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Abstract. Timetabling problems have been frequently studied due to
their wide range of applications. However, they are often solved manually
because of the lack of appropriate computer tools. Although many ap-
proaches mainly based on local search or constraint programming seem
to have been quite successful in recent years, they are often highly dedi-
cated to specific problems and encounter difficulties to take the dynamic
and over-constrained nature of such problems.
We were confronted with such an over-constrained and dynamic problem
in our institution. This paper deals with a timetabling system based on
constraint programming with the use of explanations to offer a dynamic
behaviour and to allow automatic relaxations of constraints. Our tool
has successfully answered the needs of the current planner by providing
solutions in a few minutes instead of a week of manual design. We present
in this paper the techniques used, the results obtained and a discussion
on the effects of the automation of the timetabling process.

1 Introduction

Timetabling problems have been frequently studied because of their wide range
of applications. Scheduling activities occur in any human organisation and be-
come quickly critical for large administrations. However, timetabling problems
are often solved manually because of the lack of appropriate computer tools.
Although many approaches mainly based on local search or constraint program-
ming seem to have been quite successful in recent years, they are often highly
dedicated to specific problems. This is due to the wide variety of problems which
differ for example for education timetabling between schools, universities, engi-
neering schools and more specific educational institutions. Among those prob-
lems, two main difficulties are encountered: first, timetabling problems are often
over-constrained and optimization criterias are hard to define. The optimization
objective is often hard to express for the scheduling office itself because of the
confusion induced by the manual process of resolution. Second, they are intrin-
sically dynamic: activities, resources or constraints are sometimes unknown or



can often change at the last moment.

We were confronted with such an over-constrained and dynamic problem in
our institution. We took the opportunity to experiment with PaLM [14], our ex-
planation based constraint solver, in a real world situation. The system is based
on constraint programming with the use of explanations [15] to offer a dynamic
behaviour (the problem is not solved again from scratch when constraints are
added or removed) and to allow an automatic relaxation of constraints in case
of over-constrained problems. The tool has already been introduced for solving
dynamic RCPSP (Ressource Constrained Project Scheduling Problems) in [9].
Experiments on academic problems such as the RCPSP encouraged us to apply
the technique in a real world situation. Our tool has successfully answered the
needs of the planner by providing solutions in a few minutes instead of a week
of manual computation.

This paper is organized as follows: Section 2 introduces the timetabling prob-
lem we solved. Formal models are then presented in Section 3: a linear and a
constraint formulation are given. Section 4 presents the basics of explanation-
based constraint programming and our results are discussed in Section 5.

2 Problem description

The problem was met in a French engineering school: the École des Mines de
Nantes (EMN). EMN offers a 4-year program which consists of a 2-year common
core followed by 2 specialized years. There are 9 possible specializations in various
areas of study like computer science, production and logistics, environment or
management (a complete list is provided in table 1). EMN tries to offer as much
choice as possible to its students.

In this paper, we report our work on the third year timetabling problem. All
students are supposed to choose a major and a minor (among the nine possible
specializations) and a set of open courses. The idea is to let them finalize their
choices for their final year where either the major or the minor becomes the only
set of courses that they follow. Notice that the choice of a specialization implies
a fixed set of required courses. The task is to design a weekly timetable which
will be in use for a complete semester. Each course available for the studied
semester is to be assigned to a half-day slot during the week. The main problem
is to determine which courses will happen simultaneously. The aim is to allow as
many students as possible to attend all the required courses of their two choices
and as many as possible of their free choices. Each option3 is defined by two sets
of required courses (depending if the topic is a major or a minor).

3 An option is a topic or an area of study chosen by a student to specialize in during
his last year.



2.1 Static part of the problem

The built timetable must verify a given set of constraints. Both hard and soft
constraints can be defined. Hard constraints are as follows:

– topic availability: required courses of each topic have to be assigned non
overlapping slots ;

– pre-requisite: some courses are pre-requisite for others and must therefore
take place in different slots ;

– room availability: a maximum number of courses is allowed simultaneously
because of room limitations

The provided timetable must meet all these hard constraints. Moreover, soft
constraints are highly desirable for a useable timetable:

– teachers’ availability: teachers can specify their availability on given slots
during the week

– major/minor selection: for each student, the major and minor required courses
should be scheduled in non overlapping slots.

– free course selection: additional courses chosen by a given student must fall
in different slots.

Although no precise preference function is defined, the person in charge first
tries to satisfy teachers as much as possible (many teachers come from other
schools or universities) and to leave students free to attend their major/minor
choice. Secondly, the objective is to fulfill the other students’ requests in order
to provide each of them with a conflict-free schedule. The main problem consist
in optimizing both objectives:

1. minimize the number of violated pairs of options (major/minor);
2. minimize the number of violated pairs of courses4.

For the first semester, the priority is given to the number of pairs of options
available and for the second semester, it consists in minimizing the number of
conflicts between courses 5.

Typical instances for the first semester of the third year in EMN involve 120
students, 30 different courses, 9 main topics and 7 courses per student. The 30
courses have to be assigned in 7 timeslots. Notice that, even if the number of
courses and students is quite small compared to typical universities, the student
schedule is complete. 72 pairs of options are possible, 3 courses are required
for a major and 2 for a minor. Around 30 pairs among the 72 are effectively
chosen by students and the distribution of option over the pairs is varied. We
cannot predict a priori that any two options will never be together. For example,
environment and computer science options are not incompatible (a particular in-
stance can be seen on table 1). Therefore, the problem is often over-constrained
4 Violated pairs of options and courses will be denoted as conflicts in the latter.
5 Optimization was not required at the beginning by the planner and became possible

once the satisfaction of hard constraints had been successfully taken into account.



only considering the soft constraints concerning major/minor selection.

The student scheduling problem [4] (SSP) has the same objective: providing
conflict-free schedules. Students need to be assigned to courses in the classical
SSP (the timetable is already done) whereas our problem consists in assigning
courses to timeslots (the timetable is built according to student’s requests).
A similar problem is solved in [22] where a feasible and personalized weekly
timetable is assigned to every student of a Spanish Engineering School. But in
this case again, several groups have been already done for every subject, every
group has a fixed timetable and is already scheduled to lecturers. Actually, our
problem can be seen as a specific demand driven timetabling problem [4] where
the number of satisfied course requests is to be maximized.

PPPPPPPMajor
Minor

OMIT CSE EG CSAD QRS OMPL ACC NT ESE

OMIT - 7 1 4 1 10 0 0 0
CSE 4 - 0 13 0 0 2 0 0
EG 1 0 - 0 2 0 0 3 5

CSAD 0 6 2 - 0 1 1 0 0
QRS 0 0 0 0 - 7 0 0 1

OMPL 2 0 4 0 13 - 2 0 1
ACC 4 3 1 0 2 9 - 1 3
NT 1 0 4 0 0 0 0 - 2
ESE 0 0 4 0 0 0 0 1 -

Table 1. The allocation of minor and major choices in a particular instance (the pair
(ACC,QRS) has been chosen by two students for instance). Options are the following:
Computer systems engineering (CSE), Computer science as an aid to decision-making
(CSAD), Organisation and management of information technologies (OMIT), Auto-
matic control and industrial computation (ACC), Operations management in produc-
tion and logistics (OMPL), Quality and reliability of systems (QRS), Environmental
engineering (EG), Energetic system engineering (ESE), Nuclear and associated tech-
nologies (NT).

2.2 Dynamic part of the problem

One of the main requirements from the scheduling office was the possibility
to quickly change a previous solution in order to take unexpected events into
account. Constraints concerning the students are supposed to be quite static,
even if the timetabling can be computed whereas some student choices are still
missing. The dynamic part of the schedule is more related to logistic problems
and unexpected events concerning:

– The link with timetabling of other years (the four years share common re-
sources: rooms, equipment for practical sessions but also teachers)



– The requirement of the teachers (insiders and specially outsiders)

It is for instance usual that the availability of an outside contributor to
a course remains unknown until the last moment. Moreover, as teachers are
involved in courses for different years whose timetables are not scheduled at
the same period, unexpected constraints concerning teachers occur frequently.
The dynamic changes considered here focus on addition of constraints (teachers
availability or logistic needs). Literature on dynamic timetabling is not very rich.
However, our dynamic changes are related to the minimal perturbation problem
which consists in incorporating the changes, along with the initial solution, as
a new problem whose solution must be as close as possible to the previous one.
[18] proposes a local search method on partial feasible assignments guided by
conflicts statistics to solve the minimal perturbation problem. Our approach is
quite different but also pragmatic (see 4.3). However, recent dedicated complete
methods can also be found in [1].

3 Formal Models

The input data for a given timetable are the following:

– Courses = {1, 2, ..., n};
– Options = {1, 2, ..., o};
– Students = {1, 2, ...,m};
– ∀i ∈ Options,Requisite1i ⊂ Courses;
– ∀i ∈ Options,Requisite2i ⊂ Courses;
– ∀s ∈ Students, Choicess ⊂ Courses
– R is the maximum number of free rooms in a each timeslot;
– NP is the number of time periods in a week;
– wi1i2 denotes the conflicts associated to a pair of courses (i1, i2) (for exam-

ple, the number of students that took the pair (i1, i2)).

Let Courses be the set of courses, Options be the set of options, Requisite1i

be the first set of required courses for option i and Requisite2i, the second set
of required courses for the same option i. For each student s, the inputs are
his major and minor O1s,O2s and his free choice of courses FreeCoursess ⊂
Courses. Therefore, the complete set of courses, Choicess, corresponding to a
student s is equal to Requisite1O1s ∪Requisite2O2s ∪ FreeCoursess.

3.1 A Linear Programming model

A linear model can be expressed using boolean variables xij which take the value
1 if the course i is placed in the timeslot j and 0 otherwise.

∀i ∈ {1..n},∀j ∈ {1..NP} xij = {0, 1}



Integrity constraints:
Each course must be placed exactly once: ∀i ∈ {1..n},

∑
j xij = 1

Hard constraints:

Option validity: ∀o ∈ Options,∀j ∈ {1..NP}
∑

i∈Requisite1o
xij ≤ 1

Linked courses: ∀i1, i2 pre-requisite, ∀j ∈ {1..NP} xi1j + xi2j ≤ 1
Room availability: ∀j ∈ {1..NP}

∑
i∈Courses xij ≤ R

Soft constraints:

Teachers’ availability: teacher of course i
is absent at period p, xip = 0

Option choice: ∀s ∈ Students,
∀j ∈ {1..NP},

∑
i∈

 Requisite1O1s

∪Requisite2O2s


xij ≤ 1

Course choice: 6 ∀s ∈ Students,
∀j ∈ {1..NP},

∑
i∈Choices

xij ≤ 1

This model corresponds to the problem as it was first expressed by the
scheduling office. Theses requirements were modified to consider an optimiza-
tion model which minimizes the number of conflicts once the problem has been
proved to be over-constrained. An optimization function could be added using
yi1,i2 boolean variables to express the fact that the courses i1 and i2 are placed in
the same timeslot. An optimization function could be written (with appropriate
channelling constraints to link x and y variables):

Min
∑

(i1,i2)∈Courses×Courses

yi1j2 × wi1,i2

3.2 A constraint programming model

Constraint programming (CP) techniques have been widely used to solve schedul-
ing problems. A constraint satisfaction problem (CSP) consists of a set V of
variables defined by a corresponding set of possible values (the domain D) and
a set C of constraints. A solution for the problem is an assignment of a value
to each variable such that all the constraints are simultaneously satisfied. The
constraints are handled through a propagation mechanism which allows the re-
duction of the domains of variables and the pruning of the search space. The
propagation mechanism coupled with a backtracking scheme allows the search
space to be explored in a complete way.
CP seems a good approach to our problem as almost all the constraints described
6 This constraint includes the previous one but the distinction will be made for relax-

ation.



here fall within difference constraints (except room availability) i.e. courses that
cannot be scheduled into the same period. We can therefore enforce our model
by using global constraints like the alldifferent [19] or global cardinality7 [20]
constraints. Such constraints constitutes an efficient way to handle recurrent
patterns or sub-problems, they contain complex algorithms able to efficiently
prune large portions of the search space.

The constraint model proposed uses n integer variables xi denoting the times-
lots in which courses i are scheduled.

∀i ∈ {1..n}, domain(xi) = [1..NP ]

Hard constraints can be simply written as follows:

Option validity: ∀o ∈ Options, alldifferent(xi|i ∈ Requisite1o)
Linked courses: ∀i, j linked courses, xi 6= xj

Room availability: gcc({xi|i ∈ Courses}, {0|(1..NP )}, {R|(1..NP )})

Soft constraints:

Teachers’ teacher of course i
availability: is absent at period p, xi 6= p

Option choice: ∀s ∈ Students, alldifferent(xi|i ∈
Requisite1O1s

∪Requisite2O2s

)

Course choice: ∀s ∈ Students, alldifferent(xi|i ∈ Choices)

One can first notice that the problem is highly symmetrical. In fact, disre-
garding the teachers’ availability constraints, two timeslots are interchangeable.
A partial assignment of at least two timeslots is equivalent by exchanging the
slots. When the search algorithm has proven that one assignment is inconsistent,
it is a waste of effort to try the equivalent permuted assignment.
The problem can be seen as a generalized assignment problem (GAP). It is
a well-known NP-complete combinatorial optimization problem which consists
of assigning a set of tasks (courses) to a set of resources (half-day timeslots).
But it can also be considered as a weighted CSP which minimizes the weighted
sum of unsatisfied constraints (by considering a weight for each soft constraint).
The weight wi1,i2 can be associated to each elementary difference xi1 6= xi2 .
Coefficients can be added to distinguish minor choice and free courses choices.
However, our goal was firstly to provide a solution to hard constraints and, as
requested by the planner, to quickly re-compute a solution in case of changes
(often concerning teachers) or to simulate different scenarii with unknown data.
The dynamic and over-constrained aspect of the problem led us to consider
constraint programming with specific enhancements: explanations.
7 It is denoted by gcc(X, lb, ub) where X is a set of variables, lb and ub, two sets of

integers where lbi and ubi gives the minimal and maximal number of times the value
i must appear in X.



4 Explanations for constraint programming

Solving dynamic constraint problems has led to different approaches. Two main
classes of methods can be distinguished: proactive and reactive methods. On
one hand, proactive methods propose to build robust solutions that remain solu-
tions even if changes occur. On the other hand, reactive methods try to reuse as
much as possible previous reasonings and solutions found in the past. Reactive
methods avoid restarting from scratch and can be seen as a form of learning.
One of the main methods currently used to perform such learning in dynamic
constraint solving is a justification technique that keeps trace of inferences made
by the solver during the search. Such an extension of classical constraint pro-
gramming has been recently introduced. It is called explanation-based constraint
programming (e-constraints) and it has already proved its interest in many ap-
plications [14] including dynamic constraint solving. One can refer to [9] to find
an example of using explanations to solve timetabling problems. We recall in
this section what explanation-based constraint programming is and how it can
be used.

4.1 Definition

An explanation records information to justify a decision of the solver as a re-
duction of domain or a contradiction. It is made of a set of constraints C ′ (a
subset of the original constraints of the problem) and a set of decisions, dc1,
dc2, ..., dcn, taken during search (eg the branching part of a branch and bound
algorithm such as x = a or x < y).
An explanation of the removal of value a from variable v will be written as
follows:

C ′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v 6= a

An explanation e1 is said to be more precise than e2 if and only if e1 ⊂ e2. The
more precise the explanation, the more relevant the learning about the inference
is. When a domain is emptied, a contradiction is identified. An explanation for
this contradiction is computed by uniting each explanation of each removal of
value of the variable concerned. At this point, intelligent backtracking algorithms
that question a relevant decision appearing in the conflict are conceivable [5]. By
keeping in memory a relevant part of the explanations involved in conflicts, a
learning mechanism can be implemented [16]. Notice that a nogood is associated
to any explanation: dc1 ∧ dc2 ∧ · · · ∧ dcn ∧ v = a.

4.2 Computing explanations

During propagation, constraints are awaken (like agents or daemons) each time
a variable domain is reduced (this is an event) possibly generating new events
(value removals). A constraint is fully characterized by its behaviour regarding
the basic events such as value removal from the domain of the variables and
domain bound updates. Explanations for events are computed when the events
are generated.



Explanations for basic constraints. It is easy to provide explanations for
basic constraints. The following example shows how to compute them.

Example 1. Let us consider a two-variable toy problem: x and y with the
same set of possible values [1, 2, 3]. Let us state the constraint x > y. The
resulting sets of possible values are [2, 3] for x and [1, 2] for y. An explanation
for this situation is the constraint x > y. Now, let us suppose that we choose
to add the constraint x = 2. The only resulting possible value for x is 2. The
explanation of the modification is the constraint x = 2. The other consequence is
that the remaining value for y is 1. The explanation for this situation is twofold:
a direct consequence of the constraint x > y and also an indirect consequence of
constraint x = 2.

Precise explanations for global constraints. Computing a precise expla-
nation for global constraints may not be easy because it is necessary to study
the algorithms used for propagation. However, there always exists a generic ex-
planation: the current state of the domains of each variable of the constraints.
[21] describes how to provide precise explanations for the all-different constraint
involved in our timetabling problem.

4.3 Explanations for handling dynamic problems

Incremental constraint addition to a problem is a well-known issue in classical
constraint programming solvers: it is often the usual way constraints are added
to the constraint system. However, incremental constraint retraction is not so
easy. Several extensions have been proposed to handle dynamic retraction of
constraints: some of them [2, 12] analyze the reduction operators to be able to
determine the past effects of a constraint and so incrementally retract it; others,
following [3], store information to achieve that determination.

Explanations (or simplifications) may be used as past effect determination
tools [6, 15].

Dynamic constraint retraction. Dynamic constraint retraction of a con-
straint c can be achieved through the following steps in an explanation-based
system:

1. Disconnecting The first step is to remove the retracted constraint c from
the constraint network (no further propagation).

2. Setting back values The second step is to undo the past effects of the
constraints, both the direct (each time the constraint operators have been
applied) and indirect (further consequences of the constraint through oper-
ators of other constraints) effects of that constraint. We can easily put back
in its domain, each value whose explanation contains the constraint. Past
events are recorded in explanations.

3. Re-propagate It is finally necessary to re-propagate in order to reach a
consistent state. As our explanations are neither minimal nor unique, many



ways exist to deduce the removal of a value and only one of those ways is
stored in the current explanation. Therefore a new propagation is necessary.

Re-propagation of constraints. Although determining the past effects of a
constraint c is quite easily done by referring to the explanations that do con-
tain reference to c, efficient re-propagation is not provided in classical constraint
solvers. Indeed, another event needs to be handled: value restoration (or bound
restoration). Instead of calling a general local consistency operator for han-
dling this new event, it is possible to design new operators dedicated to this
re-propagation phase. One can refer to [7] for more details.

4.4 Solving over-constrained problems

Computing explanations for conflicts and for incrementally removing a constraint
from a constraint system leads to over-constrained problems.

Consider the classical enumeration process used to solve CSP as a dynamic se-
quence of constraint additions (assigning variables) and retractions (backtracks).
We can apply a simple strategy [15]: solve the complete constraint system as
usual and, if necessary (i.e. once the problem has been proven over-constrained),
use the conflict explanation to identify the next constraint system to consider
(using a comparator [23] that takes into account the user’s preferences) and per-
form the constraint modification (retraction(s) and/or addition(s)) incrementally
still using explanations. This process is iterated as long as no suitable solution
is found. The use of the comparator guarantees the optimality of the solution.
Section 5.3 explains in more details how this process leads to an optimization
with respect to soft constraints.

Notice that search is made in the space of possible relaxations in opposition
to the space of possible assignments in more classical approaches. We can carry
this idea further and imagine a local search process in the space of possible
relaxations (see Section 5.3).

5 Solving dynamic timetabling problems

5.1 An interactive tool

Our system has been implemented using PaLM [14] and the Java Swing API to
design the graphical interface. PaLM is launched as a background process and
waits for dynamic events: addition, retraction of constraints or asking of a new
solution (during search, the graphical user interface is locked). As the success of
the tool was largely depended on a user-friendly interface as well as the ability
to solve the problem, we paid a particular attention to the planner’s needs and
her manual process.

A screenshot of the implemented system can be seen on picture 1. One can
see a classic timetable representation with 7 timeslots and 30 courses. Each line



corresponds to a timeslot. Boxes on the left column give information on the com-
plete timeslot (number of conflicts and number of involved students). Inside a
timeslot, courses are ordered according to the number of involved students (from
warm to cold colours, dark to light on the picture). Each course corresponds to
a box with the following information: conflicts with every other courses in the
same slot, number of involved students, reference to the course and the kind
of dynamic constraint added on it. Tool Tip texts help to know the purpose
of each number by simply pausing with the cursor over it. Constraints can be
added using a mouse left click on the course or the concerned timeslot. A new
window allows the constraint and other courses or timeslots involved to be se-
lected. The current state of dynamic constraints added since the beginning is
also maintained, allowing easy removals.

The automated timetabling system implemented met the requirements of the
scheduling office by proposing the following features:

– A dynamic behaviour. 3 kinds of constraints can be added or removed: equal-
ity, difference and alldifferent, either between courses or courses with times-
lot. By dynamically adding, retracting constraints or changing their weight,
the planner is able to perform simulations on the solution, to evaluate its
robustness and to manually build (in interaction with the tool) good solu-
tions.

– A complete visualization of conflicts in each timeslot and for each course
with its neighbours offers the possibility to make judicious dynamic changes
to a solution. Previous indicators used by the planner in the manual process,
such as the number of inactive students in a timeslot, have been included.
Additional statistics on a solution are accessible through a menu to evaluate
the results in more details.

5.2 Results

The first results were of great interest for the planner:

– The tool is able to provide better solutions quickly. A solution was found
manually in a week when 10 solutions are now obtained in about 10 minutes.
Moreover, solutions have a better quality than those found by hand even if
no optimization is done. Nevertheless, the planner is forced to pre-allocate
some courses to allow a quick computation of a solution. It is a simple way
to reduce the symmetries of the problem. A good way of doing it consists in
setting the required courses of the most chosen option in different slots, as
they will not be found together in any conceivable good solution.
We compared the result during the start-up year of the tool and noticed that
conflicts have been reduced by around 20 % on both semesters. Moreover,
the number of students able to follow their minor choice has been increased
by 3 % (it corresponds to a reduction of 10 % of the number of unsatisfied
students concerning their minor). The tool was good enough to be accepted



by the scheduling office and since then, six semesters have been scheduled
with it.

– Unexpected events, or unknown data can be taken into account quickly be-
fore the start of the courses without changing the original solution too much.
The system doesn’t provide any guarantee on the perturbation. It doesn’t
ensure to get the minimal perturbation. However, the stability of a solu-
tion has been analysed for scheduling problems in [8, 10, 11] using the same
technique and proved to be quite effective.

– A simulation tool: The tool has been quickly used by the planner to simulate
different situations. Common sense assumptions were made to make the
manual scheduling process easier and are now questioned and simulated with
the tool. For example, Human social science courses were often put together
in the last timeslot considering that each student is forced to choose one
course in this field. However, best solutions do not necessary respect such
assumptions. Dynamic abilities intend here to take advantage of the know-
how of the planner as much as possible because she remains a central element
in the process of resolution.

5.3 Post optimization processing

When solving an instance by hand, the planner focused on the satisfaction of
hard constraints and teacher wishes. As hard constraints have been successfully
taken into account with the current system, the planner can focus more on
student wishes. Once she was experienced with the tool, the time gained has
been used to optimize the solution through a simulation process. We noticed how
she brought her know-how into play to interact with the tool using its dynamic
abilities and to focus on the optimization objective. It was a new aspect of her
work since she was more focused on hard constraints in the past. It was therefore
for us a second step of resolution.

Her manual process can be seen as a manual local search around the first
solution given by the system and we came naturally to the point of automating
the technique as a local search.

User preferences. Preferences are taken into account during the relaxation
of constraints. When the problem has been proved over-constrained, we use
the current contradiction explanation and the user preferences to identify the
constraint to be relaxed. The use of a simple comparator8 [23] that considers
the constraint with the minimal weight ensures that the heaviest weight among
the relaxed constraints is minimal in any solution. It guarantees the optimality
of the solution according to this comparator. A configuration is defined by two
sets of constraints (A,R) where A is the set of active constraints and R the set
of relaxed constraints. A configuration C is said to be preferred to C ′ according
to a given comparator. In the previous case, two configurations are compared on
8 A comparator is a partial order on configurations.



Fig. 1. A timetable with 7 timeslots and 30 courses. Light boxes on the left give
information on the complete timeslot (number of conflicts and number of students
concerned). In a timeslot, courses are ordered according to the number of students
concerned (from warm to cold colours). Each course corresponds to a box with the
following information: conflicts with every neighbours, number of involved student and
the kind of added manual constraints. Tool Tip Texts help to know the purpose of each
number.
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the heaviest weight of their constraints.
The solutions provided in this way are close to the planner’s objective and first
solutions have shown to be good solutions. However, a more precise objective
could be the minimization of the weighted sum of relaxed constraints.
Such a comparator needs all the contradiction explanations computed during
the search to determine (each time a new contradiction occurs) the new set (of
constraints) of minimal weight that covers every contradiction explanation. It
leads to two main problems:

– The number of contradiction explanations can be exponential;
– Finding the set of minimal weight covering the whole set of explanations is

an NP hard problem (set covering problem).

To overcome those problems and try to provide better solutions, we decided to
perform local search techniques. This choice was directed by the well-known abil-
ity of local search techniques to efficiently improve an initial solution generated
using an heuristic method. However, a very different approach for performing
the search has been tried using the dynamic abilities of our system.

Local search in the space of configurations. Local search techniques can be
seen as methods which iteratively apply simple moves to a solution. Among the
wide variety of techniques, tabu search is a local metaheuristic which avoid en-
trapment in local minima. It has already proved its interest in solving timetabling
problems [13]. We use here one of the simplest forms of Tabu search without
achieving an effective balance of intensification and diversification. But instead
of performing the search on complete or partial assignments as usual, we per-
form the search in the space of configurations using the dynamic abilities of an
explanation-based constraint solver.

Let (A,R) be the configuration reached at the end of the first step of the
search. As the use of a simple comparator gives good results, we start from this
point a local search in a second step of resolution. The tabu search is performed
by trying to add a constraint from R to A. The neighbour function (a move)
consists therefore in adding a relaxed constraint to the set of active constraints.
To avoid cycling, the weight of the constraint is dynamically changed to an in-
finite value (in our case, 100). Adding a constraint with an infinite weight to A
can lead to very difficult sub-problems. Therefore, to reduce the computational
effort of each move, we limited the number of extensions (or backtracks, or re-
pairs) allowed to find a new solution. Once the constraint of R leading to the
best solution has been added to A, we store it in a tabu list with its original
weight. As long as the constraint appears in the list, its weight stays infinite in
the problem, forbidding its relaxation. When the constraint leaves the list, it
takes back its original weight and becomes relaxable.

Local search methods traditionally encounter difficulties in taking hard con-
straints into account. Notice that the solution provided here after each move sat-
isfies hard-constraints because arc-consistency is maintained after each retraction



Tabu search:

input: a configuration (A, R) and the constraint problem pb,
(1) begin

(2) while time limit not reached do

(3) for each ct in R do

(4) add ct to A and changes its weight to 100
(5) (A′, R′) ← searchOneSolution(pb) in less than N new decisions
(6) if (conflict(A′, R′) < conflict(A, R)) then

(7) bestMove ← ct
(8) endif

(9) restore previous configuration (A, R ) by:
(10) removing ct from A′

(11) adding all c ∈ A\A′

(12) endfor

(13) update tabu list:
(14) store bestMove and its weight in the list and if the size is exceeded:
(15) remove from the list the first constraint and restore its weight
(16) add bestMove to A with a weight of 100
(17) (A, R ) ← searchOneSolution(pb)
(18) endwhile

(19) end

Fig. 2. Tabu search in configurations space

or addition of constraint. When no solutions are found for every constraint of R,
we can decide to increase the number of extensions allowed or to stop the search.

The neighborhood of a configuration (A,R) is defined by transferring a con-
straint from R to A, the computation of a consistent state with this move leads to
relax some constraints from A to R. Therefore the configuration reached (A′, R′)
can be far from the original one. The limitation of the number of extensions to
re-compute a solution from the previous one ensures remaining in a close neigh-
borhood of (A,R) and limiting the time needed to compute a move. Moreover,
after proving that a move is not reachable in the limit of time allowed, it can be
removed from the neighborhood until the current configuration has been changed
enough. It is a waste of time of proving at each step that a move doesn’t not
belong to the current neighborhood.

Results on optimization. The tabu is able to improve the first solutions by
around 10 % on both semesters. It compensates one main problem of the simple
comparator used by the solver to relax constraints: All the constraints of one level
can be relaxed whereas only one constraint of a higher level needs to be relaxed
to get a solution (it is called a flooding phenomenon). Table 2 summarizes the
conflict on major/minor choices (option choices for the first semesters in column
Opt), the free choices in column Conflicts and the value of the optimization
function considered to perform optimization.



Table 2. Results obtained on three years. Instances X1 corresponds to a first semester
problem and instances X2 to a second semester.

Instances First Solution Tabu (5min)

Opt Conflicts Obj. Fct Opt Conflicts Obj. Fct

A1 6 162 282 5 138 238
B1 11 151 391 13 140 380
C1 7 160 320 5 133 273

Improvement: 10,3 %

A2 - 54 54 - 49 49
B2 - 97 97 - 90 90
C2 - 117 117 - 103 103

Improvement: 9,7 %

6 Discussion

The tool can successfully solve the problem even if optimization is still an open
question. Of course, as mentioned before, it is still necessary to pre-affect some
courses by hand to reduce symmetries and to obtain an efficient resolution. We
would like to insist on the fact that the tool is unable to replace the planner’s
work. On the contrary, although a lot of progress has been made in this research
field, timetabling problems remain very difficult and specific. Computer tools
still need to be open and interactive to take advantage of the know-how of the
planner. In our case, the tool has significantly changed her work and opened new
perspectives. Common sense assumptions, needed when the problem is solved by
hand (to reduce its complexity) can now be questioned and others evaluated. By
executing thankless work, the tool gives freedom to the planner who can analyse
the problem without any reductionist assumptions. Therefore, her understanding
and way of doing it have considerably changed with the tool which gives efficient
and relevant information about the problem. Only the planner knows what makes
a good solution, has in mind the complete problem with its human dimension and
is used to students and teachers’ behaviour. That is why an objective function
is so hard to define clearly and the know-how of the planner so critical.
We have tried to develop an efficient tool based on recent technologies in order
to answer precise needs, which is a quite different objective compared to the
resolution of very hard and academic problems.

7 Conclusion and further work

We have presented in this paper a practical application of an explanation based
system to solve a school timetabling problem. The system has proved its effi-
ciency when it was accepted by the scheduling office. First, our intention was
to show the interest of using explanation techniques to solve dynamic and over-
constrained timetabling problem. Second, we presented a different local search



technique that tries to take advantages both of constraint programming for sat-
isfying hard constraints and local search for its performance in an optimization
context. We plan in the future to keep working on the problem itself as well as
the tool:

– Our next step would be to improve the system with user-friendly expla-
nations [17] to answer to legitimate questions of the planner such as: Why
is the problem over-constrained ? Contradictions could be explained to the
user by providing the explanation computed for the contradiction in a high
level representation.

– Further experiments have to be done concerning the optimization process.
After the local search phase, we intend to restart the search with the new
upper bound. Efficient lower bounds and branching scheme will therefore
be needed. A more precise study on the problem has to be carried out to
evaluate the quality of the first solution found.

Even if work remains to understand the problem, these first results show
that explanation constraint programming can be successfully integrated in a
real-world situation.
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10. Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien. Constraint program-
ming for dynamic scheduling problems. In Hiroshi Kise, editor, ISS’04 Interna-
tional Scheduling Symposium, pages 84–89, Awaji, Hyogo, Japan, May 2004. Japan
Society of Mechanical Engineers.

11. Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien. Stable solutions
for dynamic project scheduling problems. In PMS’04 International Workshop on
Project Management and Scheduling, pages 380–384, Nancy, France, April 2004.

12. Yan Georget, Philippe Codognet, and Francesca Rossi. Constraint retraction in
clp(fd): Formal framework and performance results. Constraints, an International
Journal, 4(1):5–42, 1999.

13. Alain Hertz. Tabu search for large scale timetabling problems. In European Journal
of Operations Research, number 54, pages 39–47, 1991.

14. Narendra Jussien. e-constraints: explanation-based constraint programming. In
CP01 Workshop on User-Interaction in Constraint Satisfaction, Paphos, Cyprus,
1 December 2001.

15. Narendra Jussien and Patrice Boizumault. Best-first search for property mainte-
nance in reactive constraints systems. In International Logic Programming Sym-
posium, pages 339–353, Port Jefferson, N.Y., USA, October 1997. MIT Press.

16. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

17. Narendra Jussien and Samir Ouis. User-friendly explanations for constraint pro-
gramming. In ICLP’01 11th Workshop on Logic Programming Environments
(WLPE’01), Paphos, Cyprus, 1 December 2001.
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