N
N

N

HAL

open science

Solving dynamic resource constraint project scheduling

problems using new constraint programming tools
Abdallah Elkhyari, Christelle Guéret, Narendra Jussien

» To cite this version:

Abdallah Elkhyari, Christelle Guéret, Narendra Jussien. Solving dynamic resource constraint project
scheduling problems using new constraint programming tools. Practice and Theory of Automat-
edTimetabling IV, Springer, pp.39-59, 2003, Lecture Notes in Computer Science, 10.1007/b11828 .

hal-00312717

HAL Id: hal-00312717
https://hal.science/hal-00312717
Submitted on 25 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00312717
https://hal.archives-ouvertes.fr

Solving dynamic timetabling problems as
dynamic resource constrained project scheduling
problems using new constraint programming
tools

Abdallah Elkhyari!, Christelle Guéret':?, and Narendra Jussien!

! Ecole des Mines de Nantes, BP 20722
F-44307 Nantex Cedex 3, France
{aelkhyar,gueret, jussien}@emn.fr
2 IRCCyN
Institut de Recherche en Communications et Cybernétique de Nantes
France

Abstract. Timetabling problems have been studied a lot over the last
decade. Due to the complexity and the variety of such problems, most
work concern static problems in which activities to schedule and re-
sources are known in advance, and constraints are fixed. However, every
timetabling problem is subject to unexpected events (consider for ex-
ample, for university timetabling problems, a missing teacher, or a slide
projector breakdown). In such a situation, one has to quickly build a
new solution which takes these events into account and which is prefer-
ably not too different from the current one. We introduce in this pa-
per constraint-programming based tools for solving dynamic timetabling
problems modelled as RCPSP (Resource-Constrained Project Scheduling
Problems). This approach uses explanation-based constraint program-
ming and operational research techniques.

1 Introduction

Timetabling problems have been studied a lot over the last decade. Due to the
complexity and the variety of such problems, most work concern static prob-
lems in which activities to schedule and resources are known in advance, and
constraints are fixed. However, every timetabling problem is subject to un-
expected events (consider for example, for university timetabling problems, a
missing teacher, or a slide projector breakdown). In such a situation, one has to
quickly build a new solution which takes these events into account and which is
preferably not too different from the current one.

In this paper, we present an exact approach for solving dynamic timetabling
problems which uses explanation-based constraint programming and operational
research techniques. In this approach, timetabling problems are modelled as
RCPSP (Resource-Constrained Project Scheduling Problem).

This paper is organized as follows: Section 2 introduces timetabling problems
and RCPSP, and explains how timetabling problems can be modelled as RCPSP.
Section 3 presents the basics of explanation-based constraint programming. Our
approach is presented in Section 4. Dynamic events that can be taken into ac-
count in our system are listed in Section 5 and computational results are reported
in Section 6.

2 Timetabling problems and RCPSP

2.1 Timetabling problems

Timetabling problems can be defined as the scheduling of a certain number of
activities (lectures, tasks, etc.) which involve specific groups of people (students,
teacher, employees, etc.) over a finite period of time, requiring certain resources
(rooms, materials, etc.) in conformity with the availability of resources and ful-
filling certain other requirements. A huge variety of timetabling problems exist:
school timetabling, examination timetabling, employee timetabling, university
timetabling, etc.

Due to the complexity and the variety of such problems, most work concern
static problems in which both activities to schedule and resources are known
in advance, and constraints are fixed. The different techniques used are: graph
coloring [8], integer programming [33], genetic algorithms [29], tabu search [18§],
etc. Several different authors have presented constraint programming techniques
for solving timetabling problems, [4,15,16,24,27]. To our knowledge, no work
concern the resolution of dynamic timetabling problems.

2.2 RCPSP

The RCPSP can be defined as follows: let A = {1, 2, ..., n } be a set of activities,
and R = {1, ..., r} aset of renewable resources. Each resource £ is available in
a constant amount Ry. A resource k is called disjunctive if Ry = 1. Otherwise
it is called cumulative. Each activity 4 has a duration p; and requires a constant
amount a;; of the resource k during its execution. Preemption is not allowed.
Activities are related by precedence constraints, and resource constraints require
that for each period of time and for each resource, the total demand of resource
does not exceed the resource capacity. The objectives considered here are to find
a feasible solution or a solution for which the end of the schedule is minimized
(see for example Fig. 1). The problem is NP-hard [3].

Let S; be the starting time of activity i. Several extensions of the RCPSP can
be considered :

— generalized precedence constraints: such a constraint imposes that an activ-
ity j must be executed after another activity ¢ and that there are exactly d
units of time between the end of ¢ and the starting of j, or that there are at
least dpin and at most dy,q, units of time between them. These constraints
will be noted i =25 and i—)ﬁ:;‘: j respectively.

o |k
NN
AW
N | A
o« | »o
A~ O
AN
o | ©

&)
)
o
o
o

[

N

Ry=4

3 7 4

2 6 8 10 14 18 2 6 8 10 14 18

Fig. 1. One project with 8 activities and 2 resources, and a feasible solution

— generalized disjunctive constraints: such a constraint imposes that ¢ and j
are in disjunction and that there are exactly d, or at least d,,;, and at most
dpmae units of time between them. These constraints will be noted i <+? j and
i(—)iﬁj: 7 respectively.

— generalized overlapping constraints: two activities may have to overlap (be
executed during at least a common unit of time) during exactly d, or at least
dmin and at most d,, 4, units of time. These constraints will be noted ¢ ||d 7
and z||§:“: j respectively.

— generalized resource constraints: the capacity of resources may change during
certain periods of time.

The static RCPSP has been extensively studied ([5,26]). Currently, the most
competitive exact algorithms for the RCPSP are the ones of Brucker et al. [6],
Demeulemeester and Herroelen [12], Mingozzi et al. [28] and Sprecher [32]. One
of the main difficulty in the RCPSP is to maintain the resource limitation during
the planning period. The classical deduction rules used for that purpose are
core-times [25] and task-interval [9,10].

The dynamic RCPSP is seldom studied. Two classical methods are used to
solve it:

— recomputing a new schedule each time an event occurs. This is quite time
consuming and may lead to a solution very different from the previous one.

— constructing a partial schedule and completing it progressively as time goes
by (like in online scheduling problems) [31]. This is unacceptable in the
context of timetabling problems since the complete timetable must be known
in advance.

Recently, Artigues et al. [1] introduced a formulation of the RCPSP based on
a flow network model. The authors developed a polynomial algorithm based on
this model to insert an unexpected activity.

2.3 Timetabling problems as RCPSP

Timetabling problems are special cases of RCPSP. In [7], Brucker shows that the
High school timetabling can easily be formulated as a RCPSP. And Dignum et al.
[13] translated the particular timetabling problem of an educational establish-
ment of Maastricht into a Time and Resource Constrained Scheduling Problem
(TRCSP), i.e. a RCPSP in which the objective is to determine a schedule which
is completed on time and such that the total additional costs are minimized.

Let us consider the following example of a French university timetable [16]:
m classes have to follow a set of lectures given by n teachers over an horizon of
T time periods. All lectures are of the same length. Each lecture may require
specific material (slide-projector, specific room, etc.)

The constraints are the following:

— C1: a class cannot follow more than one lecture at a time

— (C2: a teacher cannot give more than one lecture at a time

— C3: some teachers or classes are not available in some periods

— C4: material availability must be respected

— C5: some lectures have to be scheduled at the same time (shared gymnastic
rooms, class divided in several groups for foreign language lectures,...)

— C6: two lectures concerning the same subject should not be scheduled on too
close periods

— C7: some lectures are linked by precedence constraints (prerequisite, ...)

Clearly this example can be modelled as a RCPSP in which lectures are the
activities to schedule and resources are teachers, classes and materials. Some of
these resources are disjunctive (teachers for example), others are cumulative (if
several slide-projectors are available for example). These lectures are subject to
(generalized) precedence constraints (C7), (generalized) overlapping constraints
(C5) and (generalized) disjunctive constraints (C1, C2 and C6). Resource con-
straints must be respected (C4), and some resource capacities are time dependent

(C3).

3 Explanation-based constraint programming

Constraint programming techniques have been widely used to solve scheduling
problems. A constraint satisfaction problem (CSP) consists in a set V of variables
defined by a corresponding set of possible values (the domains D) and a set C
of constraints. A solution for the network is an assignment of a value to each
variable such that all the constraints are satisfied. An extension of classical con-
straint programming has been recently introduced. It is called explanation-based
constraint programming (e-constraints) and it has already proved its interest in

many applications [19] including dynamic constraint solving. We recall in this
section what it is and how it can be used.

In the following, we consider a constraint satisfaction problem (V, D, C). De-
cision making during the enumeration phase (variable assignments) amounts to
add (eg., upon decision making) or remove (eg., upon backtracking) constraints
from the current constraint system. Enumeration is therefore considered as a
dynamic process.

3.1 Explanations

A contradiction explanation (a.k.a. nogood [30]) is a subset of the current
constraints system of the problem that, left alone, leads to a contradiction. Thus,
no feasible solution contains a nogood. A contradiction explanation is composed
of two parts: a subset of the original set of constraints (C' C C) and a subset of
decision constraints introduced so far in the search:

Cl——|(C'/\v1=a1/\---/\vk=ak) (1)

In a contradiction explanation composed of at least one decision constraint,
a variable v; is selected and the previous formula is rewritten as®:

CHC'A /\ (vi =a;) 2> v; #aj (2)
i€[1..k]\j

The left hand side of the implication constitutes an eliminating explana-
tion for the removal of value a; from the domain of variable v; and is noted
expl(v; # a;).

Classical CsP solvers use domain-reduction techniques (removal of values).
Recording eliminating explanations is sufficient to compute contradiction expla-
nations. Indeed, a contradiction is identified when the domain of a variable v;
is emptied. A contradiction explanation can easily be computed with the elimi-
nating explanations associated with each removed value:

Ck~= /\ expl(v; # a) (3)

a€d(v;)

There exist generally several eliminating explanations for the removal of a
given value. Recording all of them leads to an exponential space complexity.
Another technique relies on forgetting (erasing) eliminating explanations that
are no longer relevant to the current variable assignment. By doing so, the
space complexity remains polynomial. We keep only one explanation at a time
for a value removal.

3 A contradiction explanation that does not contain such a constraint denotes an
over-constrained problem.

4 A nogood is said to be relevant if all the decision constraints in it are still valid in
the current search state.

3.2 Computing explanations

During propagation, constraints are awoken (like agents or daemons) each time
a variable domain is reduced (this is an event) possibly generating new events
(value removals). A constraint is fully characterized by its behavior regarding
the basic events such as value removal from the domain of the variables and
domain bound updates. Explanations for events are computed when the events
are generated.

Explanations for basic constraints It is easy to provide explanations for
basic constraints. The following example shows how to compute them.

Ezxample 1. Let us consider a two-variables toy problem: z and y with the same
set of possible values [1, 2, 3]. Let us state the constraint « > y. The resulting
sets of possible values are [2, 3] for z and [I, 2/ for y. An explanation for
this situation is the constraint z > y. Now, let us suppose that we choose to
add the constraint £ = 2. The only resulting possible value for z is 2. The
explanation of the modification is the constraint z = 2. The other consequence
is that the remaining value for y is 1. The explanation for this situation is twofold:
a direct consequence of the constraint > y and also an indirect consequence of
constraint z = 2.

Explanations for global constraints Computing a precise explanation for
global constraints may not be easy because it is necessary to study the algorithms
used for propagation. However, there always exists a generic explanation: the
current state of the domains of each variable of the constraints. In section 4, we
will describe how to provide more precise explanations for timetabling-related
constraints.

3.3 Using explanations

Explanations are useful in many situations [19]. The following sections detail
some of them: providing user information, improving search and handling dy-
namic problems.

Providing user information

— explanations can be scanned to determine past effects of selected constraints:
these are the events for which the associated explanation contains one of the
selected constraint;

— considering the union of the explanations of the currently removed values in
the current solution is a justification of that situation;

— when encountering a contradiction, a contradiction explanation will provide
a subset of the constraints system that justifies the contradiction and that
can be provided to the user;

— etc.

Improving search strategies Explanations can also be used to efficiently
guide search. Indeed, classical backtracking-based searches only proceed by back-
tracking to the last choice point when encountering failures. Explanations can be
used to improve standard backtracking and to exploit information gathered to
improve the search: to provide intelligent backtracking [17], to replace standard
backtracking with a jump-based approach d la Dynamic Backtracking [21], or
even to develop new local searches on partial instantiations [22].

The common idea of these techniques is, upon encountering a contradiction,
to determine an explanation from which a constraint will be selected either
to determine a relevant backtracking point (for intelligent backtracking) or to
only be dynamically removed and replaced with its negation (as in dynamic
backtracking).

Dynamically adding/removing constraints We can use the explanations
for adding or removing constraints because they help pointing out past effects of
constraints that can be effortlessly undone without a complete re-computation
from scratch. Notice that adding constraint to a problem is a well known issue
but removing it is not so easy. For dynamically removing constraints [2,11], one
needs to: disconnect the constraint from the constraint network, set back values
by undoing the past events (which are easily accessible thanks to the recorded
explanations, see above), and re-propagate to get back to consistent state.

4 Solving dynamic timetabling problems

Using explanations provides efficient solving techniques for dynamic problems
[20]. In this section, we describe a branch-and-bound algorithm used to solve
RCPSP and the addition of explanation capabilities into it in order to provide a
dynamic timetabling problem solver.

4.1 Principle

We developed an environment for solving dynamic RCPSP and timetabling prob-
lems [14] which is based upon:

— a branch-and-bound algorithm for RCPSP (inspired from [6]) within a con-
straint programming solver: in each node, deduction rules are applied in
order to determine redundant information (constraint® propagation).

— an extensive use of explanations. Explanations are recorded during search
and propagation (i.e. using the propagation rules — namely core-times and
task-interval) which has been upgraded in order to provide a precise expla-
nation for every deduction made (see section 4.3). They are used to handle

® We call constraint each initial constraint of the problem (precedence and resource
constraints), but also each decision taken by the branching scheme, and each deduc-
tion made (thanks to propagation rules) during the search as mentioned in section 3.

dynamic events. Indeed, an unexpected event leads to add, modify or remove
a constraint in the system. In the first two cases, if the current solution is
no more valid, then the explanations tell us which are the constraints re-
sponsible for the contradiction. Repairing is done by removing at least one
constraint (preferably a search decision) from the explanation of the contra-
diction, and by adding its negation. The resulting solution is generally quite
similar to the previous one, and is found faster than if we have had solved
the problem from scratch.

4.2 Branch-and-bound algorithm

The branch-and-bound algorithm used in our approach is inspired from [6].

The branching scheme Each node of the tree search is defined by three
disjoint sets: a conjunction set, a parallel set and a flexible set. The conjunction
set C, contains all pairs of activities (4, 7) in conjunction (i.e. that satisfy one of
the relations ¢ — j or j — 7). The parallel set P, consists in all pairs of activities
(4,) that overlap (i.e. that satisfy the relations ¢ || j) and finally the flexible set
F, contains all the remaining pairs of activities (i, j).

Branching is done by transferring one pair of activities (¢,5) from F either
to set C' by imposing the relation i — j or j — 4, or to set P (see Fig. 4.2). This
branching is repeated until set F' becomes empty.

(C,PF)

(CU{G.) P RVG) }) (CU{G)}LPFRVG)D D (CPULGD) FV{G.1)})

Fig. 2. Branching scheme

In each node, constraint propagation updates sets C' and P by removing pairs
from set F' when constraints are added. Repairs (or backtracks) put back pairs
from C and P to F.

Simple expression of relations: notion of distance In order to implement
our approach, it is necessary to be able to easily express both a decision taken
in the search tree and its negation. For example, if we consider a possible de-
cision 4 — j, its negation is the disjunction j — 4 V ¢ || j. Disjunctions are not

easily posted nor handled when performing search in constraint programming.
To overcome that problem, we introduced the notion of distance®

Definition
Let ¢ and j be two distinct activities.

The distance d;; between i and j is defined as the time between the ending date
of i and the starting date of j.

We have: dij =t - t; - p; (see Fig. 3)

7/

d..
1)

Fig. 3. Distance between two activities

The relative positions of activities ¢ and j can easily be deduced according
to the value of the distance d;; (see Fig. 4).
- dijZOiﬂi—)j.
—dij < —p;i—pjiff j — i,
— —p; —pj < d;; <0iff ¢ and j overlap.

= i) i
| | d.
I
“Pj- P 0

Fig. 4. Positions of two activities i and j according to the value of dj

We can deduce that:

— di; x dj; < 0iff ¢ and j are in disjunction.
— di; x dj; > 0iff ¢ and j overlap.
— d;; and dj; cannot both take a strictly positive value at the same time.

6 This notion is a generalization of the one introduced by Brucker in [6].

Using this notion of distance, the decisions taken in the search tree and
their negations can easily be translated in term of mathematical constraints (see
Table 1).

Table 1. Decisions as constraints on distances

Decision Constraint Opposite decision Opposite constraint
i =7 di; >0 R dij <0
71 dij < —p; —Dpj] -1 dij > —p; — pj
Z”] dij X dj; >0 14>] dij X dj; <0

Furthermore, as we will see in Section 5.1, generalized temporal constraints
can also easily be translated using distances.

The next two sections describe how explanations are added in the constraints
that are used to enforce decisions made during search and also in the initial
constraints of the problem (both temporal and resource-related).

4.3 Adding explanations to temporal constraints

Providing explanations for temporal binary constraints is straightforward. There-
fore, here are the explanations for basic temporal constraints (notice that expla-
nations for generalized temporal constraints can easily be deduced):

— dij > 0 (vesp. dij > —p; — p;)
The lower bound of the variable d;; is updated to 0 (resp. —p; —p;+1). This
modification is only due to the constraint itself, and hence the explanation
of the modification is the constraint itself.

— dij <0 (resp. dij < —p; —pj)
The upper bound of the variable d;; is updated to —1 (or —p; —p; —1). This
modification is only due to the constraint itself, and hence the explanation
of this modification is the constraint itself.

— dij X djz' >0
If the upper bound of the variable d;; (resp. d;;) becomes strictly negative
then the upper bound of the variable d;; (resp. d;;) is updated to —17. This
modification is due first to the use of the constraint itself and second to
the previous modification of the upper bound of variable d;; (resp. d;;), and
hence the explanation of this modification is twofold: the explanation of the
previous modification for the upper bound of the variable d;; (resp. d;;) and
the constraint itself.

— dij X dji S 0
If the lower bound of the variable d;; (resp. dj;) becomes positive then the

7 We manipulate here integer variables.

upper bound of the variable dj; (resp. d;;) is updated to 0. This modifica-
tion is due to the use of the constraint itself and the previous modification
of the lower bound of the variable d;; (resp. dj;). The explanation of this
modification is twofold: the explanation of the previous modification for the
lower bound of the variable d;; (resp. dj;) and the constraint itself.

4.4 Adding explanations to resource constraints

Explanations for resource management constraints are not that easy. It is nec-
essary to study the algorithms used for propagation. Classical techniques for
maintaining resource limitations for scheduling problems are: core-times [25],
task-interval and resource-histogram [9,10].

Resource-histogram constraints The principle of the resource-histogram
technique is to associate to each resource k an array level(k) in order to keep
a timetable of the resource requirements. This histogram is used for detecting a
contradiction and reducing the time windows of activities.

The core-times technique [25] is used for detecting contradictions. A core-
time CT(7) is associated to each activity 4. It is defined as the interval of time
during which a portion of an activity is always executed wether it starts at its
earliest or latest starting time. A lower bound of the schedule is obtained when
considering only the core-time of each activity.

Combining these two techniques provides an efficient resource-conflict de-
tecting constraint. A timetable for each resource is computed as follows: for each
activity 4, its core-time CT(Z) = [fi,r; + pi) (f; is the latest starting time of i,
r; its earliest starting time) is computed and the amount a; of resource k for
each time interval [f;, fi +1),...,[ri + p; — 1,7; + p;) is reserved. We associate
to each timetable constraint two histograms (see Fig. 5):

— a level histogram: which contains the amount of resource required at each
time interval [t — 1,¢).

— an activity histogram which contains the sets S; of activities which require
any amount of resource for each time period [t — 1,t). It will essentially be
used to provide explanations.

level hist
S | . co vl g
(0,0,2,2,97,4,00)
2 4 2 4 3
II CTd) activity histogram
3 4 1 2 2
A3 {3} {234} {24} {4} {},
H - W cw 00949239 200
4 5 2 4 4
123 45 67 89 123 4567 89

Fig. 5. Example of timetable.

These histograms are used in the following ways:

— detecting resource conflicts when the required level of a resource k at one
time period ¢ exceeds the resource capacity at that time®. The conflict set
associated to this contradictory situation is constituted from the set of ac-
tivities (S;) stored in slot ¢ of the activity histogram. Let ¢, be the variable
representing the starting time of activity v. The explanation of this conflict
is given by the following equation (¢ being the histogram constraint itself):

/\ /\ expl(t, # ?) /\C (4)
)

vES: \a€d(ty

— tightening the time window of an activity. It may occur that the current
bounds of the time window of an activity are not compatible with the other
activities. In that situation, the tightening of the time-window will be ex-
plained by the set S; of activities requiring the resources during the incom-
patible time-period [t — 1,t). The following equation is used to provide an
explanation for the modification of a time window (¢ being the histogram
constraint itself):

/\ /\ expl(t, # 7) /\c (5)
)

vES: \a€d(ty

Task-interval constraints The technique of task-intervals [9,10] used for man-
aging cumulative resources can detect conflicts, deduce precedences and tighten
time-windows.

A task-interval T = [i, 7] is associated to each pair of activities (Z,j) which
require the same resource k. It is defined as the set of activities £ which share
the same resource and such that r; < r, and d; < d; (r; being the earliest
starting time of the activity ¢ and d; its due date) i.e. that need to be sched-
uled between tasks i and j. The set inside(T'I) represents the set of activities
constituting the task-interval, while outside(T'I) contains the remaining activ-
ities. Let energy(T1) = 3 jcinsiqe(rr)(de — T¢) X agk be the energy required by
a task-interval.

Several propagations rules can be defined upon task-interval. We consider
here the following two:

Integrity rule If energy(TI) is greater than the total energy (d;j —r;) x Ry,
available in the interval then a conflict is detected. The conflict explanation set is
built from the set of activities inside the task-interval i.e. (¢ being the constraint
associated to this rule):

/\ /\ expl(t, # 7) /\C (6)

veEinside(TI) \a€d(ty)

8 It may not be a constant value when considering resources whose capacity is variable
during time.

Throw rule This rule consists in tightening the time window of an activity
intersecting a given task-interval TI. This is done by comparing the necessary
energy shared by the activities in inside(TI) and another activity u intersecting
TI, and the energy available during the task-interval. The explanation of this
update is built from the set of activities inside the task-interval (¢ being the
constraint associated to this rule):

A N expitn£a) | | NeA| N\ expitu#a)| (7)

vEinside(TI) \a€d(ty) a€d(ty)

5 Dynamic events taken into account

This section lists the various dynamic events taken into account in our system®.

5.1 Temporal events

Adding constraints Adding a new (generalized) precedence, disjunctive or
overlapping constraint between two lectures can be done thanks to the different
following procedures adding temporal events in our system:

— add(i, j, Relation): imposes the relationship “Relation” between activities
i and j. Table 2 gives the constraint added for each possible relationship.

Table 2. Constraints added by the procedure add(i, j, Relation) for each possible
relation between ¢ and j

Relation Constraint
i —>J di]’ >0
J—i dij < —pi — pj
ie] dij X dj; <0
ilj dij X dj; >0

— add(i, j, Relation, d): imposes the relationship “Relation” between ac-
tivities ¢ and j and that there are exactly d units of time between i and j.
Table 3 gives the constraint added for each possible relationship.

— add(i, j, Relation, Dmin, Dmax): imposes the relationship “Relation”
between activities 7 and j and that there are at least Dmin and at most
Dmaxz units of time between i and j. Table 4 gives the constraint added for
each relationship.

® Notice that events that can be modelled as simple arithmetic constraints (such as
Teacher A cannot give its lecture on March 24**) are automatically handled by the
underlying constraint solver we use. Only specific complex constraints introduced
for solving RCPSP and timetabling problems are presented here

Table 3. Constraints added by the procedure add(i, j, Relation, d) for each possible
relation between ¢ and j

Relation Constraint
i—j dij =d
j—i dij = —d —pi —pj
ie] dij=dVdj7;=d
il dij = —

Table 4. Constraints added by the procedure add(i, j, Relation, Dmin, Dmax)
for each possible relation between ¢ and j

Relation Constraint
i _>_] szn S dij S Dmacc
j —1i _Dmam —Pi —Dj Sdl] S _Dmin_pi_pj
i <_>,] Doin S dij S Draz V —Dpax —Pi —Pj S dij S —Dmin —Di —DPj
i ” J _Dmaw S dij S _Dmin

— add(i, Dmin, Dmax): imposes a time window [Dmin, Dmax] for activity
1. The constraint added is Dmin < i < Dmaz.

Removing constraints Our system is able to dynamically remove all these
temporal events thanks to the following procedures: remove(i, j, Relation),
remove(i, j, Relation, d), remove(i, j, Relation, Dmin, Dmax), re-
move(i,Dmin, Dmax)

Modifying constraints Each of the temporal events that can be added or
removed can also be replaced by another one:

— modify(i, j, Old_Relation, New_Relation) replaces relation “Old_Rela-
tion” by “New_Relation” between ¢ and j. Actually, this procedure removes
the constraint associated to the relationship “Old_Relation” and adds the
constraint associated to the relationship “New_Relation”.

5.2 Activity related events
The procedures concerning the activity related events are:

— add(i, Duration, Res_requirements, Predecessors, Successors): this

procedure adds an activity ¢ with duration “Duration”, resources require-
ments “Res_requirements”. Its predecessors are “Predecessors” and its suc-
cessors “Successors”.
This procedure creates a new variable ¢, connects it to the constraints net-
work, adds the temporal constraints associated and the disjunction con-
straints resulting from the capacity limitations, and inserts variable ¢ in the
timetable and in the task-interval constraints.

— remove(i): this procedure removes activity ¢ from the problem.
It disconnects variable ¢ from the constraints network, removes all the con-
straints related to either 4, any d;; or any dj;. It also removes variable 4 from
the timetable and the task-interval constraints, and removes all task-interval
constraints having ¢ as starting or ending activity.

Activity modification are handled as an activity removal followed by an ac-
tivity addition (the modified one).

5.3 Resource related events

It is possible to add or remove a resource:

— add(Resource, Capacity, Capacities requirements) adds a new re-
source to the problem and the disjunctive constraints which result from its
capacity limitation. It also adds the timetable and task-interval constraints
associated to it.

— remove(Resource): removes a resource from the problem, as well as the
disjunctive constraints which results from the capacity limitation of this
resource, the timetable and all the task-interval constraints associated.

As for activities, modifying a resource is handled as a resource removal fol-
lowed by a resource addition.

5.4 Translating timetabling-related events into our event system

Obviously, the events described so far are not meant to be directly used by
a final user of our system. A translation between the real-life events and our
events needs to be done. For example, when considering timetabling problems,
the following events could be handled:

— The addition of new lectures for an ezisting course, for example because a
teacher needs more hours than expected, can be handled as the addition
of new activities which may be related to other activities by (generalized)
precedence, disjunctive or overlapping constraints.

— The suppression of one or several lectures of a teacher who finishes his/her
course earlier than expected implies the removal of one or several activities.

— The installation of a new classroom equipped with computers, or the pur-
chase of video-conference materials corresponds to the addition of a new
resource or to the modification of the capacity of a resource.

— The fact that a teacher is no longer available on the afternoons can be
handled as a modification (namely its capacity level) of a resource.

— etc.

5.5 The special case of over-constrained problems

Uncontrolled addition, removal or modification of constraints can lead to an
over-constrained problem. Qur explanation-based system is then able to pro-
vide a contradiction explanation which will help the user either to select a con-
straint/relation to be removed or modified, or to allow an increase of the resulting
makespan of the project.

6 Computational experiments

We present here our first experimental results. Our experiment consists in com-
paring our dynamic scheduler with a static scheduler: a scheduling problem P
is first optimally solved. Then, an event e is added to this problem. We then
compare a re-execution from scratch (as a static scheduler would do) and the
dynamic addition of the related constraints in terms of cpu time.

All experiments'® were conducted on RCPSP as our system was primarily
design for such problems. Experiments on real-life timetabling problems are
planned in a near future.

6.1 First benchmark: Patterson RCPSP instances

We use here some RCPSP test problems introduced by Patterson!!.

For this set of problems, we tried to evaluate the impact of a single modifica-
tion when comparing static and dynamic scheduling approaches. The following
events were evaluated:

— Adding a precedence constraint (add(i, j, —))

Table 5 presents the results obtained on original problems from Patterson
from which a single precedence constraint has been removed (which gives the
starting problem) then added (which gives the final problem — the original
Patterson one'?).

— Adding a generalized precedence constraint (add(i, j, —, d))

Table 6 presents the results obtained on original problems from Patterson
to which a generalized precedence constraint is added (this constraint is an
existing precedence in the optimal solution for which the existing time lag
is increased).

— Adding a generalized precedence constraint (add(i, j, —, Dmin, Dmax))
Table 7 presents the results obtained on original problems from Patterson
to which a generalized precedence constraint is added (this constraint is an
existing precedence in the optimal solution for which the existing time lag
is increased).

10 A1 experimental data and results are available online at
http://www.emn.fr/jussien/RCPSP.

1 yww.bwl.uni-kiel. de/Prod/psplib/dataob.html

12 This explains that some results obtained for the static solver are the same: the final
problem is the same but not the original one as a different constraint has been
removed.

— Adding an overlapping constraint (add(i, j, ||)) Table 8 presents the results
obtained on original problems from Patterson to which a randomly chosen
overlapping constraint is added.

In all the tests, activities ¢ and j are randomly selected.

In all the tables, we designate by:

— # Act: the number of activities of the problem;

— # Res: the number of resources of the problem;

— tp: the cpu time in seconds needed for solving optimally problem P;

— te: the cpu time in seconds spent to solve this problem after dynamically
adding the event e
tpe: the cpu time in seconds needed to obtain an optimal solution of the
problem P U {e} from scratch.

— t”: L. the overall interest of using a dynamic scheduler compared to a static
scheduler expressed as the percentage of improvement.

These results clearly show that using a dynamic scheduling solver is of great
use compared to solving a series of static problems. In our first experiments, the
improvement is never less than 23% and can even get to 98.8 %!

Table 5. Adding a precedence constraint

Name #Act #Res t, te tpe |[2=%

tpe

T1Pla 14 3 726 1.16 6.96| 83.3

T1P1b 22 6.75 0.23 6.96| 96.7
TiP2 7 0.23 0.02 0.19| 89.5
T1P3a 13 25.82 4.16 12.58| 67.0
T1iP3b 13 15.64 1.21 12.58| 90.4
T1P4a 22 8.01 146 3.63| 59.8
T1P4b 22 4.50 0.50 3.63| 86.2

T1P5b 22 11.34 1.76 13.80| 87.3
T1P6a 22 135.11 19.60 78.61| 75.1
T1P6b 22 36.70 7.81 78.61| 90.1
T1P6c 22 87.80 0.96 78.61| 98.8
TIP8 9 2.11 0.32 2.30| 86.1
TiP10 8 034 0.06 0.25| 76.0

3
3
3
3
3
3
T1P5a 22 3 2037 8.70 13.80| 37.0
3
3
3
3
1
2

Table 6. Adding a generalized precedence constraint

Name #Act #Res t, te tpe | 22=%

tpe

T2Pla 14 3 731 0.87 884 90.2

T2P1b 14 6.58 0.82 9.55| 914
T2P5a 22 14.90 3.45 8.33 | 58.6
T2P5b 22 16.90 3.44 8.19 | 58.0

3

3

3

T2P5c 22 3 13.823.50 8.22| 574
T2P6a 22 3 6245 5.14 24.43| 79.0
T2P6b 22 3 64.42 1.87 19.56| 90.5
T2P6c 22 3 62.50 1.24 23.40| 94.7
T2P8 9 1 219 0.22 2,58 | 91.5
T2P10 8 2 0.18 0.02 0.26 | 92.3
T2P11 8 2 039 0.20 0.42| 52.4

Table 7. Adding a generalized precedence constraint

Name #Act #Res t, te tpe | 2%

tpe

T3Pla 14 3 7.12 0.81 850| 90.5

T3P1b 14 9.69 0.61 9.81| 93.8
T3P3 13 17.49 0.45 14.34| 96.9
T3Pba 22 14.46 4.82 7.59| 36.5
T3P5b 22 15.25 3.10 7.81| 60.3

T3P6b 22 75.88 2.52 21.12| 88.1
T3P6c 22 66.00 17.74 27.34| 35.1
T3P6d 22 65.45 16.25 30.65| 47.0
T3P8 9 290 0.12 2.84| 95.8

3
3
3
3
T3P6a 22 3 68.38 9.63 19.30| 50.1
3
3
3
1

Table 8. Adding an overlapping constraint

Name #Act #Res tp, te tpe %%
T4P1 14 3 7.43 0.38 10.62| 96.4
T4P5 22 3 15.16 16.39 24.84| 34.0
T4P6a 22 3 T77.73 8.44 14.60(42.2
T4P6b 22 3 70.45 6.63 18.59| 64.3

3

1

1

T4P6c 22 64.87 9.85 12.86| 23.4
T4P8a 9 2.37 0.38 2.35| 83.9
T4P8b 9 227 0.12 2.64| 955

6.2 Second benchmark: Kolish, Sprecher and Drexl] RCPSP
instances

Our second set of experiments performed on Kolish, Sprecher and Drexl RCPSP
instances'® considers 4 consecutive modifications (any kind of events'?) to an
original problem. As we can see on table 9, our results are quite promising. Even
bad results (instance TIKSD10) get better in the long run. However, notice that
some results (see table 10 — results for 5 consecutive modifications) show that
dynamic handling is not always the panacea and rescheduling from scratch can
be very quick.

Table 9. Some Kolish, Sprecher and Drexl instances (4 consecutive dynamic events).
Relative speed-up (in %)

12 act./4 res. Modif. 1 Modif. 2 Modif. 3 Modif. 4
T1KSD1 12.76 26.09 35.84 35.58
T1KSD2 46.24 5492 62.68 63.13
T1KSD3 35.88 44.12 45.82 45.87
T1KSD5 32.01 6790 75.15 75.65
T1KSD6 3.81 26.38 46.62 55.92
T1KSDS8 22.13 10.64 21.08 22.21
T1KSD9 46.72 52.58 47.75 49.27
T1KSD10 -29.21 -0.35 15.74 30.27

Table 10. Other Kolish, Sprecher and Drexl instances (5 consecutive dynamic events).
Relative speed-up (in %)

22 act./4 res. Modif. 1 Modif. 2 Modif. 3 Modif. 4 Modif. 5
T2KSD11 47.15 12.49 5.87 6.89 -1.98
T2KSD13a 34.81 43.55 43.04 49.89 50.98
T2KSD13b 39.19 -126.79 -174.22 -216.67 -146.42
T2KSD15 -47.62 -42.50 -41.00 -65.06 -88.20
T2KSD17a -2.40 1.65 -5.90 -16.23 -43.06
T2KSD17b 3.58 13.11 -12.76 -10.561 -74.91
T2KSD18a 30.61 26.76 -52.76 -19.07 0.85
T2KSD18b 40.39 56.09 40.54 42.56 45.15

13 yww.wior.uni-karlsruhe.de/RCPSP/ProGen.html
14 See http://www.emn.fr/jussien/RCPSP for the details of each instance.

7

Conclusion

In this paper, we presented the integration of explanations within scheduling-
related global constraints and their interest for solving dynamic timetabling
problems. We presented first experimental results of a system that we developed
using those techniques. These results demonstrate that incremental constraint
solving for scheduling problem is useful.

We are currently improving our system with user-interaction capabilities still

using explanations following [23]. Moreover, our main goal now is to give our
system to the timetabling service in our institution in order to evaluate it in a
real-world situation.

References

1.

10.

11.

C. Artigues and F. Roubellat. A polynomial activity insertion algorithm in a
multi-resource schedule with cumulative constraints and multiple modes. European
Journal of Operational Research, 127(2):179-198, 2000.

. Christian Bessiére. Arc consistency in dynamic constraint satisfaction problems.

In Proceedings AAAI’91, 1991.

J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnoy Kan. Scheduling projects subject to
resource constraints: classification and complexity. Discrete Applied Mathematics,
5:11-24, 1983.

Patrice Boizumault, Yann Delon, and Laurent Péridy. Constraint logic program-
ming for examination timetabling. Special Issue of the Journal of Logic Program-
ming: Applications of Logic Programming, 26(2):217-233, 1996.

P. Brucker, A. Drexl, R. Méring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling: notation, classification, models and methods. European Journal
of Operational Research, 112:3-41, 1999.

P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for
the resource-constrained project scheduling problem. European Journal of Opera-
tional Research, 107:272-288, 1998.

Peter Brucker and Sigrid Knust. Resource-constraints project scheduling and
timetabling. In Selected papers of the 2000 Practice and Theory of Automated
Timetabling international conference, volume 2079 of Lecture Notes in Computer
Science, pages 277-293. Springer-Verlag, 2001.

E. K. Burke, D. G. Elliman, and R. F. Weare. A university timetabling system
based on graph colouring and constraint manipulation. Journal of Research on
Computing in Education, 27(1):1-18, 1994.

Y. Caseau and F. Laburthe. Cummulative scheduling with task-intervals. In JIC-
SLP’96: Joint International Conference and Symposium on Logic Programming,
1996.

Yves Caseau and Frangois Laburthe. Improving clp scheduling with task intervals.
In P. Van Hentenryck, editor, Proc. of the 11th International Conference on Logic
Programming, ICLP’94, pages 369-383. MIT Press, 1994.

Romuald Debruyne, Gérard Ferrand, Narendra Jussien, Willy Lesaint, Samir
Ouis, and Alexandre Tessier. Correctness of constraint retraction algorithms. In
FLAIRS’03: Sizteenth international Florida Artificial Intelligence Research Society
conference, pages 777-777, St. Augustine, Florida, USA, may 2003. AAAT press.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

E. Demeulemeester and W. Herroelen. A branch and bound procedure for the
multiple resource-constrained project scheduling problem. Management Science,
38(12):1803-1818, 1992.

F. P. M. Dignum, W. P. M. Nuijten, and L. M. A. Janssen. Solving a time tabling
problem by constraint satisfaction. Technical report, Eindhoven University of Tech-
nology, 1995.

Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien. Conflict-based repair
techniques for solving dynamic scheduling problems. In Principles and Practice of
Constraint Programming (CP 2002), number 2470 in Lecture Notes in Computer
Science, pages 702-707, Ithaca, NY, USA, September 2002. Springer-Verlag. Short
paper.

H.J. Goltz. Combined automatic and interactive timetabling using constraint logic
programming. In E. Burke and W. Erben, editors, Int. Conf. on the Practice and
Theory of Automated Timetabling (PATAT’00), 2000.

Christelle Guéret, Narendra Jussien, Patrice Boizumault, and Christian Prins.
Building university timetables using Constraint Logic Programming. In Edmund
Burke and Peter Ross, editors, The Practice and Theory of Automated Timetabling,
volume 1153 of Lecture Notes in Computer Science, pages 130-145. Springer-
Verlag, 1996.

Christelle Guéret, Narendra Jussien, and Christian Prins. Using intelligent back-
tracking to improve branch and bound methods: an application to open-shop prob-
lems. Furopean Journal of Operational Research, 127(2):344-354, 2000.

A. Hertz. Tabu search for large scale timetabling problems. European Journal of
Operations Research, 54:39-47, 1991.

Narendra Jussien. e-constraints: explanation-based constraint programming. In
CP01 Workshop on User-Interaction in Constraint Satisfaction, Paphos, Cyprus,
1 December 2001.

Narendra Jussien and Patrice Boizumault. Dynamic backtracking with constraint
propagation — application to static and dynamic csps. In CP97 Workshop on
The Theory and Practice of Dynamic Constraint Satisfaction, Schloss Hagenberg,
Austria, 1 November 1997.

Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice of Constraint
Programming (CP 2000), number 1894 in Lecture Notes in Computer Science,
pages 249-261, Singapore, September 2000. Springer-Verlag.

Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21-45, July 2002.
Narendra Jussien and Samir Quis. User-friendly explanations for constraint pro-
gramming. In ICLP’01 11th Workshop on Logic Programming Environments
(WLPE’01), Paphos, Cyprus, 1 December 2001.

L. Kang and G. M. White. A logic approach to the resolution of constraint in
timetabling. European Journal of Operational Research, 61:306-317, 1992.

R. Klein and A. Scholl. Computing lower bounds by destructive improvement:
an application to Resource-Constrained Project Scheduling Problem. FEuropean
Journal of Operational Research, 112:322-345, 1999.

R. Kolisch and S. Hartmann. Heuristic Algorithms for Solving the Resource-
Constrained Project Scheduling Problem: Classification and Computational Analy-
s18, pages 147-178. Weglarz, J. (Ed.): Handbook on Recent Advances in Project
Scheduling, Kluwer, Dordrecht, 1998.

27.

28.

29.

30.

31.

32.

33.

G. Lajos. Complete university modular timetabling using constraint logic program-
ming. In P. Ross and E. Burke, editors, The practice and Theory of Automated
Timetabling: Selected Papers from the 1st International Conference, number 1153
in Lecture Notes in Computer Science, pages 148-161, 2000.

A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm
for project scheduling with resource constraints based on a new mathematical
formulation. Management Science, 44:714-729, 1998.

P. Ross, D. Corne, and H-L. Fang. Improving evolutionary timetabling with delta
evaluation and directed mutation. Parallel Problem Solving in Nature, 111:565-566,
1994.

Thomas Schiex and Gérard Verfaillie. Nogood recording for static and dynamic
CSP. In 5'* IEEE International Conference on Tools with Artificial Intelligence,
pages 48-55, Boston, MA., 1993.

J. Sgall. On-line scheduling - a survey. On-Line Algorithms, 1997.

J. P. Stinson, E. W. David, and B. M. Khamawala. Multiple resource-constrained
scheduling using branch and bound. ITE Transactions, 1:252-259, 1978.

A. Tripathy. School timetabling - a case in large binary integer linear programming.
Management Science, 30:1473-1489, 1984.

