local search has been also used in 26], where an extension to GENET, a local search method based on an arti cial neural network aiming at solving binary CSPs, is introduced. This extension achieves what is called \lazy arc-consistency" during the search. The lazy arc-consistency ltering performs a ltering over the initial domains. The result is at most the one obtained by ltering the domains before any search. In path repair, the ltering is applied over the current domains at every step.

The way nogoods are computed by the ltering algorithm is a well-known technique that has already been used for di erent c o m binations of ltering algorithm with systematic search algorithms (forward checking + intelligent b a c k-tracking 21], forward checking + dynamic backtracking 29], arc-consistency + i n telligent backtracking 5], arc-consistency + dynamic backtracking 16], 2B-consistency + dynamic backtracking 17]. Nevertheless, as far as we k n o w, the tabu version of path-repair is the rst time such a technique is used in combination with a local search algorithm.

5 Solving scheduling problems Classical scheduling shop problems for which a s e t J of n jobs consisting each in m tasks (operations) must be scheduled on a set M of m machines can be considered as csps u p o n i n tervals [START_REF] David | A constraint-based approach for examination timetabling using local repair techniques[END_REF] . One of those problems is called the Open Shop problem 13]. For that problem, operations for a given job may be sequenced as wanted but only one at a time. We will consider here the building of non preemptive s c hedules of minimal makespan [START_REF] Doyle | A truth maintenance system[END_REF] . That problem is NP-hard as soon as min(n m) 3.

Constraints on resources (machines and jobs) are propagated thanks to immediate selections from 4]. The consistency level achieved by that technique does not ensure the computation of a feasible solution. An enumeration step is therefore needed. For shop problems, enumeration is classically performed on the relative order on which tasks are scheduled on the resources. When every possible precedence has been posted, setting the starting date of the variable to their smallest value provides a feasible solution. Such a precedence constraint is therefore an enumerating constraint as de ned in section 2.

One of the best systematic search algorithms developed for the Open Shop problem is the branch and bound algorithm presented in 3]. It consists in adding precedence constraints along the critical path of a heuristic solution in each node. As far as we k n o w, although this is one of the best methods ever, some problems of size 7 7 remain unsolved.

Enumerating techniques used for the Open Shop problem are interesting for path-repair because they dynamically build independent sub-problems (by adding precedence constraints). We can suppose that path-repair will be able to make pro t of that situation. We also tested a tabu version of path-repair. T able 1 presents the results obtained on a series of 30 problems from Taillard 27]. In order to put in perspective our results, we recall results presented in 1,18]. Those papers present tabu searches speci cally developed for the Open Shop problem. Those methods both use carefully chosen complex parameter values. Results presented in table 1 show that our simple approach w h i c h merely applies principles presented in this paper already gives very good results.

Our implementation uses a tabu list of size 15. The neighbor function is the one given in gure 2. The conditions of failure specifying the exit of the main loop (gure 1) are either \stop"returned by t h e neihgbor function or 1500 iterations reached.

Taillard's problems are optimization problems. This requires a main loop that calls the function path-repair until improvement is no longer possible (see gure 3). Improvements are generated by adding a constraint that speci es that the makespan is less than the current best solution found. The initial path for each call of the function path-repair is the latest path (which describes the last solution found).

Conclusion and future works

In this paper, we i n troduced a new solving algorithm for csp: t h e path-repair algorithm. The two main points of that algorithm are: it makes use of a repair algorithm (local search) as a basis and it works on a partial instantiation in order to be able to use ltering techniques. We s h o wed that the most useful tool to implement that algorithm was the use of nogoods.

Fig. 1 .

 1 Fig.1. The path-repair algorithm obviousInference(C 0) = allSolution: a solution has been found. The algorithm terminates and returns C 0 . obviousInference(C 0) = flounder: t h e path-repair algorithm tries to extend the current p a t h P by adding an enumerating constraint. That behavior is similar to that of backtracking-based search algorithms. For that purpose, a function extend(P ,;) is assumed to exists that chooses an enumerating constraint to be added and adds it to P. The meaning of parameter ; will be made clear later. obviousInference(C 0) = noSolution: C C P is inconsistent. We will say that P is a dead-end, o r P is inconsistent: P cannot be extended. The pathrepair algorithm will thus try to repair the current path by c hoosing a new path through the function neighbor(P ,k,;). P arameters k a n d ; w i l l b e explained later.

 We rst tested systematic versions of path-repair on the Open Shop problem. We obtained a very high improvement in terms of numb e r o f e x p l o r e d n o d e s comparing with the results of 3]. Moreover, a problem of size 10 10 has been solved for the rst time. Those results have been presented in 14].

Fig. 3 .

 3 Fig. 3. Algorithm used to solve T aillard's problems

Note that ltering techniques can be considered as a limited form of systematic search.

For discrete csps where enumerating constraint a r e v alue assignments N e is clearly the number of involved variables. For numeric csps N e strongly depends on the

These conditions depend on the instance of the algorithm examples are given in the following sections.

Variables are starting date of the tasks. Bounds thus represent the least feasible starting time and the least feasible ending time.

Ending time of the last task.

First experiments with both systematic versions (based upon a managing of the nogoods inspired from dynamic backtracking) and non systematic versions (using a tabu list) of path-repair have shown promising results.