
HAL Id: hal-00312750
https://hal.science/hal-00312750v1

Submitted on 26 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local search with constraint propagation and
conflict-based heuristics

Narendra Jussien, Olivier Lhomme

To cite this version:
Narendra Jussien, Olivier Lhomme. Local search with constraint propagation and conflict-based
heuristics. Artificial Intelligence, 2002, 139 (1), pp.21-45. �hal-00312750�

https://hal.science/hal-00312750v1
https://hal.archives-ouvertes.fr

Local search with constraint propagation and conflict-based heuristics

Narendra Jussien
École des Mines de Nantes – BP 20722
F-44307 NANTES Cedex 3 – FRANCE
Narendra.Jussien@emn.fr

Olivier Lhomme
ILOG – Les Taissounières HB2

1681 route des Dolines – F-06560 VALBONNE – FRANCE
olhomme@ilog.fr

Abstract

In this paper, we introduce a new solving algorithm for
Constraint Satisfaction Problems (CSP). It performs an
overall local search helped with a domain filtering tech-
nique to prune the search space. Conflicts detected dur-
ing filtering are used to guide the search. First experi-
ments with a tabu version of the algorithm have shown
good results on hard instances of open shop scheduling
problems. It competes well with the best highly special-
ized algorithms.

Introduction
Many industrial and engineering problems can be modeled
as constraint satisfaction problems (CSP). A CSP is defined
as a set of variables each with an associated domain of pos-
sible values and a set of constraints over those variables.

Most of constraint solving algorithms are built upon back-
tracking mechanisms. Those algorithms usually explore the
search space systematically, and thus guarantee to find a so-
lution if one exists. Backtracking-based search algorithms
are usually improved by using some relaxation techniques
(usually called filtering techniques in the CSP world) which
aim at pruning the search space in order to decrease the over-
all duration of the search.

Another series of constraint solving algorithms are local
search based algorithms (eg. min-conflict (Minton, John-
ston, & Laird 1992), GSAT (Selman, Levesque, & Mitchell
1992), tabu search (Glover & Laguna 1993)). They perform
a probabilistic exploration of the search space and therefore
cannot guarantee to find a solution, but may be far more ef-
ficient (wrt reponse time) than systematic ones to find a so-
lution.

Several works have studied cooperation between local
and systematic search (Yokoo 1994; Pesant & Gendreau
1996; David 1997; Schaerf 1997; Gervet 1998; Richards &
Richards 1998). Those hybrid approaches have led to good
results on large scale problems. Three categories of hybrid
approaches can be found in the literature:

1. performing a local search before or after a systematic
search;

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2. performing a systematic search improved with a local
search at some points of the search (typically for optimisa-
tion problems, to try to improve the quality of a solution);

3. performing an overall local search, and using systematic
search either to select a candidate neighbor or to prune the
search space.

The hybrid approach presented in this paper falls in the
third category. It uses filtering techniques to both prune
the search space and help in choosing the neighbor in a lo-
cal search. This leads to a generic search technique over
CSP which is called path-repair. An implementation of
path-repair which merges a tabu search together with
a filtering technique and conflict-based heuristics to guide
the search is described in this paper. That implementation
has been used to solve open shop scheduling problems. It
has given very good results on hard instances well compet-
ing with the best highly specialized algorithms. This was
quite surprising since, unlike those specialized algorithms,
our implementation is general and does not need any tuning
of complex parameters.

The paper is organized as follows. The following section
presents the notation used. Next we introduce the path-
repair algorithm. Then related works are discussed. Fi-
nally first results obtained in the field of open shop schedul-
ing problems are presented.

Preliminaries
A CSP is a pair < V;C > where V is a set of variables and
C = fc1; : : : ; cmg a set of constraints. The domains of the
variables are handled as unary constraints.

For a given constraints set S = fc1; : : : ; ckg, Ŝ will be
the logical conjunction of the constraints in S: Ŝ = (c1 ^
: : :^ ck). By convention: ?̂ = true.

Classical CSP solving simultaneously involves a filtering
algorithm, to a priori prune the search tree, and an enumer-
ation mechanism, to overcome the incompleteness of that
filtering algorithm. For example, for binary CSP over finite
domains, arc-consistency can be used as filtering technique.
After a filtering step, three situations may arise:

1. the domain of a variable becomes empty: there is no fea-
sible solution;

2. all the domains are reduced to a singleton: those values
assigned to their respective variables provide a feasible
solution for the considered problem;

3. there exists at least one domain which contains two values
or more: the search has not yet been successful. In a clas-
sical approach, it would be time for enumeration through
a backtracking-based mechanism.

In a more general way, a filtering algorithm � applied on
a set C of constraints returns a new set C 0 = �(C) such that
C � C

0 (Note that we consider domain reductions as ad-
dition of redundant constraints). Moreover, for any filtering
algorithm � applied on the set C of constraints of a given
CSP, there exists a function obviousInference which,
when applied on C 0 = �(C), answers:

� noSolution iff it is immediate to infer that no solution can
be find for C 0 (as in situation 1 above).

� solution iff the current constraint system can immediately
provide a solution that verifies all the constraints in C 0 (as
in situation 2 above).

� flounder in all other situations (as in situation 3 above).

The function obviousInference has typically a low
computational cost. Its aim is to make explicit the use of
some properties that depends on the filtering algorithm that
is used. The example of arc-consistency filtering with an
empty domain or with only singleton domains has already
been given, but a function obviousInference can be
made explicit in many other filtering or pruning algorithms.
For example, in integer linear programming, the aim is to
find an optimal integer solution. This can be done by using
the simplex algorithm over the reals. If there is no real solu-
tion or if the real optimum has only integer values, then an
obviousInference function would respectively return
noSolution or solution.

Enumerating discrete binary CSP is assigning a value a to
a variable v i.e. adding a new constraint v = a. For other
kinds of problems, enumerating may be different: for exam-
ple, when dealing with scheduling problems, enumerating is
often adding a precedence constraint between two tasks of
the problem. We will call those constraints decision con-
straints.

In the next section, the path-repair algorithm is pre-
sented through an abstraction of the solved problems: they
may be discrete binary CSP, numeric CSP as well as schedul-
ing problems. This will be possible thanks to:

1. the parameter � which represents the filtering algorithm
used;

2. the functionobviousInference, tightly related to the
used filtering algorithm, that is able to examine a set of
constraints in order to continue the computation or not;

3. the concept of decision constraint.

The path-repair algorithm
The idea of the path-repair algorithm is very simple.
First observe that:

procedurepath-repair(C)

(1) begin

(2) repeat

(3) if conditions of failure verified then

(4) return failure

(5) else

(6) C
0
 �(C [CP)

(7) switch obviousInference(C’)

(8) case noSolution:

(9) k nogood explaining the failure

(10) P neighbor(P,k,�)

(11) case solution :

(12) returnC 0

(13) default :

(14) P extend(P,�)

(15) endswitch

(16) endif

(17) until false

(18)end

Figure 1: The path-repair algorithm

� current local search algorithms mainly work upon a total
instantiation of the variables;

� backtracking-based search algorithms work upon a partial
instantiation of the variables.

The ability of backtracking-based search algorithms to be
combined with filtering techniques only comes from the fact
that they work upon a partial instantiation of the variables.
Thus, a local search algorithm working upon a partial instan-
tiation of the variables would have the same ability. Indeed,
the path-repair algorithm is such an algorithm. The
considered partial instantiation is defined by a set of deci-
sion constraints (as described above) on the variables of the
problem. Such a constraint set defines a path in the search
tree.

Principles of path-repair
The principles of the path-repair algorithm as shown
in figure 1 are the following: let P be a path in the search
tree. At each node of that path, a decision constraint has
been added. Let CP be the set of added decision constraints
while moving along P .

The path-repair algorithm starts with an initial path
(it may range from the empty path to a path that defines a
complete assignment). The main loop first checks the con-
ditions of failure1. A filtering algorithm is then applied on
C [CP giving a new set of constraints C 0 = �(C [CP).
The function obviousInference is then called over C 0.
Three cases may occur:

� obviousInference(C0) = solution: a solution has
been found. The algorithm terminates and returns C 0.

� obviousInference(C0) = flounder: the path-
repair algorithm tries to extend the current path P by
adding a decision constraint. That behavior is similar to

1These conditions depend on the instance of the algorithm; ex-
amples are given in the following sections.

that of backtracking-based search algorithms. For that
purpose, a function extend(P,�) is assumed to exists
that chooses a decision constraint to be added and adds
it to P . Parameter � can be used to store a context that
varies according to the chosen version of the algorithm.
Its meaning will be made clear later.

� obviousInference(C0) = noSolution: C [CP

is inconsistent. We will say that P is a dead-end,
or P is inconsistent: P cannot be extended. The
path-repair algorithm will thus try to repair the cur-
rent path by choosing a new path through the function
neighbor(P,k,�). Parameter k as � will be ex-
plained later.

The path-repair algorithm appears here as a search
method that handles partial instantiations and uses filtering
techniques to prune the search space. The key components
of this algorithm are the neighboring computation functions
(neighbor) and the extension functions (extend).

Nogoods in path-repair

In a local search algorithm such as GSAT (on boolean CSP),
an inconsistent instantiation is replaced by a new one built
by negating the value of one of its variables. That variable
is heuristically chosen (eg. selecting the one whose negation
will allow the greatest number of clauses to become satis-
fied). More generally, a local search algorithm uses com-
plete instantiations (called states) and replaces an inconsis-
tent state with another state chosen among its neighbors.

The path-repair algorithm works in the same way
except that it uses partial instantiations (paths): as soon as
a path becomes inconsistent, one of its neighbors needs to
be chosen. A path (partial instantiation) synthetizes all the
included complete instantiations. Switching paths is like
setting aside many irrelevant complete instantiations in one
movement.

Like any local search algorithm, path-repairmay use
a heuristic way to select an interesting neighbor. It seems to
be a good idea to select a neighboring path P

0 which does
not have the drawbacks of the current path P (recall that in
path-repair, neighbors of path P are computed iff P is
inconsistent). Ideally, we would like to get to a consistent
neighbor P 0 i.e. such that obviousInference(�(C [
C
0

P 0))= solution. However, that is equivalent to solve the
whole problem.

Instead, we may try to get to a partially consistent
neighbor P 0 i.e. such that obviousInference(�(C [
C
0

P 0)) 6= noSolution. Unfortunately, the only way to get
there (without using computing resources) is to get back to
an already explored node but, doing so, we would achieve a
kind of backtracking mechanism, what is not wanted in the
path-repair algorithm.

Nevertheless, what can be done is to avoid the neighbors
that can already be known as inconsistent. Such an informa-
tion can be extracted from an inconsistent path P . Indeed,
inconsistency means that Ĉ ^ ĈP =) false. It is possible
to compute a subset of CP that is alone inconsistent with C.
Such a subset is called a conflict set or nogood.

Definition 1 (Nogood) A nogood k for a set of constraints
C and a path P , is a set of constraints such that: k � CP

and Ĉ ^ k̂ =) false.

Now, we can define a neighbor P 0 of a path P according
to a single nogood k. As long as constraints in the computed
nogood k remain altogether in a given path P 0, that path will
remain inconsistent. Therefore, in order to get a path with
some hope to be consistent, we need to remove from the
current path P at least one of the constraints in k.

Indeed, a more precise neighborhood can be computed.
Let c 2 k be a constraint to be removed from CP . As long
as all the constraints in k n c remain in the active path, c will
never be satisfiable. Thus, the negation of c can be added in
the new path. A neighbor of a path P according to a nogood
k is thus defined as follows:

Definition 2 (Neighbor wrt one nogood) Let k be a no-
good for a path P , a neighbor P

0 of P wrt k verifies
9c 2 k;CP 0 = CP n c [f:cg

Computing nogoods Note that if the current path P is in-
consistent, CP is a valid nogood. Obviously, a strict subset
will be much more interesting and will give a more precise
neighborhood. A minimal (for the inclusion) nogood would
be the best, but could be expensive to compute (Verfaillie &
Lobjois 1999). The current implementation does not try to
find such a minimal nogood. Instead, it tries to find a good
nogood in a fast way.

Nogoods are provided by the filtering algorithm as soon
as it can prove that no solution exists in the subsequent com-
plete paths derived from the current partial path. In filtering
based constraint solving algorithms, a contradiction is raised
as soon as the domain of a variable v becomes empty. Sup-
pose that, for each value (or set of values) ai removed from
the domain of v, a set of decision constraints ki � CP is
given (ki is called a removal explanation for ai) and is such
that: Ĉ ^ k̂i =) v 6= ai. If so, k =

S
i
ki is a nogood since

no value for v is allowed by the union of the k i. Therefore, in
order to compute nogoods, it is sufficient to be able to com-
pute an explanation for each value (or set of values) removal
from the domain of the failing variable.

Value removals are direct consequences of the filtering al-
gorithms. Therefore, value removal explanations can be eas-
ily computed by using a trace mechanism embedded within
the filtering algorithm and memorizing the reason why a re-
moval is done (eg. see (Jussien & Lhomme 1998)).

For example, let us consider two variables v1 and v2

whose domains are both f1; 2; 3g. Let c1 be the constraint:
v1 � 3 and let c2 be the constraint: v2 � v1. Let us assume
that the used filtering algorithm is arc-consistency filtering.
The constraint c1 explains the fact that f1; 2g should be re-
moved from v1. Afterwards, c2 leads to remove f1; 2g from
v2. An explanation of the removal of f1; 2g from v2 will be:
c1^c2 because c2 makes that removal only because previous
removals occured in v1 due to c1.

Tabu path-repair

In a local search algorithm, the neighbor selection is very
important. Many heuristics may be used. That is also the

function neighbor(P, k, �)
% precondition: k � CP , P covers �

(1) begin
(2) add k to the list of nogoods�
(3) if sizeof(�) > s then
(4) remove the oldest element of �
(5) endif
(6) L ordered list (decr. weight) of constraints in k
(7) repeat
(8) remove the first constraint c from L

(9) P
0 P n fcg [f:cg

(10) if CP 0 covers all nogoods in � then
(11) return P

0

(12) endif
(13) until L empty
(14) return stop (or extend the neighborhood)
(15) end

Figure 2: The neighbor function for tabu path-
repair

case in path-repair.
The tabu version of path-repair uses a tabu list of a

given size s. The s last computed nogoods are kept in a list
�. The following invariant is maintained by the algorithm:
the current path P covers all the nogoods in �, ie does not
completely contain any of the nogoods in �.

We have defined so far a neighbor wrt one single nogood,
so we have to extend the definition when facing multiple
nogoods.

Definition 3 (Neighbor wrt several nogoods) A valid
neighbor is defined as a path that covers all the nogoods in
�.

In other words, at least one constraint in each nogood of �
is not (or is negated) in the new neighbor. To compute such
a neighbor in a reasonable time, a greedy algorithm can be
used.

Figure 2 shows an implementation of the neighbor func-
tion for tabu path-repair that has been used for solving
scheduling problems.

The neighbor function has to record in � the new nogood
k found by the filtering algorithm and to maintain the invari-
ant. It tries to find one constraint in k such that negating
this constraint makes the path cover all the nogoods. An
integer (weight) is associated with each constraint counting
the number of times that the constraint has appeared in any
nogood. The neighbor function chooses to negate the con-
straint with the greatest weight that, when negated, makes
the new path cover all the nogoods in �. If such a constraint
does not exist, the neighborhood can be extended. For exam-
ple, we may try to negate two constraints. In our implemen-
tation for open shop problems (see last section), this case is
handled as a stopping criterion, so there is no need for any
neighborhood extension.

Note that, in the same way, the function extend(P,�)
has to use � in order to extend the partially consistent current
path while maintaining the invariant. A heuristically ordered
list of constraints which performs an extension of the current

path is dynamically generated and the first constraint that
covers all the nogoods in � is chosen.

As for now, our algorithm seems to need to call the fil-
tering algorithm many times with little changes to handle in
the constraint set. Of course, it would not be very efficient
to each time recompute for example the arc-consistency clo-
sure from scratch. That problem has been adressed for dy-
namic CSP. The algorithms used in path-repair are
similar to those of (Bessière 1991; Debruyne 1996) or other
works (Jussien & Lhomme 1998).

Related works
The path-repair algorithm takes its roots in many other
works, among which (Ginsberg & McAllester 1994) has
probably been the most influential by highlighting the re-
lationships between local search and systematic search, and
by the use of nogoods to guide the search and make it sys-
tematic. In the same spirit are (Ginsberg 1993), (Frost &
Dechter 1994), (Schiex & Verfaillie 1994) and (Bliek 1998).

Two algorithms have been designed that have similarities
with the path-repair algorithm:

� The algorithm proposed in (Schaerf 1997) can be seen as
an instance of the path-repair algorithm where: the
decision contraints are instantiations; there is no propaga-
tion and no pruning (the filtering algorithm � only con-
sists in checking if the constraints containing only instan-
tiated variables are not violated) and it does not make use
of nogoods neither in the the neighbor function nor in the
extend function.
The common idea, which already exists in previous works
(Jackson 1990), is essentially to extend a partial instanti-
ation when it is consistent, and to perform a local change
when the partial solution appears to be a dead-end.

� The idea to use a filtering algorithm during the run-
ning of a local search has been also used in (Stuckey
& Tam 1998), where an extension to GENET, a local
search method based on an artificial neural network aim-
ing at solving binary CSP, is introduced. This extension
achieves what is called “lazy arc-consistency” during the
search. The lazy arc-consistency filtering performs a fil-
tering over the initial domains. The result is at most the
one obtained by filtering the domains before any search.
In path repair, the filtering is applied over the current do-
mains at every step.

The heuristic we used to select the decision constraint to
negate – choose the one that has appeared the greatest num-
ber of times in a nogood – is an adaptation of a similar ap-
proach for GSAT counting the number of times that a con-
straint has not been verified (Selman & Kautz 1993).

The way nogoods are computed by the filtering algorithm
is a well-known technique that has already been used with
slight variations for different combinations of filtering algo-
rithms with systematic search algorithms (forward checking
+ intelligent backtracking (Prosser 1993), forward checking
+ dynamic backtracking (Verfaillie & Schiex 1994), arc-
consistency + intelligent backtracking (Codognet, Fages,
& Sola 1993), arc-consistency + dynamic backtracking

(Jussien 1997), 2B-consistency + dynamic backtracking
(Jussien & Lhomme 1998). Nevertheless, as far as we know,
the tabu version of path-repair is the first time such a
technique is used in combination with a local search algo-
rithm.

Solving scheduling problems
Classical scheduling shop problems for which a set J of n
jobs consisting each in m tasks (operations) must be sched-
uled on a set M of m machines can be considered as CSP
upon intervals2. One of those problems is called the Open
Shop problem (Gonzales & Sahni 1976). For that problem,
operations for a given job may be sequenced as wanted but
only one at a time. We will consider here the building of non
preemptive schedules of minimal makespan3. That problem
is NP-hard as soon as min(n;m) � 3.

Constraints on resources (machines and jobs) are propa-
gated thanks to immediate selections from (Carlier & Pin-
son 1994). The consistency level achieved by that technique
does not ensure the computation of a feasible solution. An
enumeration step is therefore needed. For shop problems,
enumeration is classically performed on the relative order
on which tasks are scheduled on the resources. When ev-
ery possible precedence has been posted, setting the starting
date of the variable to their smallest value provides a fea-
sible solution. Such a precedence constraint is therefore a
decision constraint as described above.

One of the best systematic search algorithms developed
for the Open Shop problem is the branch and bound algo-
rithm presented in (Brucker et al. 1994). It consists in
adding precedence constraints along the critical path of a
heuristic solution in each node. As far as we know, although
this is one of the best methods ever, some problems of size
7� 7 remain unsolved.

We tested a tabu version of path-repair. That ver-
sion is fully systematic due to the used heuristics. Table 1
presents the results obtained on a series of 30 problems from
Taillard (1993). In order to put in perspective our results, we
recall results presented in (Alcaide, Sicilia, & Vigo 1997)
and (Liaw 1998). Those papers present tabu searches specif-
ically developed for the Open Shop problem. Those meth-
ods both use carefully chosen complex parameter values.
Results presented in table 1 show that our simple approach
which merely applies principles presented in this paper al-
ready gives very good results. More precisely, the time re-
quired to solve those problems is similar to those reported
by (Alcaide, Sicilia, & Vigo 1997) and (Liaw 1998). More-
over, for the problems of size 4� 4, the obtained results are
the same as those of (Liaw 1998); for 5� 5 problems, if our
algorithm gives bad results, they are not very far from the
results of (Liaw 1998) but it often gives the same results and
even a better one for the 5x5-3 problem; for 7 � 7 prob-
lems, our algorithms gives the same results as the best of
the two others except for four problems among which three

2Variables are the starting date of the tasks. Bounds thus rep-
resent the least feasible starting time and the least feasible ending
time of the associated task.

3Ending time of the last task.

procedure minimize-makespan(C)
(1) begin
(2) P initial path
(3) bound +1
(4) lastSolution failure
(5) repeat
(6) C C [f makespan< boundg
(7) solution path-repair(C)
(8) if solution = failure then
(9) return lastSolution
(10) else
(11) bound value of makespan in solution
(12) lastSolution solution
(13) endif
(14) until false
(15) end

Figure 3: Algorithm used to solve Taillard’s problems

are worse (but not much) and one is better (7x7-5). In a
few words, our algorithm seems to compete well with those
highly customized algorithms.

Our implementation uses a tabu list of size 15. The
neighbor function is the one given in figure 2. The con-
ditions of failure specifying the exit of the main loop (fig-
ure 1) are either a stop returned by the neighbor function
or 1500 iterations without improvement of the last solution
reached.

Taillard’s problems are optimization problems. This re-
quires a main loop that calls the function path-repair
until improvement is no longer possible (see figure 3). Im-
provements are generated by adding a constraint that speci-
fies that the makespan is less than the current best solution
found. The initial path for each call of the function path-
repair is the latest path (which describes the last solution
found).

Conclusion and future works
In this paper, we introduced a new solving algorithm for
CSP: the path-repair algorithm. The two main points
of that algorithm are: it makes use of a repair algorithm (lo-
cal search) as a basis and it works on a partial instantiation
in order to be able to use filtering techniques. The most use-
ful tool to implement that algorithm was the use of nogoods:
nogoods allow relevant neighborhoods to be considered and
nogoods can be used to derive efficient neighbor selecting
heuristics for a path-repair algorithm.

First experiments with a tabu version of path-repair
has shown good results over open shops scheduling prob-
lems. It competes well with the best highly specialized al-
gorithms. This was quite surprising since, unlike those spe-
cialized algorithms, our implementation is general and does
not need any tuning of complex parameters. Experiments
over other problems are currently being done.

Acknowledgements
We would like to thank Christian Bliek for his useful sug-
gestions.

Problem Solution PR Dist. L A
4x4-1 193 193 - 193 -
4x4-2 236 236 - 236 -
4x4-3 271 271 - 271 -
4x4-4 250 250 - 250 -
4x4-5 295 295 - 295 -
4x4-6 189 189 - 189 -
4x4-7 201 201 - 201 -
4x4-8 217 217 - 217 -
4x4-9 261 261 - 261 -

4x4-10 217 217 - 217 -
5x5-1 300 301 0.33 % 300 -
5x5-2 262 262 - 262 -
5x5-3 323 323 - 326 -
5x5-4 310 311 0.32 % 310 -
5x5-5 326 326 - 326 -
5x5-6 312 314 0.64 % 312 -
5x5-7 303 304 0.33 % 303 -
5x5-8 300 300 - 300 -
5x5-9 353 356 0.85 % 353 -

5x5-10 326 326 - 326 -
7x7-1 435 435 - 435 437
7x7-2 443 449 1.35 % 447 444
7x7-3 468 473 1.07 % 474 476
7x7-4 463 463 - 463 464
7x7-5 416 416 - 417 417
7x7-6 451 460 2.00 % 459 -
7x7-7 422 430 1.90 % 429 429
7x7-8 424 424 - 424 -
7x7-9 458 458 - 458 458

7x7-10 398 398 - 398 398

Table 1: Results on Taillard’s problems
PR : results using path-repair restricted to 1500 moves without improvement, Dist. represents

the distance to the optimum value. L : results obtained by Liaw with 50 000 moves without im-

provement and A : results obtained by Alcaide et al. with 100 000 moves without improvement. - :

represents unknown values.

References
Alcaide, D.; Sicilia, J.; and Vigo, D. 1997. A tabu search algo-
rithm for the open shop problem. TOP : Trabajos de Investigación
Operativa 5(2):283–296.

Bessière, C. 1991. Arc consistency in dynamic constraint satis-
faction problems. In Proceedings AAAI’91.

Bliek, C. 1998. Generalizing partial order and dynamic back-
tracking. In Proceedings of AAAI.

Brucker, P.; Hurink, J.; Jurisch, B.; and Westmann, B. 1994. A
branch and bound algorithm for the open-shop problem. Techni-
cal report, Osnabrueck University.

Carlier, J., and Pinson, E. 1994. Adjustment of heads and tails for
the job-shop problem. European Journal of Operational Research
78:146–161.

Codognet, P.; Fages, F.; and Sola, T. 1993. A metalevel compiler
of CLP(FD) and its combination with intelligent backtracking. In
Benhamou, F., and Colmerauer, A., eds., Constraint Logic Pro-
gramming - Selected Research. Massachussetts Institute of Tech-
nology. chapter 23, 437–456.

David, P. 1997. A constraint-based approach for examination
timetabling using local repair techniques. In Proceedings of the
Second International Conference on the Practice And Theory of
Automated Timetabling (Patat’97), 132–145.

Debruyne, R. 1996. Arc-consistency in dynamic CSPs is no more
prohibitive. In 8th Conference on Tools with Artificial Intelli-
gence (TAI’96), 299–306.

Frost, and Dechter. 1994. Dead-end driven learning. In 12th
National Conf. on Artificial Intelligence, AAAI94.

Gervet, C. 1998. Large combinatorial optimization problem
methodology for hybrid models and solutions (invited talk). In
JFPLC.

Ginsberg, M., and McAllester, D. A. 1994. Gsat and dynamic
backtracking. In International Conference on the Principles of
Knowledge Representation (KR94), 226–237.
Ginsberg, M. 1993. Dynamic backtracking. Journal of Artificial
Intelligence Research 1:25–46.
Glover, F., and Laguna, M. 1993. Modern heuristic Techniques
for Combinatorial Problems, chapter Tabu Search, C. Reeves.
Blackwell Scientific Publishing.
Gonzales, T., and Sahni, S. 1976. Open-shop scheduling to min-
imize finish time. Journal of the Association for Computing Ma-
chinery 23(4):665–679.
Jackson, P. 1990. Introduction to Expert Systems. Readings.
Addison Wesley.
Jussien, N., and Lhomme, O. 1998. Dynamic domain splitting for
numeric csp. In European Conference on Artificial Intelligence,
224–228.
Jussien, N. 1997. Relaxation de Contraintes pour les problèmes
dynamiques. 1. thèse, Université de Rennes I.
Liaw, C.-F. 1998. A tabu search algorithm for the open shop
scheduling problem. Computers and Operations Research 26.
Minton, S.; Johnston, M.; and Laird, P. 1992. Minimizing con-
flicts: A heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence 58:161–206.
Pesant, G., and Gendreau, M. 1996. A view of local search in
constraint programming. In Proc. of the Principles and Practice
of Constraint Programming, 353–366. Springer-Verlag.
Prosser, P. 1993. Hybrid algorithms for the constraint satisfac-
tion problem. Computational Intelligence 9(3):268–299. (Also
available as Technical Report AISL-46-91, Stratchclyde, 1991).
Richards, E. T., and Richards, E. B. 1998. Non-systematic search
and learning: An empirical study. In Proc. of the the Conference
on Principles and Practice of Constraint Programming.
Schaerf, A. 1997. Combining local search and look-ahead for
scheduling and constraint satisfaction problems. In Proc. of the
15th International Joint Conf. on Artificial Intelligence (IJCAI-
96), 1254–1259. Nagoya, Japan: Morgan Kaufmann.
Schiex, T., and Verfaillie, G. 1994. Nogood Recording fot Static
and Dynamic Constraint Satisfaction Problems. International
Journal of Artificial Intelligence Tools 3(2):187–207.
Selman, B., and Kautz, H. 1993. Domain-independent exten-
sions to gsat: Solving large structured satisfiability problems. In
Bajcsy, R., ed., Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI-93), 290–295. Chambery, France:
Morgan Kaufmann.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new method
for solving hard satisfiability problems. In AAAI 92, Tenth Na-
tional Conference on Artificial Intelligence, 440–446.
Stuckey, P., and Tam, V. 1998. Extending GENET with lazy arc
consistency. IEEE Transactions on Systems, Man, and Cybernet-
ics 28(5):698–703.
Taillard, É. 1993. Benchmarks for basic scheduling problems.
European Journal of Operations Research 64:278–285.
Verfaillie, G., and Lobjois, L. 1999. Problèmes incohérents: ex-
pliquer l’incohérence, restaurer la cohérence. In Actes des JNPC.
Verfaillie, G., and Schiex, T. 1994. Dynamic backtracking for
dynamic csps. In Schiex, T., and Bessière, C., eds., Proceedings
ECAI’94 Workshop on Constraint Satisfaction Issues raised by
Practical Applications.
Yokoo, M. 1994. Weak-commitment search for solving constraint
satisfaction problems. In Proceedings of AAAI.

