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A STABLE FLUID RIGID BODY INTERACTION ALGORITHM: APPLICATION TO INDUSTRIAL PROBLEMS

Fluid-mechanism interactions occur in a wide range of flow meter categories including turbine and positive displacement systems as well as many flow control devices. This paper outlines computational methods for calculating the dynamic interaction between moving parts and the flow in a flow meter system. Coupling of phenomena is allowed without need for access to the source codes and is thus suitable for use with commercially available codes. Two methods are presented one with an explicit integration of the equations of motion of the mechanism and the other with implicit integration. Both methods rely on a Navier-Stokes equation solver for the fluid flow. The more computationally expensive implicit method is recommended for mathematically stiff mechanisms such as piston movement. Example industrial applications shown are for positive displacement machines and axial turbines. The advances in mesh technology including deforming meshes with non-conformal sliding interfaces opens up this new field of application for Computational Fluid Dynamics and mechanical analysis in flow meter design.

INTRODUCTION

There are many different groups of flow metering devices [I], some of which include moving parts such as turbines and positive displacement meters and some which are static for example ultrasonic, fluidic and pressure drop based systems. In the present note we describe the application of CFD and mechanical analysis in the study of transient fluid-structure interaction in measuring elements or flow control devices comprising moving parts and in particular where the moving parts play an important role in the measurement or control. We restrict the explanation to the case where the components that move relative to each other do not undergo internal deformation, that is the components are considered as rigid-bodies.• However there is no limitation on the displacement of each rigid body. The principles developed are general and could be extended to include small or large internal deformations of the moving components. Applications of the methods described are made for an oscillating piston meter, a meter belonging to the positive displacement group.

A non-linear analysis to predict turbine-forced response is presented by Sayma et al. [START_REF] Sayma | Turbine forced response prediction using an integrated non-linear analysis[END_REF] using a coupling method of the fluid and structural models, the structural response is described by a linear model. Blom [START_REF] Blom | A monolithical fluid-structure interaction algorithm applied to the piston problem[END_REF] investigated time-lagged schemes where coupling is included by sequential solutions of fluid and structure models. In an implicit variant the sequential solutions are repeated with interface boundary conditions updated until convergence is achieved. An algorithm is introduced to calculate fluid-structure interaction in a time marching fashion where both fluid and structure have to be integrated in time simultaneously.

In this paper two methods of coupling algorithm are explained.

The theory necessary for fluid/rigid-body interaction calculations is developed in section I. The explicit method and more computationally intensive implicit method, requiring the repetition of each time step, are explained. In section 2, an industrial application of the implicit coupling algorithm is given for the oscillating piston meter and the explicit scheme is employed to study the dynamics of an accelerating spinner used for flow indication. The fluid flow analysis software utilised for the calculations included in this paper was Star-CD [START_REF]Methodology & User Guide[END_REF].

DESCRIPTION OF CALCULATION METHODS

Fluid rigid body interaction problem

As described in figure 1, suppose that a fluid-structure interaction problem has to be solved, where the fluid occupies the domain Q F , and the solid body described in Lagrangian coordinates occupies the domain

Q s .
They have the common moving boundary 

r(t) = Q F (t)
l di vu == 0 Pr(! +u•Vu)==di va F +f {I)
The body moves due to flow-induced forces, in addition to fluid flow, one has to compute the body motion by solving the equations of motion (in general six degrees of freedom) :

{ dv 0 F. F m--= s+ r dt . J dw +wx( J w)==M s + M1 dt ( 2 
)
where J is the operator of inertia of the solidS in the centre of inertia (written in a reference frame related to the solid), m is the mass of the solid, F s is the resultant of the external efforts solid/solid and gravity.

The surface forces (pressure and shear) exerted by the fluid on the solid are given by : where a F is the constraint ofCauchy in the fluid: aF ==-pi +v( Vu+' Vu)

and the moment of the efforts exerted by the fluid on the solid, to the centre of inertia G, is given by :

Mr == JGAixaF •nsdr r
As the solid is rigid,

VMEr(t), v(M)==v(G)+wxGM

The condition of non-slip is thus written as follow:

VxEr(t), u(x}==v(G)+wxx

In addition, we have to have force equilibrium across the interface :

0' F • n lr<l) == 0' s • n lr<•J
where n 1ntl = ns j n • l = -n Fj n t l , is the unitary normal vector of the solid wall r .

1.2

Arbitrary Lagrangian Eulerian Formulation

In continuum mechanics one can describe fluid motion with two classical formulations. In the Lagrangian approach, the independent variables are taken to be the initial position, a , of a material point and time t . Lagrangian description prove extremely useful in large deformation problems in solid mechanics. Nevertheless, this formulation include severe distortions as the mesh deform with the material.

In the Eulerian description, the independent variables are spatial position x and time t . Eulerian approach are most often used in fluid mechanics. The mesh is fixed in space so the description undergo no distortion due to material motion.

For problems involving moving wall boundaries, it is necessary to have a middle formulation following the boundary motion and preserving the volume shape in the same time. To enable the computational mesh to remain regular even in presence of large structure displacements, Arbitrary Lagrangian-Eulerian formulation (ALE) has been introduced by by Noh [START_REF] Nob | A time dependent two space dimensional coupled Eulerian Lagrangian code[END_REF] and Hirt et al. [START_REF] Hirt | An arbitrary Eulerian Lagrangian method for all flow speeds[END_REF] for finite difference formulation. Hughes et al. [START_REF] Hughes | Lagrangian-Eulerian finite element formulation for incompressible viscous flows[END_REF], Belytschko et al. [START_REF] Belyschko | Finite element method with user-controlled meshes for fluid structure interactions[END_REF], Liu et al. [START_REF] Liu | Viscous flows for large free surface motion[END_REF], Benson [1 0] introduced the Finite element ALE formulation for incompressible viscous flows. Recently, the ALE method has been successfully applied to such moving boundary problems considering a rigid body structure [START_REF] Nomura | An Arbitrary Lagrangian Eulerian finite element method for interaction of fluid and rigid body[END_REF] and [START_REF] Sarrate | Arbitrary Lagrangian Eulerian formulation for fluid-multi rigid bodies interaction problems[END_REF]. The aim of the ALE formulation is to capture the advantages of both Lagrangian and Eulerian description while minimizing the disadvantages. The equations of motion are written in a form which accounts for the relative motion of the grid with respect to the fluid.

In the ALE description, each node is defined by the co-ordinates X .

The figure 2 define domains in space and associated mappings from one domain to another. x = rp(a,t) Consider a physical property g(x,t) expressed in the spatial representation : g(x,t}== g(rp(a,t�t ) = g (a,t}

G Q F ( O ) � f ( O ) QF(t) G x rq)
Now taking the time derivative of (3) with the material co-ordinates held fixed, we get :

g == ��� . = Z\ . +u•V,g where u = axl is the material velocity. ot a (4)
Therefore, the mapping rp relate the Eulerian and ALE space reference co-ordinates :

x = �(z,t)

Thus the physical property g(x, t) can be expressed in the spatial representation as follow : g(x,t} == g( �(x,t�t)== g ( x ,t ) [START_REF] Nob | A time dependent two space dimensional coupled Eulerian Lagrangian code[END_REF] with the following time derivative expression :

g= o gl = o gl +w•Y' g o tz o t, X where w = o x! is the mesh velocity. at z (6)
Finally, we obtain a fundamental relationship which enables us to translate any Jaw expressed in material (Lagrangian) variables into an equivalent law expressed in mixed variables :

g =g+(u -w) •Y'xg (7) 
The arbitrary Lagrangian-Eulerian description may thus be viewed as a mapping of the initial configuration of the continuum into the current configuration of the reference frame. The Jacobian determinant J == de{�=) provides a link between mixed and material coordinates.

The Jacobian J relates the current volume element dV in the spatial frame to the associated volume element dV0 in the referential frame:

dV = J(a,t)dV0 , where J(a,O)=l One may show that the time rate of change of the mixed Jacobian is given by Consider a material co-ordinate a taken to be the initial position, we get:

that we write :

J pf == P o using the time derivative, we get mass conservation law :

p1 + p 1 divu == 0 (8) 
Using this law and relation [START_REF] Hughes | Lagrangian-Eulerian finite element formulation for incompressible viscous flows[END_REF], we obtain the expression in the ALE formulation :

(9)

Using the same approach, we obtain momentum conservation law expressed in the ALE formulation.

In Eulerian form, we get :

p 1 (8 u l + u.Vu)=divu+ f at X using the relation [START_REF] Hughes | Lagrangian-Eulerian finite element formulation for incompressible viscous flows[END_REF] for the physical property U , we obtain : 

it= Oul +u. Vu = �+(u-w)•Vu o t X
+(u-w)•V xu)=divxu F +f inO F (t) (IJ)
The Geometric Conservation Law is invoked in the formulation in order to avoid errors induced by deformation of control volumes (see Thomas et al. [13] or Dernirzic et al. [START_REF] Demirzic | Space Conservation Law In Finite Volume Calculations Of Fluid Flow[END_REF]). The surface of a control volume V is described by S and the surface vector n . In the case of moving grids, the space-conservation law (SCL) has to be satisfied: The option of arbitrarily moving the mesh in the ALE description offers interesting possibilities. In fact, moving boundaries can be tracked with the accuracy characteristic of Lagrangian methods and the interior mesh can be moved so as to avoid mesh distortion. Several procedures for updating the mesh are explained in the literature [START_REF] Souli | ALE formulation for fluid-structure interaction problems[END_REF][START_REF] Hughes | The finite element method. Linear static and dynamic finite element analysis, Englewood Cliff s[END_REF][START_REF] Blom | Investigations on computational fluid-structure interaction, These[END_REF][START_REF] Van Leer | Flux-Vector Splitting for the Euler Equations[END_REF][START_REF] Batina | Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes[END_REF]]. Here in our application, the mesh motion is prescribed a priori based on the known of the rigid-body boundaries calculated at every instant.

.!!_ f dV-f w • ndS == 0 dt J v

Fully implicit coupled iteration schemes

We assume that the domains for the the fl uid have been discretised

appropriately, and has to be solved in a time-implicit manner.

The rigid-body movement is described by a set of ordinary differential equations of the form :

{ m dv =F(v,x,t) dt dx -=V dt ( 12 
)
where V is the velocity and x is the position of the body.

In the context of transient fluid-rigid body interaction, we have the choice of either explicit or implicit time integration of these ordinary differential equations. An example of velocity equation explicit discretization is:

F(v x t) v ••• =v.+!lt •• n> n (13) m
Certain problems are better solved using an implicit discretization, particularly for problems with sensitive force velocity behaviour, known as stiff problems in the mathematical sense. For stability reasons, we would also like a time-implicit procedure for the overall time step. An example of velocity equation implicit discretization is :

_ !lt (F(v., x., t. )+ F(v •••, x •• , , t •• , )) v n +l -v n + 2 m
To calculate V n+l, we have to solve a non linear system:

G(v ) = v -v _ !it (F ( v , ,
x , , t, ) + F( v .. . ,, x ,., , t,., )

} = 0 n+l 11+ 1 1/ 2 m
As is well known, in order to accelerate convergence the most widely used and most robust method for the solution of non linear system is Newton-Raphson method. It require the evaluation of derivatives that we approximate by finite differences. With the implicit method, we have to repeat the application of the above equations until convergence for each time step.

G(v,., ) = 0 {v�. , initial guess v::, ' = v: • . -[v a(v:., )j ' a(v:.,)

The Newton's method is an iterative procedure. To begin the iterative procedure, usually the initial value v�., is predicted by an explicit scheme of the same order or simply from the result of the last time step ( v�., = v, ). In our application, v�., is predicted with an explicit Adams-Bashforth scheme of order two :

0 !it ( 3 F( v ,,
x , , t, ) _ F � ( v !!.:.! " -' ..;__ ' X ..!!: " -�" ...! !:. t "_:!.!. J)

v =v +- - "+ 1 " 2 m m
Below is the description of the fully implicit coupled iteration solution algorithm for nonlinear fl uid-rigid body interaction problems :

I. Explicit prediction of the interface velocity v�., = ( v i r r• ' :

v� + l = ( v i r r +% !it(ai r r -� !it(a i r r-l

2. Prediction of the interface position x ,., = x , + !it v:., 

Energy conserving and stability aspects

For fluid structure interaction problems with large displacements, it is necessary to have consistent and energy conservative interface boundary conditions at the moving fluid solid interface. The coupling algorithm have to be stable and the discretisation in time and space should respect the forces equilibrium at fluid solid interface. The fully implicit coupling algorithm developed in this paper respects this crucial property taking the real velocity field at interface as test function for convergence. When the structure is assumed to be rigid, Abouri [START_REF] Abouri | A Fluid Rigid Body Interaction Algorithm : Application to Volumetric Flow Meter[END_REF] demonstrates that the fully implicit scheme verifes that the variation of the sum of the kinetic energy of the system is equal to the difference between the energy introduced by the external boundary conditions and the energy dissipated by viscous effects inside the fl uid.

Grandmont [START_REF] Grandmont | Analyse mathematique et numerique de quelques problemes d'interaction fluide-structure[END_REF] demonstrates this principle of Energy conservation for the case of linear elastic structure.

Le Tallec et al. [START_REF] Le Tallec | Fluid structure interaction with large structural displacements[END_REF] proposes a stability demonstration for an implicit fixed point relaxation algorithm : it couples an implicit Euler treatment on the fluid domain and a mid-point rule for the structural equation. Similarly, Abouri [START_REF] Abouri | A Fluid Rigid Body Interaction Algorithm : Application to Volumetric Flow Meter[END_REF] proposed a stability demonstration for the fully implicit coupling algorithm implemented here in the case of a rigid structure. The key point of the demonstration is to consider a global 

APPLICATION TO COMPLEX INDUSTRIAL FLOWS

Description of the Oscillating Piston Flow Meter [23]

The moving element consists of a hollow cylindrical piston with a horizontal web, contained within a cylindrical working-chamber provided with a cover as we see in figure 4 .

Cover Oscillating Piston

Working Chamber The friction in the n, t plane on the piston bottom or top surface can be expressed using the hypothesis that the repartition of the normal reaction force in the z direction is uniform. The choice of this treatment of friction for the plane contact on the bottom or top of the piston has proved to be useful when compared with experimental data.

2.3

Results of calculations

Inlet and outlet ports are positioned on the ends (top and/or bottom) of the working chamber to allow the 'positive displacement' of fluid. The guide plate serves also to isolate incoming and outgoing fluid.

Figure 10 shows the mesh interface between two domains of fluid, one static (the inlet and outlet parts) and one deforming (the annular chamber with piston).

FIG. 10: Evolution of mesh interface

Below are images of calculated results in an oscillating piston flow meter.

Figure 11 shows at left the velocity vectors in a plane through the meter and at right the contour pressure in a plane through the meter.

We note the higher pressure (dark colour) in the inlet volumes to overcome piston friction, inlet/outlet losses and inertial effects. 

Time and space discretisation tests

To demonstrate the robustness of the solution algorithm, time step and grid size dependence tests were carried out with the same boundary conditions and at high flow rate.

We compare the rotating velocity of the piston induced by fluid forces.

We note N, x N B x N, CV the control volume number used with respectively N,, N B and N, subdivisions in the direction r, () and z in the cylindrical reference frame related to the center of the box. Calculations were performed on four numerical grids, one coarse with a 13 x 90 x 8 CV and one refined with a 26 x 270 x 16 CV.

For the coarsed one, three time increments were used : !:it = T I 82 , !1t = T /164 and !1t = T /328 . Here T represent the time period corresponding to one cycle of piston revolution.

Figure 13 shows a comparison of the rotating piston velocity calculated on the coarsed grid with three different time steps during a revolution of about T ==0.0492 s. One does not observe a significant difference between the results, which indicates that the temporal errors are small. 

  FIG. I :Diagram showing fluid and solid domains If one assumes the fluid is incompressible, the flow field variables are calculated from a set of equations which express in the spatial fluid domain Q F the conservation of fluid momentum and volume, the Navier-Stokes equations as follows :

FIG. 2 :

 2 FIG. 2 : Representation of Eu/erian, Lagrangian and Arbitrary reference domains Therefore, the mapping rp relate the Eulerian and Lagrangian space reference co-ordinates :

Finally equation ( 7 )

 7 is a fundamental relationship which enables us to translate any law expressed in spatial (Eulerian) variables into an equivalent law expressed in mixed (ALE) variables: p1 (�+(u -w}• Vu)= divu + f Consider the relation : u( x , t) = u( �{x ,t 1 t) = u o�{x ,t) (10) Now taking the time derivative of (10) with the mixed co-ordinates held fixed : �= Q u O � � at z If one assumes the fluid is incompressible, the mass and momentum conservation equations are formulated as follows : {d ivxu=O inOF(t) P 1 (:1.

Js

  To cope with large domain deformations and displacement, in addition to the ALE we need a means of treating sliding interfaces within the calculation domain of the fluid flow. Commercially available fluid flow solvers are available with both these essential features for calculating fluid dynamics phenomena in domains undergoing large displacement/deformation. These methods are usually based on finite element or finite volume formulations.

3 . 6 .FIG. 3 :

 363 FIG. 3: Flow diagram showing stages of fluid structure interaction calculation 1.4

  continuum mechanics equation including both fluid and solid using variable functions for the physical quantities like density or velocity field.If a simple explicit algorithm is used, we obtain a limitation in the time step and an instable response. The explicit method is first order accurate, but only conditionally stable. In fact, the explicit staggering algorithm does not conserve energy at the interface because at each timestep the energy introduced by the fluid loading a; + ' on the structure is not equal to the energy change in the fluid. The difference between these two energies is J a;+' . (v.+, -u .. +J nd y . rul For the explicit method, we have ( u 1 r f + ' == ( v1 r f . So the difference between the energies is Ju;+'.(v.+1-v.)• nd y which is not equal to r ul zero. The explicit coupling algorithm is not adequate to solve this type of problem because the delay between the two solvers fluid and structure creates energy dissipation. The kinematic condition implies equality of the velocities on the interface ( ( u l r r+l ::; (v i r r+l ), the dynamic condition requires forces equilibrium across the interface (a;+ ' • n 1r .. , =a;+ ' • n 1 r . . , ). Those coupling conditions at the end of each new step are well fulfilled for the implicit scheme because of exchanging the coupling variables and updating of the fluid domain at each sub-iteration of each timestep. The implicit method can be very useful to solve the fluid and the structure at the same time and avoid energy dissipation creating by the delay between the two solvers created by an explicit method.

FIG 4 :FIG. 5 : 2 FIG. 9 :

 4529 FIG 4 : 30 view of Working Chamber and Oscillating Piston A top view of an oscillating piston flow meter composed of a slotted piston which oscillates in a working chamber comprising a partition I guide plate is shown figure 5. A partition plate between inlet and outlet

4 3FIG. 11 :Figure 12 FIG. 12 :

 4111212 FIG. 11 : Piston movement cycle 1-2-3-4: Dark regions representing high pressure in flow

FIG. / 3 :

 3 FIG. /3 : Comparison of predicted rotating piston velocity versus time using the coarse grid (/3 x 90 x 8 CV) and various time steps

Figure 14 FIG. / 4 : 5

 1445 Figure14shows comparison between fine and coarse grid results during a revolution both obtained with !1t = T /82 . As the grid is refined the results tend to the same solution. No significant differences exist, these comparisons show that the spatial discretization errors are small enough to demonstrate the robustness of the scheme. Although for numerically accurate results for particle tracking for example, further grid refi nement is necessary. But for predict pressure drop or calibration curves in the optic of an optimisation form of the product, the numerical accuracy achieved on the I 3 x 180 x 8 CV and At = T I 82 suffices....

FIG. 15 :

 15 FIG. 15: Dynamic response of the spinner (fluid is water, flow velocity =/ mls, initial spinner velocity=O rpm,ft=60 degrees, r==B mm)