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Centre de Saclay, F-91191 Gif-sur-Yvette, France.

Ph. Chomaz
GANIL (DSM-CEA/IN2P3-CNRS), B.P. 55027, F-14076 Caen cedex 5, France and

CEA, Irfu/Dir, Centre de Saclay, F-91191 Gif-sur-Yvette, France.
(Dated: August 26, 2008)

We study pairing vibrations in 18,20,22O and 42,44,46Ca nuclei solving the time-dependent Hartree-
Fock-Bogoliubov equation in coordinate space with spherical symmetry. We use the SLy4 Skyrme
functional in the normal part of the energy density functional and a local density dependent func-
tional in its pairing part. Pairing vibrations are excited by two-neutron transfer operators. Strength
distributions are obtained using the Fourier transform of the time-dependent response of two-neutron
pair-transfer observables in the linear regime. Results are in overall agreement with quasiparticle
random phase approximation calculations for Oxygen isotopes, though differences appear when in-
creasing the neutron number. Both low lying pairing modes and giant pairing vibrations (GPV) are
discussed. The GPV is observed in the Oxygen but not in the Calcium isotopes.

PACS numbers: 21.60.Jz, 24.30.Cz, 21.10.Re, 25.60.Je

I. INTRODUCTION

Energy density functional (EDF) approaches like the
Skyrme-Hartree-Fock model [1, 2] have proved to be suc-
cessful to describe bulk properties of nuclei over the nu-
clear chart [3]. Recent computer improvements allow
large scale EDF calculations of nuclear structure [4, 5]
and reactions [6, 7]. In these approaches, one restricts
the many-body wave-functions to a subset of the Hilbert
space on the one hand and guess a nuclear EDF on the
other hand. A commonly used technique is to break sym-
metries to enrich the variational sub-space and improve
the description of nuclear structure. As an example,
breaking gauge invariance associated to particle number
conservation yields the Hartree-Fock-Bogoliubov (HFB)
formalism [8, 9, 10]. This technique allows for the de-
scription of superfluidity in ground states of open-shell
nuclei.

Extensions to treat collective excitations in the pres-
ence of pairing correlations are possible in the frame-
work of the Quasiparticle Random Phase Approximation
(QRPA) which has been widely used in nuclear struc-
ture studies [11, 12, 13, 14, 15, 16, 17]. This approach
and its zero pairing counterpart (RPA) give reasonable
estimates of giant resonances though improvements are
necessary to reproduce fine structures [18]. In fact, the
QRPA can be obtained from the linearization of the time-
dependent Hartree-Fock-Bogoliubov (TDHFB) equation
which provides a self-consistent evolution of an indepen-
dent quasiparticles state. There is a consistency require-
ment that QRPA and the static limit of TDHFB should
use the same effective interaction. This is a natural fea-
ture of TDHFB that the same EDF can be easily used
in the static and dynamical calculations thanks to the
structure of the TDHFB equation. This is not always
the case in (Q)RPA calculations where spin-orbit and

Coulomb parts of the residual interaction are often omit-
ted (see discussion in [19] and references therein), which
may affect collective modes [15, 20, 21, 22].

Unlike in condensed matter where, for instance, TD-
HFB has been applied to study dynamics of Bose-
Einstein condensates [23, 24], explicit time evolutions of
nuclei including pairing are sparse and usually limited to
the BCS ansatz of superfluidity with simple functionals
[25, 26, 27] or to simple systems [28]. Only recently, a
numerical method of solving TDHFB with the Gogny in-
teraction [29] has been proposed to study quadrupole
oscillations using a harmonic oscillator basis [30].

At the limit where pairing is neglected, however, ex-
tensive calculations of nuclear dynamics have been per-
formed using the time-dependent Hartree-Fock (TDHF)
formalism introduced by Dirac in 1930 [31]. In this ap-
proach, one considers the dynamics of independent par-
ticles in a self-consistent mean-field generated by all the
others. The use of Skyrme EDF [32] allowed recent realis-
tic calculations of both collision mechanisms [6, 7, 33, 34,
35, 36, 37, 38] and giant resonances [19, 39, 40, 41]. For
instance, TDHF has been used to study anharmonicities
in collective motion which are beyond the RPA range of
applications [39, 42]. It is then an appealing challenge to
repeat these works using TDHFB to investigate the role
of pairing correlations in nuclear dynamics. In particular,
”How do they affect low-energy reaction mechanisms ?”
is still an open question. However, full three-dimensional
TDHFB codes for collisions are still prohibitive at mo-
ment. For nuclear structure purposes, pairing vibrations
and rotations [43, 44, 45] also demand theoretical inves-
tigations to reach realistic predictions [46]. Of particular
interest are high-lying pairing collective modes like gi-
ant pairing vibrations (GPV) [47]. These modes can be
viewed as coherent sums of two-quasiparticle excitations
across a major shell. They are probed by two-nucleon
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transfer reactions [48, 49]. The GPVs are still unobserved
experimentally but they are experiencing a renewed inter-
est since recent theoretical developments predicted that
the use of radioactive ion beams could provide better
conditions for their studies [50, 51, 52].

In this article, we solve for the first time the TDHFB
equation with a full Skyrme functional in the normal part
of the EDF and a local density dependent one in its pair-
ing part. As a first application, we investigate pairing
vibrations using the linear response theory. Our model
is then equivalent to a fully consistent QRPA including
spin-orbit and Coulomb interactions also in the particle-
hole channel. In section II, we recall the TDHFB formal-
ism and the choice of the EDF. We present in section III
numerical implementations in spherical symmetry. Then,
we discuss in section IV our choice of observables asso-
ciated to pairing vibrations in the framework of the lin-
ear response theory. Finally, we present the results for
18,20,22O and 42,44,46Ca isotopes in section V before to
conclude in section VI.

II. FORMALISM

A. TDHFB equation

The TDHFB equation can be derived starting from the
action between an initial and final time ti and tf

S =

∫ tf

ti

dt 〈Ψ(t)|ih̄
∂

∂t
− Ĥ |Ψ(t)〉 (1)

and writing the variational principle δS = 0 in the sub-
space of quasiparticle vacua. For each state |Ψ〉 of this
sub-space, one can find a basis of quasiparticle annihila-

tors {β̂} such that β̂µ|Ψ〉 = 0 for all µ [44]. The latter can
be related to the particle creation and annihilation oper-
ators {â†, â} through the Bogoliubov transformation [10]

β̂µ =
∑

ν

(

U∗
νµâν + V ∗

νµâ
†
ν

)

(2)

where the matrices U and V are such that the quasi-

particle operators {β̂†, β̂} fulfill the canonical anti-
commutation rules for fermions.

The variational principle leads to the TDHFB equa-
tion [53]

ih̄
∂

∂t
R = [H,R] . (3)

The generalized one-body density matrix reads

R(t) =

(

ρ(t) κ(t)
−κ∗(t) 1 − ρ∗(t)

)

, (4)

where ρµν =
〈

ψ|â†ν âµ|ψ
〉

are the matrix elements of the
normal density and κµν = 〈ψ|âν âµ|ψ〉 are the elements of
the pairing tensor. The generalized one-body Hamilto-
nian H has a block structure and can be writen in terms

of the Hartree-Fock (HF) Hamiltonian h and the pairing
field ∆

H =

(

h ∆
−∆∗ −h∗

)

, (5)

where

hµν =
δE [ρ, κ, κ∗]

δρνµ
and ∆µν =

δE [ρ, κ, κ∗]

δκ∗µν

. (6)

In the above HFB formalism, the functional E [ρ, κ, κ∗] is

the expectation value of the exact Hamiltonian Ĥ on the
quasiparticle vacuum |Ψ〉.

A more practical form of the TDHFB equation is found
by recasting these equations in terms of the quasiparticle
components U and V introduced in Eq. (2)

ih̄
∂

∂t

(

Uνµ

Vνµ

)

=
∑

η

(

hνη ∆νη

−∆∗
νη −h∗νη

)(

Uηµ

Vηµ

)

. (7)

B. EDF approach

In nuclear physics, the above formalism should be mod-
ified, in particular to take into account the short range
repulsive part of the nuclear interaction which makes
the mean-field HFB approach irrelevant with the bare
interaction. This is a reason why one generally re-
places E [ρ, κ, κ∗] by an effective EDF fitted on nuclear
properties without invoking directly the underlying ex-
act Hamiltonian. Moreover, in the spirit of the density
functional theory [54, 55, 56], this procedure allows to
include many-body correlations.

Let us decompose the total energy into kinetic,
Skyrme, Coulomb and pairing parts (see appendix A for
an explicit expression of each component)

E = Ekin + ESk + ECoul + Epair. (8)

We choose the SLy4 parameterization [57] of the Skyrme
functional [32] including time-odd densities [58]. The
Coulomb energy includes direct and exchange terms. The
latter is estimated using the Slater approximation [59].
The three first terms of Eq. (8) depend only on the nor-
mal densities. It is convenient to express the pairing en-
ergy Epair using the anomalous density

ρ̃q(rs, r
′s′) = −2s′κq(rs, r

′ − s′) (9)

where s the projection of the spin and q the isospin. We
use a local pairing functional (see, e.g., [2] and references
therein)

Epair =

∫

dr
g

4

[

1 −

(

ρ0(r)

ρc

)γ]
∑

q

ρ̃∗q(r) ρ̃q(r)(10)

where ρq(r) =
∑

s ρq(rs, rs) and ρ̃q(r) =
∑

s ρ̃q(rs, rs)
are the local parts of the normal and anomalous densi-
ties with isospin q respectively, ρ0(r) =

∑

q ρq(r) is the
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scalar- isoscalar density and g is the pairing coupling con-
stant. The parameters ρc and γ are adjusted to generate
pairing correlations preferably at the surface and/or in
the bulk of the nucleus. Such a pairing scheme yields
pairs of nucleons of the same isospin coupled to angular
momentum zero. The simplicity of such an EDF made
systematic three-dimensional HFB calculations over the
whole nuclear chart possible [4, 5].

However, one has to face the divergence of local pair-
ing densities [60]. It is then necessary either to regularize
the equations by introducing a cutoff in the quasiparticle
spectrum or eventually to perform a more complex renor-
malization scheme (for an example based on the Thomas-
Fermi approximation, see [61, 62]).

In our calculations, we use a cutoff to regularize the
TDHFB equation in a quasiparticle energy window of
80 MeV. This value allows two-quasiparticle excitations
up to 160 MeV. The pairing parameters are fitted to re-
produce a neutron spectral gap of 1.25 MeV in 120Sn, the
pairing acting both in the bulk and at the surface of the
nucleus [63]. The obtained pairing coupling constant is
g = −275.25 MeV with the parameters ρc = 0.32 fm−3

and γ = 1.

C. Particle number conservation

Due to the broken U(1) gauge invariance associated
to the particle number conservation, the HFB states are
not eigenstate of the particle number operator N̂ . In
static calculations, one adds a Lagrange multiplier λ,
interpreted as a chemical potential, in order to fix the
number of particles in average. In TDHFB dynamical
simulations, however, the particle number obeys to

ih̄
∂

∂t
〈N̂〉 = Tr (κ∆∗ − ∆κ∗) . (11)

The definitions of ∆ and ρ̃ in Eqs. (6) and (9) respec-
tively, together with the choice of the pairing functional
in Eq. (10) ensure that the right hand side of Eq. (11)
vanishes. As a consequence, we do not need to enforce
the conservation of the average number of particles with
a chemical potential in the TDHFB equation.

Nevertheless, dropping this constraint in the dynamics
induces a rotation of the Bogoliubov vacuum in gauge
space [64]. In particular, the anomalous density of a sta-
tionary state will carry a phase exp (−2iλt/h̄). Then, the
ground state expectation values of observables which are
linear in the anomalous density will evolve in time. For
instance, this is the case of the observable we use to study
pairing vibrations (see Eq. (22)). The time-Fourier anal-
ysis of such an observable in the linear response theory
(see section IV) will then contain a spurious peak at an
energy h̄ω = 2λ. This is a manifestation of the Goldstone
mode due to the broken symmetry associated to particle
number conservation. In QRPA calculations, it induces
a spurious mode at zero energy. In order to avoid such a
spurious mode in the linear response of TDHFB, we have

to keep the static ground state chemical potential in the
particle-hole field during the evolution. Finally, we note
that the chemical potential λ is easy to compute only
for nuclei with pairing. Thus we do not consider doubly
magic nuclei as initial states in the present work.

III. NUMERICAL IMPLEMENTATION OF

TDHFB

A. Spherical symmetry

The pairing functional defined in Eq. (10) couples only
nucleons of the same isospin. We can then focus on
semi-magical nuclei for which the spherical assumption
is a good approximation. As a consequence, we solve the
TDHFB equation using spherical symmetry.

Let us recast the problem with purely local fields in
space, spin and isospin using this symmetry. The total
many-body wave-function being rotational invariant, it is
convenient to write the Bogoliubov transformation in the
spherical basis using the standard notation for quantum
numbers n, l, j and m (we omit the isospin q in the
notation for simplicity)

β̂†
nljm =

∑

k

(V
(ljm)
kn (−1)j−mâklj−m + U

(ljm)
kn â†kljm).(12)

This definition ensures that the component m of these
quasiparticle operators transforms under rotation as a
tensor of rank j (see Eq. (8.79) of Ref. [53]).

We choose to solve the TDHFB equation in coordinate
space using quasiparticle wave functions Uν(rs) ≡ Urs,ν

and Vν(rs) ≡ Vrs,ν defined as components of quasiparti-
cle spinors

(

Unljm (rs)
Vnljm (rs)

)

=

(

〈rs|β̂†
nljm|−〉

〈−|β̂†
nljm|rs〉

)

, (13)

where |−〉 is the particle vacuum. The standard
decomposition of single particle orbitals in spheri-
cal coordinates writes 〈rs|nljm〉 = Rnlj(r)Ωljms(θφ).
The angular part is expressed in terms of Clebsch-
Gordan coefficients and spherical harmonics Ωljms =
〈l(m − s)1

2s|jm〉Y m−s
l . Defining the radial quasipar-

ticle wave functions unjl(r) = r
∑

k U
(ljm)
kn Rklj(r) and

vnjl(r) = (−1)l+1r
∑

k V
(ljm)
kn R∗

klj(r), and using the

property Ω∗
lj−ms = −2s(−1)m+l−jΩljm−s, Eq. (13) be-

comes
(

Unljm (rs)
Vnljm (rs)

)

=
1

r

(

unlj (r) Ωljms (θφ)
2σ vnlj (r) Ωljm−s (θφ)

)

.

Following the same way as Dobaczewski et al. for the
static HFB problem [65], we introduce the anomalous

field h̃q(rs, r
′s′) = δE[ρ,ρ̃,ρ̃∗]

δρ̃∗

q (rs,r′s′) where only the pairing en-

ergy in Eq. (10) contributes. The EDF considered here
contains only local densities (see appendix A). Therefore,
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the HF and anomalous fields are also local in space. Fi-
nally, it is possible to recast the TDHFB equation (7) as
a set of Schroedinger like equations for the quasiparticle
radial wave functions u and v

ih̄
∂

∂t

(

unlj

vnlj

)

=

(

hlj − λ h̃

h̃∗ −h∗lj + λ

)(

unlj

vnlj

)

(14)

where λ is the chemical potential (see section II C). The

expressions of the fields h(r) and h̃(r) and those of the
various densities entering the EDF solved in spherical
symmetry can be found in appendix A.

B. Computational details

The initial condition is obtained with the hfbrad

code [66] which solves the static HFB equation in spher-
ical symmetry. We have constructed a time-dependent
version of this code to solve the TDHFB equation with
the functional described in section II B. The set of equa-
tions (14) is solved iteratively using a one-step predictor-
corrector method [67] and a truncation of the time prop-
agator

U (t, t+ δt) = exp

(

−iδt

h̄
H(t+ δt/2)

)

(15)

at 4th order in δt.
Spatial derivatives are calculated in a discretized r-

space using seven-points formula. The numerical accu-
racy of this method decreases increasing quasi-particle
energy. As a consequence, this approximate derivation
formula induces a small periodic variation of the HFB
ground state (of the order of few tens of keV) due to high
energy quasiparticles. We checked that this numerical ar-
tifact disappears if we develop the wave-functions on a
constant step Lagrange mesh [68]. However, the latter
method increases the numerical effort. The amplitude
of these variations being linked to the mesh discretiza-
tion, a mesh step of 0.15 fm has been found to ensure
a good numerical precision with a reasonable computa-
tional effort. In particular, the energy is conserved up to
15 keV and deviations of the total number of particles are
of the order of 10−7 in the present calculations. Though
this latter value is one order of magnitude higher than
in the TDHF case with the same numerical conditions,
it is small enough to leave the observables of interest un-
affected. Moreover, to avoid any unphysical contribution
due to the approximate spatial derivative in the evolution
of observables, we subtract from their expectation values
the one obtained without external field. We checked that
this procedure does not affect the physical content of the
spectra presented in Sec. V.

Let us precise that we use hard box boundary condi-
tions. The latter are not optimized for a proper treat-
ment of the continuum because they lead to a discretized
quasiparticle spectrum. In addition, particles which are
reflected on the boundaries of the box may interact with

the nucleus and induce unphysical effects on the evolution
of observables. This problem has been tackled in TDHF
with the help of absorbing boundary conditions [19, 69].
However, we did not found this technique to be appropri-
ate to treat the TDHFB continuum because of the non-
vanishing asymptotic nature of the upper component of
the quasiparticle wave-functions in Eq. (13) [65]. Though
needed to refine description of unbound states [13], fur-
ther improvements of the boundary conditions are be-
yond the scope of this exploratory work.

We consider nuclei with magic proton numbers and ex-
citations acting on neutrons only. Then the calculations
include pairing for neutrons only. The local pairing func-
tional couples to high angular momenta and high energy
quasiparticle states up to the energy cutoff of 80 MeV.
In the calculations presented here, convergence of the
static solutions have been obtained with a maximum to-
tal angular momentum for neutrons, for which the Bo-
goliubov transformation is achieved, of jc = 19/2 (23/2)
for Oxygen (Calcium) isotopes respectively. For Oxygen
isotopes, a box radius 22.5 fm was used, in order to be in
conditions as close as possible to the discrete QRPA re-
sults of Ref. [52]. Calculations for Calcium isotopes have
been performed in a box of radius 30 fm.
Both the mesh step, through the derivation formulae,
and the maximum angular momentum, through the cen-
trifugal part of the kinetic operator, constrain very much
the time step for which the calculations are stable. The
adopted time step used in these calculations are 0.003
and 0.002 fm/c for Oxygen and Calcium isotopes respec-
tively.

IV. LINEAR RESPONSE FRAMEWORK FOR

PAIRING EXCITATIONS

A. Linear response theory

The linear response theory has been widely used with
TDHF to study collective vibrations in nuclei [19, 39, 40,
41, 42, 70, 71, 72, 73, 74, 75, 76]. In this theory, one
computes the time evolution of an observable

∆Q(t) = 〈Ψ(t)|Q̂|Ψ(t)〉 − 〈0|Q̂|0〉 (16)

after an excitation induced by a small external potential
V̂ext(t) = ǫF̂ ξ(t) on the ground state |0〉 of the system.
The parameter ǫ quantifies the intensity of the excitation.
It has to be small enough to ensure the linear regime,
i.e., the amplitude ∆Qmax of the response must be pro-
portional to ǫ. In this study, the time dependence of
the external potential is chosen to be a Dirac function
ξ(t) = δ(t). The excitation is then equivalent to a boost
applied on the ground state at the initial time

|Ψ(0)〉 = e−iǫF̂ /h̄|0〉. (17)

The response ∆Q(t) to this excitation can be decom-
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posed into various frequencies ω using

RQ(ω) =
−h̄

πǫ

∫ ∞

0

dt ∆Q(t) sin(ωt). (18)

In the particular case where the operators used for the
excitation and the observations are the same, i.e., F̂ = Q̂,
Eq. (18) gives the strength distribution

RF (ω) =
∑

α

|〈α|F̂ |0〉|2 δ(ω − ωα) (19)

where 〈α|F̂ |0〉 is the transition amplitude between the
ground state and the eigenstate |α〉 of the Hamiltonian
and h̄ωα = Eα − E0 is their energy difference.

When the excitation generates a transition to neigh-
boring nuclei, E0 and Eα are the energies of the ground
and excited states of the final nucleus if one keeps the
static chemical potential in the Hamiltonian (see section
10.1 of Ref. [53]). For instance, in the case of an addition
of two nucleons on a nucleus of A nucleons, the energy

of the mode reads h̄ωα = E
(A+2)
α − E

(A+2)
0 where the

ground state energy of the final nucleus is approximated

by E
(A+2)
0 = E

(A)
0 +2λ. Note that this energy may differ

from the one obtained in a HFB calculation in the A+ 2
nucleus because of a possible rearrangement of the HFB
field.

B. Application to pairing vibrations

Pairing vibrations of quantum numbers 0+ can be ex-
cited by two-nucleon transfer reactions and have been
studied in the small amplitude limit within the QRPA
framework [52]. A Hermitean pair-transfer operator is
given by [45]

F̂ =
∑

ν

(

fν â
†
ν â

†
ν̄ + f∗

ν âν̄ âν

)

(20)

where ν̄ denotes the time-reversed state of ν.
In this paper, we consider local excitations acting on

neutrons only and, for the sake of simple notations, we
do not write explicitly the isospin quantum number in
the following. The pair-transfer operator then writes in
coordinate space

F̂ =

∫

dr f(r)
(

â†
r,↓â

†
r,↑ + âr,↑âr,↓

)

. (21)

In this particular choice, the spatial distribution f(r) is

real. Using Eq. (9), the expectation value of F̂ simply
writes

〈Ψ(t)|F̂ |Ψ(t)〉 =
1

2

∫

dr f(r) (ρ̃0(r; t) + ρ̃∗0(r; t)) (22)

where ρ̃0 =
∑

q ρ̃q.
To preserve spherical symmetry, we focus on monopole

pairing modes, requiring a radial dependence only, i.e.,

f(r) ≡ f(r). We choose a Fermi-Dirac spatial distribu-

tion f(r) =
(

1 + exp
(

r−Rc

d

))−1
where the parameters

Rc = (1.27 A1/3 + 4) fm and d = 0.5 fm are chosen
to allow for pair transfer on the whole nucleus on the
one hand, and to remove unphysical high energy modes
associated to pair creation outside of the nucleus on the
other hand. Finally, this excitation may change the num-
ber of neutrons at the initial time. However, deviations
are small in the present calculations (∼ 10−3 neutrons).

We choose to follow the excitation operator F̂ itself
to get its strength distribution defined in Eq. (19). We

also decompose the excitation operator F̂ =
∑

l F̂l into
components of single particle angular momentum l

F̂l =
∑

nn′jm

∫

dr f(r) 〈nljm|r ↓〉 〈n′lj(−m)|r ↑〉

×â†nljmâ
†
n′lj(−m) + h.c. (23)

where h.c. denotes the Hermitean conjugate of the entire
expression. Computing the response of the F̂l helps us
interpret the spectra in terms of specific quasiparticle
excitations.

We perform the calculations over a total time interval
of T = 1200 fm/c. In order to minimize the effects of
the time gate on the Fourier transforms, we follow the
protocol given in Ref. [69], multiplying the observables
by a time filter cos2

(

πt
2T

)

. This procedure induces an
additional width of ∼ 1 MeV.

V. RESULTS

In this section, two-neutron transfer in several nuclei
is studied. To illustrate the method described in the
previous section, we first detail the analysis in 18O. Then,
we present the results on neutron-rich Oxygen isotopes
and on f -shell Calcium isotopes.

A. Detailed analysis on 18O

We apply the boost of Eq. (17) in the linear regime on
the HFB ground state of 18O. The pair-transfer operator
F̂ is defined in Eq. (21). The variation of the expectation

value of F̂ , obtained from Eq. (22), is plotted in Fig. 1 as
a function of time. We observe a complex evolution due
the excitation of several modes at different energies. We
see in the inset that a strong variation of ∆F (t) occurs at
early times because all modes are initially in phase [39].

The evolution in Fig. 1 is used to compute the strength
distribution of F̂ according to Eq. (18) and using the time
filter procedure described in the previous section. We
have controlled that the extracted strength is indepen-
dent of the excitation amplitude ǫ. The resulting spec-
trum is shown in Fig. 2(a) in solid line. We see two
separated peaks at 6.5 and 14.3 MeV and several peaks
between 20 and 26 MeV.
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FIG. 1: Evolution of ∆F (t) after a pair transfer type exci-
tation on 18O. The inset shows the same quantity at early
times.
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FIG. 2: Decomposition of the responses (in arbitrary units)
into frequencies ω for a two-neutron pair transfer excitation
in 18O. (a) Strength distribution of F̂ obtained from TDHFB
(solid line) and the unperturbed approximation (dotted line).
The arrows indicate the 1p3/2 (solid) and 1p1/2 (dotted) deep

hole states. (b) TDHFB responses of F̂l with l = 0, 1, 2 and
3.

To understand the effect of the residual interaction
which is included in TDHFB, we have computed the so-
called unperturbed response to the pair transfer excita-
tion. The latter is equivalent to Eq. (19) if one assumes
that the states |α〉 are two-quasiparticle excitations of

the type |µν〉 = β̂†
ν β̂

†
µ|0〉 where β̂†

ν creates a quasiparticle
eigenstate of the static HFB Hamiltonian on its ground
state |0〉. In this approximation, the energy of the tran-

sition to the state |µν〉 is the sum of the quasiparticle
energies h̄ωµν = eµ + eν . To allow for a quantitative
comparison between the strength distributions obtained
from TDHFB and unperturbed approximations, we com-
pute the latter using the same time Fourier technique as
for the TDHFB case. First, we determine the transition
amplitudes 〈µν|F̂ |0〉 and then the time evolution of the

observable F̂ − 〈0|F̂ |0〉 within the unperturbed approxi-
mation. The latter reads

∆F 0(t) =
∑

µν

|〈µν|F̂ |0〉|2 sin(ωµνt). (24)

Finally, we apply exactly the same procedure as for the
TDHFB evolution to extract its strength distribution.
The resulting unperturbed spectrum is represented by a
dotted line in Fig. 2(a). We see clearly that the effect
of the residual interaction is to increase the strength on
the one hand and, on the other hand, to shift down the
positions of the peaks.

To get a deeper insight into the nature of the peaks,
we decompose the response into components of the sin-
gle particle orbital momentum l using the observables F̂l

defined in Eq. (23). The response for l = 0, 1, 2 and 3
are plotted in Fig. 2(b). These spectra, together with
the quasiparticle HFB spectrum, allow us to character-
ize the peaks in terms of dominating two-quasiparticle
excitations. As one can see in Fig. 2(b), the first peak
located at 6.5 MeV is associated to the l = 0 component
of F̂ . It corresponds mainly to a pair transfer toward the
almost empty 2s1/2 orbitals.

The next peak, located at 14.3 MeV, is mainly a mix-
ture of two contributions: the transfer of a pair towards
1d3/2 orbitals and the removal of the 1p1/2 occupied neu-
trons indicated by a dotted arrow in Fig. 2(a). The fact
that these two modes have the same energy is fortuitous.
(This is also the case at the unperturbed level.) As we
will see later, they are well separated in the other Oxy-
gen isotopes. We also see in Fig. 2(b) that there is a
l = 3 contribution to this peak due to a coupling to f7/2

orbitals in the continuum.

Let us now focus on the group of peaks at higher en-
ergies. As one can see in Fig. 2(b), they are mostly pop-
ulated by l = 1 and 3 components. In fact, the peaks
between 20 and 24 MeV are mainly associated to the
excitation of f7/2 quasiparticle resonant states while the
peak at 24.7 MeV, indicated by a solid arrow in Fig. 2(a),
corresponds to the deep hole 1p3/2 state. Except for the
latter contribution, which is due to the removal of two
occupied neutrons, these peaks belong to the GPV [52].
Indeed, they correspond to excitations of resonant states
belonging to the next major shell and the enhancement of
the strength as compared to the unperturbed spectrum
is a sign of their collectivity [45].
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FIG. 3: Strength distributions of the two-neutron transfer op-
erator F̂ for 18,20,22O (in arbitrary units with the same scale
on each plot). TDHFB results (solid lines) and the unper-
turbed approximation (dotted lines) are shown. The arrows
indicate the 1p3/2 (solid) and 1p1/2 (dotted) deep hole states
and the 1d5/2 (dashed) pair removal. The filled regions cor-
respond to GPV candidates (see text).

B. neutron-rich Oxygen isotopes

In addition to 18O, we also studied two-neutron pair
transfer in 20,22O nuclei. The spectra are shown in Fig. 3
while the energies and most important quasiparticle con-
tributions to the main peaks are summarized in table I.
Comparing strength distributions obtained from TDHFB
(solid lines) with the unperturbed approximation (dotted
lines) in Fig. 3 leads to the same conclusions for all iso-
topes, i.e., an increase of the strength and a lowering
of the peak energies due to the TDHFB residual interac-
tion. We also see in Fig. 3 that the energies of the 1p3/2

and 1p1/2 deep-hole states increase with the number of

neutrons. The 1p3/2 peak in 22O is located outside of
the figure at 31.3 MeV. The occupied single particle or-
bitals are indeed deeper as compared to the Fermi level
when increasing the neutron number, corresponding to
higher quasiparticle energies. We also note that transi-

TABLE I: Energies and main quasiparticle contributions of
the most important peaks appearing in the strength distri-
bution of the two-neutron pair transfer operator F̂ extracted
from TDHFB calculations for various Oxygen isotopes. Num-
bers in parentheses are the centroids of the continuum-QRPA
energies of Ref. [52]. Labels in brackets indicate two-neutron
removal contributions.

nucleus E (MeV) main orbital contribution
18O 6.5(6.5) 2s1/2

14.3(14) 1d3/2, [1p1/2]

20-24(21.5) f7/2

24.7 [1p3/2]
20O 4.3(4) 2s1/2

12.1(11) 1d3/2

17.5 [1p1/2]

18-22(19) f7/2

28.0 [1p3/2]
22O 2.0 2s1/2, [1d5/2]

9.2(8) 1d3/2

16-20(16) f7/2

21.0 [1p1/2]

tions associated to the 1d5/2 orbital appear only in the
22O spectrum. This is due to the fact that the operator F̂
leaves the strongly paired levels almost unchanged [45],
and then no significant strength is associated to addition
and removal of nucleons into a partially occupied level at
the Fermi surface. This is not the case in 22O where the
1d5/2 single particle orbital is almost fully occupied.

Last but not least, we see that the GPV, indicated by a
filled region, is present in the three isotopes with similar
amplitudes. In all cases, the most important contribu-
tions to the GPV are the excitation of f7/2 quasiparticle
resonant states. In the present calculations, continuum
states are discretized due to the finite size of the box,
inducing a fragmentation of the GPV. We also note that
the GPV and the other two-neutron additional modes,
contrary to the removal ones, have a decreasing energy
with the neutron number. This is due to the fact that
the Fermi level is less deep for neutron-rich nuclei, which
decreases the quasiparticle energy of states with small or
zero occupation number.

Let us now compare the energies predicted by the
present TDHFB calculations with the continuum-QRPA
results of Khan et al. [52], also reported in table I. The
latter have been computed for two-neutron additional
modes only. Compared to QRPA results, TDHFB cal-
culations globally predict slightly higher energies when
going to more neutron-rich nuclei. In the GPV region,
the centroid energies are 0.5, 1 and 2 MeV higher with
TDHFB for 18,20,22O respectively. However, this overall
agreement can be considered as good in regard to the dif-
ferences between the two approaches. Both calculations
use the SLy4 Skyrme functional, but with different pair-
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ing schemes. In the present work, we use a mixed volume-
surface effective coupling. In addition, our calculations
are performed in wide quasiparticle energy and angular
momentum windows, with cutoff values Ec = 80 MeV
and jc = 19/2 respectively, while the QRPA calculations
have been performed in smaller windows (Ec = 50 MeV
and jc = 9/2) with a surface type pairing functional.
The parameters of the latter have been determined using
a different prescription than ours [13], in particular to re-
produce the trend of the experimental gap in neutron-rich
Oxygen isotopes. Another possible source of discrepan-
cies is the fact that the QRPA calculations of Ref. [52] do
not take into account the Coulomb and spin-orbit parts
of the residual interaction whereas the TDHFB approach
uses the same EDF as the underlying HFB field. This
assumption may induce a slight shift in the energy of
collective modes [20, 21, 22].

C. Calcium isotopes

In this section we discuss two-neutron pair transfer on
42,44,46Ca. We have plotted in Fig. 4 the corresponding
TDHFB strength distributions (solid lines). The spectra
are roughly similar for the three isotopes. They exhibit
several discrete transitions to bound states together with
excitations of resonant two-quasiparticle states. The en-
ergy threshold for the latter can be estimated by twice
the Fermi energy, i.e., 2EF = 20.6, 19.6 and 17.8 MeV
for 42Ca, 44Ca and 46Ca respectively.

We performed the same analysis as for the Oxygen iso-
topes, i.e., we decomposed the strength distribution in
l-components which, together with the HFB quasiparticle
spectra, helped us assign the main quasiparticle contri-
butions to each peak. A summary of the results is given
in table II where the transitions associated to the removal
of two neutrons are indicated in brackets.

For the three isotopes, the lowest mode is interpreted
in terms of the addition of a neutron pair in the 2p3/2

orbitals. In 42Ca, an additional l = 2 quasiparticle com-
ponent contributes to this mode and corresponds to the
removal of a 1d3/2 neutron pair. As for Oxygen isotopes,
the appearance of removal modes (in brackets in table II)
together with additional modes at the same energy is for-
tuitous. In the Calcium isotopes, the removal modes are
built of neutrons from the s−d shell, the major shell be-
low the Fermi energy. As expected, one finally notes that
energies of the removal (resp. additional) modes increase
(decrease) with the neutron number. Although 2 g9/2

quasiparticles excitations are forbidden below the 2EF

threshold in the unperturbed spectrum, it gets mixed to
the last bound 2 (f5/2) quasiparticles excitation because
of the residual interaction.

We have also plotted the unperturbed spectra in Fig. 4
(dotted lines). As in the case of Oxygen isotopes, we ob-
serve that the TDHFB residual interaction lowers the en-
ergies on the one hand and increases the strength on the
other hand, though this second effect is less pronounced

S
F

42Ca

S
F

44Ca

 0  10  20  30

S
F

~ω (MeV)

46Ca

FIG. 4: Strength distributions of the two-neutron pair trans-
fer operator F̂ for 42,44,46Ca (in arbitrary units with the same
scale on each plot). TDHFB results (solid lines) and the
unperturbed approximation (dotted lines) are shown. The
arrows indicate the 1d5/2 (solid), 2s1/2 (dashed) and 1d3/2

(dotted) two deep-hole states.

in the high energy part of the spectra. Here, the pairing
residual interaction is not strong enough to gather high
energy states together and to generate a well identified
collective pairing vibration in the continuum. In a pure
independent particles shell model picture, the last occu-
pied neutron level of these Calcium isotopes is the 1f7/2

orbital. Then, one expects the GPV to be built mainly
on low-lying g9/2 resonant quasiparticle states. However,
as we clearly see in Fig. 4, the strength associated to
the two-quasiparticle excitation of g9/2 levels, located at

23.4, 22.1 and 20.8 MeV for 42Ca, 44Ca and 46Ca respec-
tively, is only slightly enhanced by the TDHFB residual
interaction. We checked that employing other parameter-
izations of the spatial distribution f(r) of the excitation
operator in Eq. (21) does not alter these conclusions. We
note that this lack of collectivity of the g9/2 has already
been observed in hole pairing giant resonances studies
within a more schematic formalism [77].
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TABLE II: Energies and main quasiparticle contributions of
the most important peaks appearing in the strength distri-
bution of the two-neutron pair transfer operator F̂ extracted
from TDHFB calculations for Calcium isotopes. Labels in
brackets indicate two-neutron removal contributions.

nucleus E (MeV) main orbital contribution
42Ca 9.1 2p3/2, [1d3/2]

13.7 2p1/2, [2s1/2]

16.6 1f5/2

22.0 [1d5/2]

23.4 g9/2

44Ca 7.5 2p3/2

11.6 2p1/2, [1d3/2]

15.2 1f5/2, [2s1/2]

22.1 g9/2

23.9 [1d5/2]
46Ca 6.0 2p3/2

10.7 2p1/2

13.6 1f5/2, [1d3/2]

16.4 [2s1/2]

20.8 g9/2

25.4 [1d5/2]

VI. CONCLUSION

We solved the TDHFB equation in coordinate space
with spherical symmetry for the evolution of a single nu-
cleus in an external field. For the normal part of the en-
ergy density functional, we used the SLy4 Skyrme func-
tional. For its pairing part, we chose a local density de-
pendent functional. Special care has been taken regard-
ing the convergence of the static HFB solutions and the
energy and particle number conservations in the TDHFB
calculations.

As a first application, we studied 0+ pairing modes ex-
cited by a two-neutron pair transfer type operator. The
linear response theory has been used to compute the
strength distributions of this operator in 18,20,22O and
42,44,46Ca nuclei. Both transitions to bound states and
to the continuum are observed in all nuclei. In particular,
the GPV is observed in all Oxygen isotopes whereas no
significant enhancement of the strength due to dynami-
cal pairing correlations appears in the continuum of the
studied Calcium isotopes. In the latter, the g9/2 quasi-
particle excitations are not collective enough to generate
a GPV.

A detailed comparison with previous QRPA calcu-
lations have been performed in the Oxygen isotopes.
Though there is a good agreement for the most stable
isotope, we find slightly higher energies for the pairing
vibrations when going to more neutron-rich nuclei. Dif-
ferent pairing schemes and implementations of the resid-
ual interaction in both calculations are invoked to explain

these differences.
In addition, there is room for a better treatment of the

continuum, for instance in the spirit of continuum-QRPA
calculations, but such an improvement is not straight-
forward. Indeed, one cannot extrapolate the absorbing
boundary conditions used in TDHF calculations to the
TDHFB case because of the delocalized upper compo-
nents of the Bogoliubov spinors.

Finally, TDHFB calculations are much more demand-
ing in terms of computational time than standard TDHF
calculations, by about two orders of magnitude in the one
dimensional case. However, thanks to recent increase of
computational power, some of the standard TDHF ap-
plications to nuclear structure and reactions should be
repeated with the inclusion of dynamical pairing correla-
tions in the framework of TDHFB.
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APPENDIX A: DENSITIES AND FIELDS IN

SPHERICAL SYMMETRY

Each energy term entering Eq. (8) can be written as a
spatial integral of an energy density, i.e., E =

∫

dr H(r),
which depends only on local densities and currents. For
a spherically symmetric system, the densities entering
the SLy4 and local density dependent pairing functionals
are the radial part of the local particle ρq(r), anomalous
ρ̃q(r), kinetic τq(r), matter current jq(r) and spin-orbit
current Jq(r) (both oriented along the radial unit vector
er) densities of isospin q. Introducing the notation α ≡
{n, l, j, q}, these densities write

ρq(r) =
∑

nlj

Kj(r)|vα(r)|2,

ρ̃q(r) = −
∑

nlj

Kj(r)v
∗
α(r)uα(r),

τq(r) =
∑

nlj

Kj(r)

[

∣

∣

∣

∣

(

∂

∂r
−

1

r

)

vα(r)

∣

∣

∣

∣

2

+
l(l + 1)

r2
|vα(r)|2

]

,

jq(r) =
∑

nlj

Kj(r) Im

[

vα(r)

(

∂

∂r
−

1

r

)

v∗α(r)

]

er,

Jq(r) =
∑

nlj

Kj(r)

r

[

j(j + 1) − l(l + 1) −
3

4

]

|vα(r)|2er,
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where Kj(r) = 2j+1
4πr2 . We also define isoscalar densities

as the sum of proton and neutron densities, e.g., ρ0(r) =
ρp(r) + ρn(r). Omitting the dependence in r to simplify
the notations, the different parts of the functional can be
written

Hkin =
h̄2

2m

(

1 −
1

A

)

τ0,

HSk =
∑

k=n,p,0

{(

Cρ
k + Cρα

k ρα
0

)

ρ2
k + C∆ρ

k ρk∆ρk

+Cτ
k

(

ρkτk − j2k
)

+ CJρk∇.Jk

}

,

Hpair =
g

4

(

1 −

(

ρ0

ρc

)γ)
∑

q=p,n

ρ̃∗q ρ̃q,

HCoul = V dir
c ρp −

3

4
e2
(

3

π

)1/3

ρ4/3
p ,

where V dir
c (r) = e2

2

∫

dr′
ρp(r′)
|r−r′| is the direct Coulomb

field. The factor (1-1/A) in the kinetic part is the so-
called one-body center of mass correction. The j2 term
ensures Galilean invariance [78].

The coefficients C are related to the usual Skyrme co-
efficients by (see, e.g., [58])

Cρ
0 =

t0
2

(

1 +
x0

2

)

,

Cρ
n,p = −

t0
2

(

x0 +
1

2

)

,

Cρα

0 =
t3
12

(

1 +
x3

2

)

,

Cρα

n,p = −
t3
12

(

x3 +
1

2

)

,

Cτ
0 =

t1
4

(

1 +
x1

2

)

+
t2
4

(

1 +
x2

2

)

,

Cτ
n,p = −

t1
4

(

x1 +
1

2

)

+
t2
4

(

x2 +
1

2

)

,

C∆ρ
0 = −

3t1
16

(

1 +
x1

2

)

+
t2
16

(

1 +
x2

2

)

,

C∆ρ
n,p =

3t1
16

(

x1 +
1

2

)

+
t2
16

(

x2 +
1

2

)

,

CJ = −
W0

2
.

The fields entering Eq. (14) write

hljq (r) = −
∂

∂r
Mq (r)

∂

∂r
+ Iq(r)

∂

∂r
+ Vljq (r)

h̃q (r) =
g

2

[

1 −

(

ρ0(r)

ρc

)γ]

ρ̃q(r)

with

Mq =
h̄2

2m
+ Cτ

0 ρ0 + Cτ
q ρq

Iq = 2i
(

Cτ
0 j0 + Cτ

q jq
)

· er

Vljq = Uq +
l(l + 1)

r2
Mq +

1

r

(

∂

∂r
Mq

)

−
Iq
r

−
j(j + 1) − l(l+ 1) − 3/4

r
CJ

(

∂

∂r
(ρ0 + ρq)

)

.

Uq =
∑

k=q,0

[

2
(

Cρ
k + Cρα

k ρα
0

)

ρk

+αCρα

k ρα−1
0 (ρ2

p + ρ2
n) + Cτ

k τk

+ 2 C∆ρ
k ∆ρk + CJ∇ · Jk + iCτ

k ∇ · jk

]

−
g

4
γ
ργ−1
0

ργ
c

(

|ρ̃p|
2 + |ρ̃n|

2
)

.
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[17] S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).
[18] D. Lacroix, S. Ayik, and P. Chomaz, Prog. Part. Nucl.

Phys. 52, 497 (2004).
[19] T. Nakatsukasa and K. Yabana, Phys. Rev. C 71, 024301

(2005).
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A 294, 257 (1980).
[28] J. Blocki and H. Flocard, Nucl. Phys. A273, 45 (1976).
[29] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[30] Y. Hashimoto and K. Nodeki, arXiv : 0707.3083v1 [nucl-

th] (2007).
[31] P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376

(1930).
[32] T. Skyrme, Phil. Mag. 1, 1043 (1956).
[33] P. Bonche, S. Koonin, and J. W. Negele, Phys. Rev. C

13, 1226 (1976).
[34] J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).
[35] C. Simenel, P. Chomaz, and G. de France, Phys. Rev.

Lett. 86, 2971 (2001).
[36] C. Simenel, P. Chomaz, and G. de France, Phys. Rev.

Lett. 93, 102701 (2004).
[37] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and

M. R. Strayer, Phy. Rev. C 74 (2006).
[38] C. Simenel, P. Chomaz, and G. de France, Phys. Rev. C

76, 024609 (2007).
[39] C. Simenel and P. Chomaz, Phys. Rev. C 68, 024302

(2003).
[40] A. S. Umar and V. Oberacker, Phys. Rev. C 71, 034314

(2005).
[41] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, J. R.

Stone, and M. R. Strayer, Phys. Rev. C 71, 064328
(2005).

[42] P.-G. Reinhard, L. Guo, and J. A. Maruhn, Eur. Phys.
J. A 32, 19 (2007).

[43] A. Bohr and B. Mottelson, Nuclear Structure (2 vol.,
W.A. Benjamin, Inc., 1975).

[44] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer Verlag, 1980).

[45] D. Bès and R. Broglia, Nucl. Phys. A80, 289 (1966).
[46] C. H. Dasso and M. I. Gallardo, Phys. Rev. C 74, 014307

(2006).
[47] R. Broglia and D. Bès, Phys. Lett. B69, 129 (1977).
[48] G. Ripka and R. Padjen, Nucl. Phys. A132, 489 (1969).
[49] R. Broglia, O. Hansen, and C. Riedel, Advances in Nu-

clear Physics 6, 287 (1973).
[50] L. Fortunato, W. von Oertzen, H. M. Sofia, and A. Vit-

turi, Eur. Phys. Jour. A 14, 37 (2002).
[51] W. von Oertzen and A. Vitturi, Rep. Prog. Phys. 64,

1247 (2001).

[52] E. Khan, N. Sandulescu, N. Van Giai, and M. Grasso,
Phys. Rev. C 69, 014314 (2004).

[53] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite
Systems (MIT Press, 1986).

[54] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

[55] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
[56] E. Runge and E. Gross, Phys. Rev. Lett. 52, 997 (1984).
[57] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and

R. Schaeffer, Nucl. Phys. A635, 231 (1998).
[58] P. Bonche, H. Flocard, and P.-H. Heenen, Nucl. Phys.

A467, 115 (1987).
[59] J. W. Negele and D. Vautherin, Nucl. Phys. A207, 298

(1973).
[60] J. Dobaczewski, W. Nazarewicz, T. Werner, J. Berger,
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