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ABSTRACT 

Fluid-mechanism interactions occur in a wide range of flow meter 
categories including turbine and positive displacement systems as well 
as many flow control devices. This paper outlines computational 
methods for calculating the dynamic interaction between moving parts 
and the flow in a flow meter system. Coupling of phenomena is 
allowed without need for access to the source codes and is thus 
suitable for use with commercially available codes. Two methods are 
presented one with an explicit integration of the equations of motion 
of the mechanism and the other with implicit integration. Both 
methods rely on a Navier-Stokes equation solver for the fluid flow. 
The more computationally expensive implicit method is recommended 
for mathematically stiff mechanisms such as piston movement. 
Example industrial applications shown are for positive displacement 
machines and axial turbines. The advances in mesh technology 
including deforming meshes with non-conformal sliding interfaces 
opens up this new field of application for Computational Fluid 
Dynamics and mechanical analysis in flow meter design. 

INTRODUCTION 

There are many different groups of flow metering devices [I], some of 
which include moving parts such as turbines and positive displacement 
meters and some which are static for example ultrasonic, fluidic and 
pressure drop based systems. In the present note we describe the 
application of CFD and mechanical analysis in the study of transient 
fluid-structure interaction in measuring elements or flow control 
devices comprising moving parts and in particular where the moving 
parts play an important role in the measurement or control. We restrict 
the explanation to the case where the components that move relative to 
each other do not undergo internal deformation, that is the components 
are considered as rigid-bodies.• However there is no limitation on the 
displacement of each rigid body. The principles developed are general 
and could be extended to include small or large internal deformations 
of the moving components. Applications of the methods described are 
made for an oscillating piston meter, a meter belonging to the positive 
displacement group. 
A non-linear analysis to predict turbine-forced response is presented 
by Sayma et al. [2] using a coupling method of the fluid and structural 
models, the structural response is described by a linear model. Blom 
[3] investigated time-lagged schemes where coupling is included by 
sequential solutions of fluid and structure models. In an implicit 
variant the sequential solutions are repeated with interface boundary 

conditions updated until convergence is achieved. An algorithm is 
introduced to calculate fluid-structure interaction in a time marching 
fashion where both fluid and structure have to be integrated in time 
simultaneously. 

In this paper two methods of coupling algorithm are explained. 
The theory necessary for fluid/rigid-body interaction calculations is 
developed in section I. The explicit method and more computationally 
intensive implicit method, requiring the repetition of each time step, 
are explained. In section 2, an industrial application of the implicit 
coupling algorithm is given for the oscillating piston meter and the 
explicit scheme is employed to study the dynamics of an accelerating 
spinner used for flow indication. The fluid flow analysis software 
utilised for the calculations included in this paper was Star-CD [4]. 

1 DESCRIPTION OF CALCULATION METHODS 

1.1 Fluid rigid body interaction problem 

As described in figure 1, suppose that a fluid-structure interaction 

problem has to be solved, where the fluid occupies the domain QF, 
and the solid body described in Lagrangian coordinates occupies the 

domain Q s . They have the common moving boundary 

r(t) = QF (t) r'l 05 (t) where the interaction takes place. On the 

remaining part of the boundaries rf ' r; and r; we shall assume 

that appropriate boundary conditions have been specified, which make 
the whole problem well-posed. 
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FIG. I :Diagram showing fluid and solid domains 

If one assumes the fluid is incompressible, the flow field variables are 
calculated from a set of equations which express in the spatial fluid 

domain QF the conservation of fluid momentum and volume, the 

Navier-Stokes equations as follows : 

ldivu == 0 

Pr(!+u·Vu)==divaF+f {I) 

The body moves due to flow-induced forces, in addition to fluid flow, 
one has to compute the body motion by solving the equations of 
motion (in general six degrees of freedom) : 

{ dv0 F. F m--= s+ r 
dt . 

J dw 
+wx(Jw)==Ms +M1 

dt 

(2) 

where J is the operator of inertia of the solidS in the centre of inertia 

(written in a reference frame related to the solid), m is the mass of the 

solid, Fs is the resultant of the external efforts solid/solid and gravity. 

The surface forces (pressure and shear) exerted by the fluid on the 
solid are given by : 

where a F is the constraint ofCauchy in the fluid: 

aF ==-pi +v(Vu+'Vu) 
and the moment of the efforts exerted by the fluid on the solid, to the 
centre of inertia G, is given by : 

Mr == JGAixaF ·nsdr 
r 

As the solid is rigid, 

VMEr(t), v(M)==v(G)+wxGM 
The condition of non-slip is thus written as follow: 

VxEr(t), u(x}==v(G)+wxx 
In addition, we have to have force equilibrium across the interface : 

0' F • nlr<l) == 0' s · nlr<•J 
where n1ntl = nsjn•l = -nFjntl, is the unitary normal vector of the 

solid wall r . 
1.2 Arbitrary Lagrangian Eulerian Formulation 

In continuum mechanics one can describe fluid motion with two 
classical formulations. In the Lagrangian approach, the independent 
variables are taken to be the initial position, a , of a material point and 

time t . Lagrangian description prove extremely useful in large 

deformation problems in solid mechanics. Nevertheless, this 
formulation include severe distortions as the mesh deform with the 
material. 
In the Eulerian description, the independent variables are spatial 
position x and time t . Eulerian approach are most often used in fluid 

mechanics. The mesh is fixed in space so the description undergo no 
distortion due to material motion. 
For problems involving moving wall boundaries, it is necessary to 
have a middle formulation following the boundary motion and 

preserving the volume shape in the same time. To enable the 
computational mesh to remain regular even in presence of large 
structure displacements, Arbitrary Lagrangian-Eulerian formulation 
(ALE) has been introduced by by Noh [5] and Hirt et al. [6] for finite 
difference formulation. Hughes et al. [7], Belytschko et al. [8], Liu et 
al. [9], Benson [1 0] introduced the Finite element ALE formulation for 
incompressible viscous flows. Recently, the ALE method has been 
successfully applied to such moving boundary problems considering a 
rigid body structure [ 11] and [ 12]. The aim of the ALE formulation is 
to capture the advantages of both Lagrangian and Eulerian description 
while minimizing the disadvantages. The equations of motion are 
written in a form which accounts for the relative motion of the grid 
with respect to the fluid. 
In the ALE description, each node is defined by the co-ordinates X . 
The figure 2 define domains in space and associated mappings from 
one domain to another. 

G

QF(O) 

� 

f(O) 

QF(t) 

G 
x rq) 

FIG. 2 : Representation of Eu/erian, Lagrangian and Arbitrary 
reference domains 

Therefore, the mapping rp relate the Eulerian and Lagrangian space 

reference co-ordinates : 

x = rp(a,t) 

Consider a physical property g(x,t) expressed in the spatial 

representation : 

g(x,t}== g(rp(a,t�t)= g(a,t} (3) 

Now taking the time derivative of (3) with the material co-ordinates 
held fixed, we get : 

g == ���. = Z\. +u·V,g 

where u = axl is the material velocity. 
ot a 

(4) 

Therefore, the mapping rp relate the Eulerian and ALE space 

reference co-ordinates : 

x = �(z,t) 

Thus the physical property g(x, t) can be expressed in the spatial 

representation as follow : 

g(x,t}== g(�(x,t�t)== g(x,t) (5) 

with the following time derivative expression : 
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g =og l =ogl +w·Y' g 
otz ot, X 

where w = ox ! is the mesh velocity. at z 

(6) 

Finally, we obtain a fundamental relationship which enables us to 
translate any Jaw expressed in material (Lagrangian) variables into an 
equivalent law expressed in mixed variables : 

g=g+(u-w)·Y'xg (7) 

The arbitrary Lagrangian-Eulerian description may thus be viewed as a 
mapping of the initial configuration of the continuum into the current 
configuration of the reference frame. The Jacobian determinant 

J == de{�=) provides a link between mixed and material 

coordinates. 
The Jacobian J relates the current volume element dV in the spatial 
frame to the associated volume element dV0 in the referential frame: 

dV = J(a,t)dV0, where J(a,O)=l 

One may show that the time rate of change of the mixed Jacobian is 
given by 

Consider a material co-ordinate a taken to be the initial position, we 

get: 

that we write : 

Jpf == Po 
using the time derivative, we get mass conservation law : 

p1 + p1 divu == 0 (8) 

Using this law and relation (7), we obtain the expression in the ALE 
formulation : 

(9) 

Using the same approach, we obtain momentum conservation law 
expressed in the ALE formulation. 
In Eulerian form, we get : 

p1(8ul +u.Vu)=divu+ f at X 

using the relation (7) for the physical property U , we obtain : 

it= Ou l +u.Vu= �+(u-w)·Vu 
ot X 

Finally equation (7) is a fundamental relationship which enables us to 
translate any law 
expressed in spatial (Eulerian) variables into an equivalent law 
expressed in mixed (ALE) variables: 

p1(�+(u -w}· Vu)= divu + f 
Consider the relation : 

u(x, t)= u(�{x,t 1t)= u o�{x,t) (10) 

Now taking the time derivative of (10) with the mixed co-ordinates 
held fixed : 

�= QuO�� at z 
If one assumes the fluid is incompressible, the mass and momentum 
conservation equations are formulated as follows : 

{divxu=O inOF(t) 

P1(:1.
t' 
+(u-w)·V xu)=divxuF+f inOF(t) (IJ) 

The Geometric Conservation Law is invoked in the formulation in 
order to avoid errors induced by deformation of control volumes (see 
Thomas et al. [13] or Dernirzic et al. [14]). The surface of a control 
volume V is described by S and the surface vector n . In the case of 

moving grids, the space-conservation law (SCL) has to be satisfied: 

.!!_ f dV- f w · ndS == 0 
dt Jv Js 

To cope with large domain deformations and displacement, in addition 
to the ALE we need a means of treating sliding interfaces within the 
calculation domain of the fluid flow. Commercially available fluid 
flow solvers are available with both these essential features for 
calculating fluid dynamics phenomena in domains undergoing large 
displacement/deformation. These methods are usually based on finite 
element or finite volume formulations. 
The option of arbitrarily moving the mesh in the ALE description 
offers interesting possibilities. In fact, moving boundaries can be 
tracked with the accuracy characteristic of Lagrangian methods and the 
interior mesh can be moved so as to avoid mesh distortion. Several 
procedures for updating the mesh are explained in the literature 
[15,16,17,18,19]. Here in our application, the mesh motion is 
prescribed a priori based on the known of the rigid-body boundaries 
calculated at every instant. 

1.3 Fully implicit coupled iteration schemes 

We assume that the domains for the the fluid have been discretised 
appropriately, and has to be solved in a time-implicit manner. 
The rigid-body movement is described by a set of ordinary differential 
equations of the form : 

{mdv =F(v,x,t) dt 
dx -=V 
dt 

(12) 

where V is the velocity and x is the position of the body. 
In the context of transient fluid-rigid body interaction, we have the 
choice of either explicit or implicit time integration of these ordinary 
differential equations. An example of velocity equation explicit 
discretization is: 

F(v x t )  v ••• =v.+!lt •• n> n (13) m 
Certain problems are better solved using an implicit discretization, 
particularly for problems with sensitive force velocity behaviour, 
known as stiff problems in the mathematical sense. For stability 
reasons, we would also like a time-implicit procedure for the overall 
time step. An example of velocity equation implicit discretization is : 

_ !lt (F(v., x., t. )+ F(v •••, x •• ,, t •• , )) vn+l -vn + 2 m 
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To calculate V n+l, we have to solve a non linear system: 

G(v ) = v -v _!it (F(v, ,x, ,t, )+ F(v .. . ,, x,.,, t,., )} = 0 
n+l 11+1 1/ 2 m 

As is well known, in order to accelerate convergence the most widely 
used and most robust method for the solution of non linear system is 
Newton-Raphson method. It require the evaluation of derivatives that 
we approximate by finite differences. With the implicit method, we 
have to repeat the application of the above equations until convergence 
for each time step. 

G(v,.,) = 0 

{v�., initial guess 

v::,' = v: •. - [v a(v:., )j' a(v:.,) (14) 

The Newton's method is an iterative procedure. To begin the iterative 

procedure, usually the initial value v�., is predicted by an explicit 

scheme of the same order or simply from the result of the last time step 

( v�., = v, ). In our application, v�., is predicted with an explicit 

Adams-Bashforth scheme of order two : 

0 !it (3 F(v,, x,, t,) _F�(v!!.:.!"-'..;__' X..!!:"-�" ...!!:.t"_:!.!.J) v =v +- -
"+1 " 2 m m 

Below is the description of the fully implicit coupled iteration solution 
algorithm for nonlinear fluid-rigid body interaction problems : 

I. Explicit prediction of the interface velocity v�., = (vir r·' : 
v�+l =(vir r +% !it(air r - � !it(air r-l 

2. Prediction of the interface position x,., = x, +!it v:., 
3. Fluid mesh motion displacement based on the interface position 

4. Computation of fluid flow problem at t,., 
a. Kinematic compatibility condition on the interface 

(uir r·' = (vir r·' 
b. Computation of near-wall forces acting on the solid at t,.,, 
F;'•' =- Jer;•' · ndy r··• 

5. Computation of solid problem at t,., 
a. Forces equilibrium across the interface, er;•' · nir .. , = er;•' · nir ... 
b. Update the velocity v:., of the interface r,., 

6. Check for convergence : If llv:+l - v;:: 11::::; e , go to the next time 

step 

Else we compute again 2,3,4,5 updating the new velocity v:., at t,., 
computed at step 5 
To realise the repetitions of the same time step we used a restart 
technique for moving mesh problems automated with an operating 
system script. The calculation stages comprising initialisation, rigid 
body dynamic analysis, mesh movement and flow calculation are 
shown in the flow diagram in figure 3. 

n=n+l 

Explicl 
melhoo 

Yes 

lniiatisatrm of ffuid field 
vebciy, pressure, 
lxlundary COI"IIiii:Jns and 
fllid'rigid-OOdy irierlace 
forces al � and mesh 
pos.ii:Jnx, 

Oisplacemed of rresh to 
x!,, and l.f!dale 
OOundary COI"IIiii:Jns 

Solliiln of the flow equatiMS 
for fluid veklcly, pressure and 
�i<i-�Jocy interlace forces 
allime�., 

1/IV)Iicl 
method 

k=k+l 

FIG. 3: Flow diagram showing stages of fluid structure interaction 
calculation 

1.4 Energy conserving and stability aspects 

For fluid structure interaction problems with large displacements, it is 
necessary to have consistent and energy conservative interface 
boundary conditions at the moving fluid solid interface. The coupling 
algorithm have to be stable and the discretisation in time and space 
should respect the forces equilibrium at fluid solid interface. The fully 
implicit coupling algorithm developed in this paper respects this 
crucial property taking the real velocity field at interface as test 
function for convergence. When the structure is assumed to be rigid, 
Abouri [20] demonstrates that the fully implicit scheme verifes that the 
variation of the sum of the kinetic energy of the system is equal to the 
difference between the energy introduced by the external boundary 
conditions and the energy dissipated by viscous effects inside the fluid. 
Grandmont [21] demonstrates this principle of Energy conservation 
for the case of linear elastic structure. 
Le Tallec et al. [22] proposes a stability demonstration for an implicit 
fixed point relaxation algorithm : it couples an implicit Euler treatment 
on the fluid domain and a mid-point rule for the structural equation. 
Similarly, Abouri [20] proposed a stability demonstration for the fully 
implicit coupling algorithm implemented here in the case of a rigid 
structure. The key point of the demonstration is to consider a global 
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continuum mechanics equation including both fluid and solid using 
variable functions for the physical quantities like density or velocity 
field. 
If a simple explicit algorithm is used, we obtain a limitation in the time 
step and an instable response. The explicit method is first order 
accurate, but only conditionally stable. In fact, the explicit staggering 
algorithm does not conserve energy at the interface because at each 

timestep the energy introduced by the fluid loading a;+' on the 

structure is not equal to the energy change in the fluid. The difference 

between these two energies is J a;+' .(v.+, - u .. +J ndy . rul 
For the explicit method, we have (u1r f+' == 

(v1r f . So the difference 

between the energies is Ju;+'.(v.+1- v.)· ndy which is not equal to rul 
zero. The explicit coupling algorithm is not adequate to solve this type 
of problem because the delay between the two solvers fluid and 
structure creates energy dissipation. The kinematic condition implies 

equality of the velocities on the interface ( (ulr r+l ::; (vir r+l ), the 

dynamic condition requires forces equilibrium across the interface 

(a;+' · n1r .. , =a;+' · n1r .. , ). Those coupling conditions at the end of 

each new step are well fulfilled for the implicit scheme because of 
exchanging the coupling variables and updating of the fluid domain at 
each sub-iteration of each timestep. The implicit method can be very 
useful to solve the fluid and the structure at the same time and avoid 
energy dissipation creating by the delay between the two solvers 
created by an explicit method. 

2 APPLICATION TO COMPLEX INDUSTRIAL 
FLOWS 

2.1 Description of the Oscillating Piston Flow Meter [23] 

The moving element consists of a hollow cylindrical piston with a 
horizontal web, contained within a cylindrical working-chamber 
provided with a cover as we see in figure 4. 

Cover 

Oscillating 
Piston 

Working 
Chamber 

FIG 4 : 30 view of Working Chamber and Oscillating P iston 

A top view of an oscillating piston flow meter composed of a slotted 
piston which oscillates in a working chamber comprising a partition I 
guide plate is shown figure 5. A partition plate between inlet and outlet 

ports forces incoming liquid to flow around a cylindrical measuring 
chamber and through the outlet port. The motion of the oscillating 
piston in the unit is transferred to a magnetic assembly in the 
measuring chamber, which is coupled to a follower magnet on the 

other side of the chamber wall. In one cycle the angle (} undergoes 

one revolution. In fact it will be seen that the piston is always moving 
in the same direction and each revolution permits a certain volume of 
fluid to pass through the meter. 

Oscillating 
Piston 

Working 

Chamber 

-�=--
Inlet Port 

Partition I 
guide plate 

Outlet Port 

FIG. 5 : Schematic of an oscillating piston meter 

2.2 Equations of motion of the mechanism, treatment of 
friction 

The problem can be schematised by a slider-crank mechanism 
represented in figure 9. The connecting rod PQ is part of the 
oscillating piston. 

RT 
FIG. 9 : Free-body diagram of oscillating piston 

Where 

G = resultant body force due to weight according to the principle of 
Archimedes, 
F = resultant hydrodynamic force, 
Mp = resultant hydrodynamic moment about point 0, 
R = reaction forces acting on piston at contact lines, 
Me = reaction force moment about point 0, 
r0p = distance between 0 and P, 
m, I = mass, moment of inertia about P of piston. 
The equations of motion in normal (n), tangential (t) and axial (z) 
coordinates about 0 are: 
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F" +G" +R" =mr 02 OP 

F' +G' +R' =mr0/} 
M;. +M� =-f'P+mr/x,B 

The friction in the n, t plane on the piston bottom or top surface can be 
expressed using the hypothesis that the repartition of the normal 
reaction force in the z direction is uniform. The choice of this 
treatment of friction for the plane contact on the bottom or top of the 
piston has proved to be useful when compared with experimental data. 

2.3 Results of calculations 

Inlet and outlet ports are positioned on the ends (top and/or bottom) of 
the working chamber to allow the 'positive displacement' of fluid. The 
guide plate serves also to isolate incoming and outgoing fluid. 
Figure 10 shows the mesh interface between two domains of fluid, one 
static (the inlet and outlet parts) and one deforming (the annular 
chamber with piston). 

FIG. 10: Evolution of mesh interface 

Below are images of calculated results in an oscillating piston flow 
meter. 
Figure 11 shows at left the velocity vectors in a plane through the 
meter and at right the contour pressure in a plane through the meter. 
We note the higher pressure (dark colour) in the inlet volumes to 
overcome piston friction, inlet/outlet losses and inertial effects. 

4 

3 

FIG. 11 : Piston movement cycle 1-2-3-4: Dark regions representing 
high pressure inflow 

The information available for the positive displacement meter using 
the implicit approach are simulated calibration curves, pressure drops, 
forces acting on the components and behaviour of meter in a time 
varying consumption profile. The experiments offer quantitative data 
for detailed validation of the numerical solution. 

· 

Figure 12 shows the calculated calibration curve compared with 
experimental data in water at standard conditions. Comparisons were 
within I percent which indicates the validity of the fully coupled 
implicit algorithm. 

I 
-· · 

-� � 
/ . I ; 

r··Ex-
. -.-ealc.ulltion 

-Oalrwd llffOr tMnd 

.. 
.. 

..• 

... 
1 •• ... .... 

Flow Ra1a (lllrH/IIr) 

FIG. 12 : Comparisons of predicted frequency against the measured 
frequency 

2.4 Time and space discretisation tests 

To demonstrate the robustness of the solution algorithm, time step and 
grid size dependence tests were carried out with the same boundary 
conditions and at high flow rate. 
We compare the rotating velocity of the piston induced by fluid forces. 

We note N, x NB x N, CV the control volume number used with 

respectively N,, NB and N, subdivisions in the direction r, () and 

z in the cylindrical reference frame related to the center of the box. 
Calculations were performed on four numerical grids, one coarse with 
a 13 x 90 x 8 CV and one refined with a 26 x 270 x 16 CV. 

For the coarsed one, three time increments were used : !:it = T I 82 , 
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!1t = T /164 and !1t = T /328 . Here T represent the time period 

corresponding to one cycle of piston revolution. 
Figure 13 shows a comparison of the rotating piston velocity 
calculated on the coarsed grid with three different time steps during a 
revolution of about T ==0.0492 s. One does not observe a significant 
difference between the results, which indicates that the temporal errors 
are small. 

110 ·-

l ao - ----

-
--------

� 
·--- ·--- --r-----t--;:::::=.;;::;-1 1: dtaT/12 

-dtaT/114 

dtaT/321 

.. -···---·····--+-----+---+--'====� 

0.0122 0.0248 

Tlmo (s) 
0.030 o.oaz 

FIG. /3 : Comparison of predicted rotating piston velocity versus time 
using the coarse grid (/3 x 90 x 8 CV) and various time steps 

Figure 14 shows comparison between fine and coarse grid results 

during a revolution both obtained with !1t = T /82 . As the grid is 

refined the results tend to the same solution. No significant differences 
exist, these comparisons show that the spatial discretization errors are 
small enough to demonstrate the robustness of the scheme. 
Although for numerically accurate results for particle tracking for 
example, further grid refinement is necessary. But for predict pressure 
drop or calibration curves in the optic of an optimisation form of the 
product, the numerical accuracy achieved on the I 3 x 180 x 8 CV and 

At = T I 82 suffices. 

... 

i"' 
J .. 
I 
" ... 

l--T-
-

- - ----··· - - ·· 

0.012J 

-
"'�.· 

f"'�'•cv =I -13x110xiCY 

-1Jx110x11CY 

· 21x270x11CV 

o.alt 0.0412 

FIG. /4: Comparison of predicted rotating piston velocity versus time 

using time step M = T I 82 and various grids 

2.5 Dynamics of a spinner in a conduit with water flow 

The algorithm is used to calculate dynamic response of an axial flow 
spinner placed in a conduit used to indicate flow velocity. A lumped 
parameter analysis of such a spinner gives the classical equation: 

leffjj == puA( :nu/3 -r2iJ) 
where letr is the effective moment of inertia including the mass of the 

fluid in the cylindrical volume swept by the blades, p is the blade 

outlet flow angle, B is the spinner angular velocity, u is the flow 

velocity, r is the effective blade radius, A is the area of a plane disc 
normal to the flow and bounded by the blade root and tip radii and p 
the density of the fluid. The solution of the above equation compares 
well with the results from the algorithm with explicit scheme. As 
shown in fi�ure 15, the error at terminal conditions is about 5%. 

.. .... .... ... 
... ""' 

... 
FIG. 15: Dynamic response of the spinner (fluid is water, flow velocity 

=/ mls, initial spinner velocity=O rpm,ft=60 degrees, r==B mm) 
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