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Abstract Symmetries have an important role in turbulence. To some extent, they contain the physics
of the equations (conservation laws,...), and it is essential that turbulence models respect them. How-
ever, as observed by Oberlack ([16]) and next by Razafindralandy and Hamdouni ([24]) in the case of
an isothermal fluid, only few subgrid stress tensor models preserve the symmetries of the Navier–Stokes
equations. In this communication, we present the symmetries of the equations of a non-isothermal fluid
flow and analyze some common subgrid stress tensor and flux models under the point of view of these
symmetries.
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1 Introduction

For some decades, an important effort has been dedicated to the derivation of turbulence models
for the simulation of fluid flows. This was done using various concepts and hypothesis. However,
these derivations did not take into consideration the invariance of the base equations under some
transformations, called symmetries, which traduces fundamental properties of the flow.

A symmetry of an equation is a transformation which takes a solution of the equation into another
solution. In other words, it is a transformation which preserves the set of the solutions. Symmetries
play an important role in mechanics. Indeed, for example, Nœther’s theorem ([15,19]) show how each
symmetry of a Lagrangian corresponds to a conservation law. So, if any time translation is a symmetry
of the Lagrangian then the energy is conserved along the solution path. In the same way, if the spatial
translations are symmetries of the Lagrangian then the linear momentum is a conserved quantity, etc.
In turbulence, even if the Navier–Stokes equations can not be directly written in a Lagrangian form,
Nœther’s theorem can be applied to them by extending the notion of Lagrangian ([23]).

The importance of symmetries in turbulence is not limited to the derivation of conservation laws.
Indeed, scaling transformations, being part of the symmetry set of the Navier–Stokes equations, led
Oberlack ([17]) to calculate scaling laws, such as algebraic and logarithmic laws. These transformations

also permitted Ünal ([28]) to show that the Navier–Stokes equations may admit solutions having the
5/3 Kolmogorov spectra. The theory of symmetry groups permits even to calculate exact solutions ([19,
6]). Next, some self-similar solutions, i.e. solutions which are not altered by a symmetry transformation,
give an information on the behaviour of the solutions at a very large time (see [2]). Finally, we mention
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that the use of discretization schemes which are compatible with the symmetries of an equation reduces
the numerical errors ([20,12]).

The introduction of a turbulence model in the equations of a flow may destroy the symmetry
invariance of these equations. In this case, physical properties (conservation laws, scaling laws, spectral
properties, large-time behaviour, ...) may be lost.

It is accepted for a long time that Galilean invariance, which is a symmetry of the Navier–Stokes
equations, should be preserved by any turbulence model. Later, Speziale ([27]) was the first who
recognized that the two-dimensional material indifference, which is an additional symmetry of the
equations, is a key property that any subgrid-scale model should have. He has been followed by many
authors such that Fureby and Tabor ([5]) and Wang ([30,31]). The first author who considered all
the symmetries of the isothermal Navier–Stokes equations in the analysis of turbulence models for
an isothermal fluid is Oberlack ([16]), followed by Razafindralandy and Hamdouni ([24,26]). Oberlack
analyzed some subgrid stress tensor models and showed that only few of them are compatible with the
symmetries of the Navier–Stokes equations. Razafindralandy and Hamdouni drew the same conclusion
when extending the analysis to other common subgrid stress models. This incited them to derive new
subgrid stress tensor models which are consistent with the symmetries of the Navier–Stokes equations
([25,24]).

In the case of a non-isothermal flow, no analysis has yet been done. Though, such an analysis is
indispensable, in order to know if we can hope that the current existing models are able to reproduce
correctly the flow or if, on the contrary, it is necessary to derive new models which are consistent
with the symmetries of the equations. The aim of this article is then to present the symmetries of the
Navier–Stokes equations coupled with the heat convection equations, and to extend the analysis done
in [24] to the case of a non-isothermal fluid flow. In section 2, the symmetries of the equations are
presented, and in section 3, some common subgrid stress tensor and heat flux models are recalled and
analyzed by the symmetry approach.

2 The symmetry group of the non-isothermal Navier–Stokes equations

Consider an incompressible Newtonian fluid of density ρ, kinematic viscosity ν, thermal expansion
coefficient β and thermal diffusivity κ. Let g be the gravity acceleration and e3 the ascending vertical
unitary vector. If we note t the time variable, x = (xi)i=1,2,3 the space variable, u = (ui)i the velocity
field, p the pressure and θ the temperature then the motion of this fluid is governed by the non-
isothermal Navier–Stokes equations:

∂u

∂t
+ div(u⊗ u) +

1

ρ
∇p− divT r − βgθ e3 = 0

∂θ

∂t
+ div(θu)− div hr = 0

div u = 0

(1)

In these expressions, T r = 2νS is the viscous stress tensor, S = [∇u + T∇u]/2 the strain rate tensor
and hr = κ∇θ the heat flux. For simplicity, let us abbreviate (1) by

E(ξ,w) = 0 (2)

where ξ = (ξi)i = (t,x) is the independent variable and w = (wi)i = (u, p, θ) the dependent variable.
A one-parameter point transformation is a transformation

Ta : q = (ξ,w) 7−→ q̂ = (ξ̂, ŵ) (3)

where q̂ = q̂(q, a) depends continuously on the real parameter a. This transformation is a symmetry
of (2) if, to each solution of (2), it corresponds another solution, i.e.

E(ξ,w) = 0 =⇒ E(ξ̂, ŵ) = 0. (4)
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The set of the one-parameter symmetries of (2) constitutes a (local) group

G = {Ta, a ∈ I ⊂ R} (5)

called a symmetry group of (2). I is an interval of R. Assume that the identity element of this group
corresponds to a = 0 (i.e. the group is additive). This group is then characterized by its variation near
a = 0 which is represented by the vector field or infinitesimal generator

X =
∑
m

Xm ∂

∂qm
, where Xm =

∂q̂m

∂a

∣∣∣∣
a=0

(6)

The qm’s and q̂m’s are respectively the components of q and q̂. More precisely, X is defined by:

f ∈ C∞ 7→ X.f =
∑
m

Xm ∂f

∂qm
. (7)

The knowledge of X involves the determination of the symmetry group. Indeed, knowing the Xm’s, the
expression of q̂ can be obtained from the definition of Xm in (6) together with the (initial) condition

q̂(q, 0) = q. (8)

Lie’s theory (see [19,9]) permits to replace the symmetry condition (4) by the following one which
is easier to handle:

E(q) = 0 =⇒ X.E = 0. (9)

In the right-side equation in (9), X is prolonged to take into account the derivative terms in E (see,
for example, (67)). The resolution of (9) leads to the infinitesimal generators of (2) and then to all the
one-parameter symmetries.

The calculation of the infinitesimal generators of (2) is too long to be done manually but since all
the operations are formal, it can be automatized thanks to symbolic computation softwares ([7,10]).
However, as an example, the infinitesimal generators and the symmetries of the convection-diffusion
equation are calculated manually in appendix A.

Using the Maple package DESOLV of Vu and Carminatti ([29]), we could compute the infinitesimal
generators of (1), corresponding to transformations of the form

(t,x,u, p, θ) 7−→ (t̂, x̂, û, p̂, θ̂). (10)

These generators are:

X1 =
∂

∂t
, (11)

X2 = ζ(t)
∂

∂p
, (12)

X3 = βg x3
∂

∂p
+

1

ρ

∂

∂θ
(13)

X4 = x2
∂

∂x1
− x1

∂

∂x2
+ u2

∂

∂u1
− u1

∂

∂u2
, (14)

X4+i = αi(t)
∂

∂xi
+ α̇i(t)

∂

∂ui
− ρ xiα̈i(t)

∂

∂p
i = 1, 2, 3, (15)

X8 = 2t
∂

∂t
+

3∑
j=1

xj
∂

∂xj
−

3∑
j=1

uj
∂

∂uj
− 2p

∂

∂p
− 3θ

∂

∂θ
(16)

where ζ and the αi’s are arbitrary functions of time. The dot symbol ( ˙ ) stands for derivation.
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We can also consider symmetries (which are sometimes called equivalence transformations) of the
form

(t,x,u, p, θ, ν, κ) 7−→ (t̂, x̂, û, p̂, θ̂, ν̂, κ̂). (17)

Such symmetries take a solution of (1) into a solution of other non-isothermal Navier–Stokes equa-
tions with a different value of ν and κ. Again using the package DESOLV, we obtain an additional
infinitesimal generator

X9 =

3∑
j=1

xj
∂

∂xj
+

3∑
j=1

uj
∂

∂uj
+ 2p

∂

∂p
+ θ

∂

∂θ
+ 2ν

∂

∂ν
+ 2κ

∂

∂κ
. (18)

With these generators, we deduce the symmetry groups of (1) which are:

– the group of time translations, corresponding to X1:

(t,x,u, p, θ) 7−→ (t+ a,x,u, p, θ), (19)

– the group of pressure translations, corresponding to X2:

(t,x,u, p, θ) 7−→ (t,x,u, p+ ζ(t), θ), (20)

– the group of pressure-temperature translations, corresponding to X3:

(t,x,u, p, θ) 7−→ (t,x,u, p+ a βg x3, θ + a
1

ρ
), (21)

– the group of horizontal rotations, corresponding to X4:

(t,x,u, p, θ) 7−→ (t,Rx,Ru, p, θ) (22)

where R is a 2D (constant) rotation matrix, with R TR = Id and detR = 1, Id being the identity
matrix,

– the (three-parameter) group of generalized Galilean transformations, spanned by the X4+i’s, i =
1, 2, 3:

(t,x,u, p, θ) 7−→ (t,x +α(t),u + α̇(t), p+ ρx � α̈(t), θ), (23)

– the group of the first scaling transformations generated by X8:

(t,x,u, p, θ) 7−→ (e2at, eax, e−au, e−2ap, e−3aθ) (24)

which shows how u, p and θ change when the spatio-temporal scale is multiplied by (ea, e2a),

– and the group of the second scaling transformations corresponding to X9:

(t,x,u, p, θ, ν, κ) 7−→ (t, eax, eau, e2ap, eaθ, e2aν, e2aκ) (25)

which shows the consequence of the modification of the spatial scale.

The space translations correspond to transformations (23) where α = (αi)i is constant and the
classical Galilean transformation to the case where α is linear.

Other known symmetries of the non-isothermal Navier–Stokes equations (1), which could not be
computed like the previous ones, are
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– the reflections:

(t,x,u, p, θ) 7→ (t,Λx,Λu, p, ι3θ) (26)

where Λ is a reflection matrix:

Λ =

ι1 0 0
0 ι2 0
0 0 ι3

 with ιi = ±1, i = 1, 2, 3,

– and the material indifference in the limit of a 2D horizontal flow in a simply connected domain
([3]) which is a time-dependent rotation:

(t,x,u, p) 7→ (t, x̂, û, p̂), (27)

with

x̂ = R(t) x, û = R(t) u + Ṙ(t) x, p̂ = p− 3ωϕ+
1

2
ω2‖x‖2

where R(t) is an horizontal 2D rotation matrix with angle ωt, ω an arbitrary real constant, ϕ the
usual 2D stream function defined by:

u = curl(ϕe3)

and ‖•‖ indicates the Euclidian norm.

The combination of all these symmetries constitutes a group, called the symmetry group of the non-
isothermal Navier–Stokes equations. Compared to the case of the isothermal Navier–Stokes equations
([22]), we have new symmetries which are the pressure-temperature translations (21). Note that the
vertical reflection (corresponding to ι3 = −1 in (26)) stops to be a symmetry of the equations if we
introduce the condition that θ ≥ 0.

For the model analysis, the symmetries will be gathered in four categories:

– the time, the pressure and the generalized Galilean translations,
– the pressure-temperature translations,
– the reflections, the horizontal (constant or time-dependent) rotations,
– the scaling transformations.

3 Model analysis

In this section, some subgrid turbulence models are briefly recalled and analyzed according to the
symmetry approach.

After filtering, the large-eddy simulation method gives

∂u

∂t
+ div(u⊗ u) +

1

ρ
∇p− div(T r − T )− βgθ e3 = 0

∂θ

∂t
+ div(θu)− div(hr − h) = 0

divu = 0.

(28)

The symbol bar (¯) stands for filtering, with a width δ. T = u⊗ u−u⊗u is the subgrid stress tensor
and h = θu− θu the subgrid flux. These two terms must be modeled in order to close the equations.
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3.1 Subgrid models

Some subgrid models are summarized in this subsection.

– The most widely used model is the Smagorinsky model which was derived by adopting the concept
of turbulent viscosity for T and an analogy for h:

T d = −2(Csδ)
2|S|S, h = −

(Csδ)
2

Prsg
|S|∇θ, (29)

where

|S| =
√

2
∑
ij

S
2

ij .

Cs, the Smagorinsky constant, and Prsg, the subgrid Prandtl number, are constant. The superscript
d stands for the deviatoric operator, i.e.:

T d = T −
(

1

3
trT

)
Id,

Id being the identity matrix.

– By using Germano–Lilly procedure ([13]), the model constants can be calculated in a dynamic way.
This leads to the dynamic model:

T d = −2CT δ
2|S|S, h = −Chδ

2|S|∇θ (30)

where CT = tr(LM)/ tr(M2), Ch = tr(L′ TM′)/ tr(M′ TM′) and

L = ũ⊗ u− ũ⊗ ũ, M = δ̃
2

|S̃|S̃ − δ2 ˜|S|S,
L′ = θ̃u− θ̃ũ, M′ = δ

2
S̃∇θ − δ̃

2

S̃∇̃θ.

(31)

The tilde symbolizes a test filtering, with a width δ̃ ≥ δ.

– Another model, which introduces the buoyancy term, is the Eidson model ([4]):

T d = −2CEδ
2

√
|S|2 −

βg

Prsg

∂θ

∂x3
S, h = −

CEδ
2

Prsg

√
|S|2 −

βg

Prsg

∂θ

∂x3
∇θ, (32)

where CE is a constant. In practice, when the term under the radical is negative, the model is put
to zero.

– To avoid the zero setting, Peng and Davidson ([21]) propose a modified version of the Eidson model:

T d = −2CEδ
2 1

|S|

(
|S|2 −

βg

Prsg

∂θ

∂x3

)
S,

h = −
CEδ

2

Prsg

1

|S|

(
|S|2 −

βg

Prsg

∂θ

∂x3

)
∇θ.

(33)

– Another model, based on the scale-similarity hypothesis, is the scale-similarity model, adapted from
Bardina model to the non-isothermal case:

T d = ũ⊗ u− ũ⊗ ũ, h = θ̃ u− θ̃ ũ. (34)
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– The scale similarity hypothesis can be used to obtain others models which are combined with the
Smagorinsky model to give a mixed model in the following form ([1,8,32,11]):

T d = T d
s − 2(Csδ)

2|S|S, and h = hs −
(Csδ)

2

Prsg
|S|∇θ. (35)

In the point of view of the symmetries, these models behave generally in the same way; so, we
study only the following generic model:

T d = (ũ⊗ u− ũ⊗ ũ)d − 2(Csδ)
2|S|S, and h = θ̃ u− θ̃ ũ−

(Csδ)
2

Prsg
|S|∇θ. (36)

Notice that the Eidson model seems not to have been used for many years. However, it is studied
here because the analysis of this model could be used as a basis for the analysis of other models which
are or are not presented in this paper.

The analysis of the models is done in the following way.
The set of the solutions (u, p, θ) of (1) is preserved by each of the symmetries cited above. We then

require this to the set of the solutions (u, p, θ) of (28) too, since (u, p, θ) is expected to be a good
approximation of (u, p, θ). More clearly, if a transformation

T : (t,x,u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) (37)

is a symmetry of (1), we require that the model is such that the same transformation, applied to the
filtered quantities,

T : (t,x,u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂), (38)

is a symmetry of the filtered equations (28). When this condition holds, the model is said to be invariant
under the symmetry. If the model is invariant under all the symmetries, we can expect to retrieve the
properties of (1), such as conservation laws, wall laws, exact solutions, spectrum properties, . . . when
approximating (u, p, θ) by (u, p, θ).

The presented models will be analyzed according to their invariance under each of the symmetries
of (1). It will be assumed that the filter does not destroy the symmetry properties of the equations.
Oberlack deduced in [16] an example of such a filter. Its kernel has the following form:

G(x) =
s+ 3

4π`s+3
||x||s1B(`)(x) (39)

where s is a real number greater than 3, ` ∈ R and B(`) the centered ball of radius `.

In what follows, each category of symmetries will be taken one by one, and we investigate which
models are invariant under the symmetries within the considered category.

3.2 Time, pressure and Galilean translations

All the above models are invariant under the time and the pressure translations (19) and (20) because
neither t nor p is explicitly present in their expressions.

Applied to the filtered variables, the generalized Galilean transformations (23) is:

(t,x,u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) = (t,x +α(t),u + α̇(t), p+ ρx � α̈(t), θ). (40)

– Since ∇̂u = ∇u and θ̂ = θ, the Smagorinsky (29) and the Eidson (32)-(33) models are invariant
under the generalized Galilean transformations.
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– For the scale-similarity model (34), we have:

˜̂u⊗ û− ˜̂u⊗ ˜̂u = ˜(u + α̇)⊗ (u + α̇)− ˜(u + α̇)⊗ ˜(u + α̇) = ũ⊗ u− ũ⊗ ũ (41)

and

˜̂
θ û−

˜̂
θ
˜̂
u = ˜θ (u + α̇)− θ̃ ˜(u + α̇) = θ̃ u− θ̃ ũ. (42)

The model is then invariant under the generalized Galilean transformations.

– Next, since Ŝ = S and ∇̂θ = ∇θ, we can write that

M̂ = M , M̂′ = M′,

and from (41) and (42) that

L̂ = L, L̂′ = L′.

The invariance of the dynamic model (30) follows from these expressions.
– Lastly, the mixed model (36) is generalized-Galilean invariant like the Smagorinsky and the scale-

similarity models.

All the models are then invariant under the three symmetry groups composed by the time, the pressure
and the generalized Galilean transformations.

3.3 Pressure-temperature translations

The filtered equations (28) are invariant under the pressure-temperature translations

(t,x,u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) = (t,x,u, p+ a βg x3, θ + a
1

ρ
) (43)

if and only if T̂ = T and ĥ = h.

– The Smagorinsky and the Eidson models (29), (32) and (33) are invariant under the pressure-

temperature translations because Ŝ = S and θ̂ = θ.

– Next,

˜̂u⊗ û− ˜̂u⊗ ˜̂u = ũ⊗ u− ũ⊗ ũ, and

˜̂
θ û−

˜̂
θ
˜̂
u = (θ̃ u + a

1

ρ
ũ)− (θ̃ ũ + a

1

ρ
ũ) = θ̃ u− θ̃ ũ.

(44)

The scale-similarity model (34) is then invariant.

– For the dynamic model (30), L, M and L′ are unchanged. And since ∇̂θ = ∇θ, M′ remains also
unchanged. The model is then invariant.

– At last, the invariance of the Smagorinsky and the scale-similarity models leads to the invariance
of the mixed model (36) under the pressure-temperature translations.
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3.4 Reflections and rotations

Let us first consider the reflections about the horizontal coordinate axes e1 and e2, the horizontal
(constant) rotations and the horizontal 2D material indifference. The reflection about the vertical axis
e3 will be treated separately because it modifies the temperature variable θ. The transformations,
applied to the filtered variables, are then

(t,x,u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) = (t,Υx,Υu, p, θ) (45)

where Υ = R or Λ with ι3 = 1.
Equations (28) are invariant if and only if

T̂ = Υ T TΥ and ĥ = Υh. (46)

– It is straight forward to show that

Ŝ = Υ S TΥ and ∇̂θ̂ = Υ∇θ. (47)

The Smagorinsky and the Eidson models (29), (32) and (33) are then invariant under the two first
reflections and the horizontal rotations.

– Moreover,

û⊗ û = Υ (u⊗ u) TΥ and θ̂û = Υ (θu). (48)

This leads to the invariance of the scale-similarity model (34).

– For the dynamic model (30), we have

L̂ = Υ L TΥ , M̂ = Υ M TΥ , L̂′ = Υ L′, M̂′ = Υ M′. (49)

Hence, ĈT = CT and Ĉh = Ch. Consequently, this model verifies (46).
– Finally, relations (47) and (48) lead to the invariance of the mixed model (36).

All the models are invariant under the horizontal rotations and the two first reflections. Let us now
consider the reflection in the third direction. The filtered equations (28) are invariant if and only if

T̂ = Λ3T
TΛ3 and ĥ = −Λ3h. (50)

where Λ3 is the diagonal matrix Λ3 = diag(1, 1,−1).

– For this reflection, we have:

Ŝ = S and ∇̂θ̂ = −Λ3∇θ. (51)

These relations imply the invariance of the Smagorinsky model (29).

– In addition,

∂θ̂

∂x̂3
=

∂θ

∂x3
. (52)

Thus, the Eidson models verify (50) and (33) are also invariant under the third reflection.
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– For the scale-similarity model (34),

û⊗ û = u⊗ u and θ̂û = −Λ3θu. (53)

This model is then invariant.

– Next, for the dynamic model (30),

L̂ = L, M̂ = M , L̂′ = −Λ3L′, M̂′ = −Λ3M′. (54)

Hence, ĈT = CT and Ĉh = Ch. It follows that the dynamic model is invariant under the third
reflection.

– Lastly, the invariance of the mixed model (36) under the third reflection follows from the invariance
of the Smagorinsky and the scale-similarity models.

All the models are invariant under the horizontal rotations and the reflections. The last symmetries
of the non-isothermal Navier–Stokes equations are the scaling transformations.

3.5 Scaling transformations

The two scaling transformations can be combined into the following two-parameter scaling transfor-
mations:

(t,x,u, p, θ, ν, κ) 7→ (e2at, eb+ax, eb−au, e2b−2ap, eb−3aθ, e2bν, e2bκ). (55)

The first scaling transformations correspond to b = 0 and the second ones to a = 0. The filtered
equations (28) are invariant if and only if

T̂ = e2b−2aT and ĥ = e2b−4ah. (56)

– Since Ŝ = e−2aS and ∇̂θ = e−4a∇θ, we have, for the Smagorinsky model (29):

T̂ = e−4aT and ĥ = e−6ah. (57)

The model verifies (56) neither when a = 0 nor when b = 0. Thus, it is invariant neither under the
first nor under the second scaling transformations.

– The first terms of the Eidson models (32)-(33) are similar to the Smagorinsky model. These models
are not invariant under the scaling transformations.

– The scale-similarity model (34) is invariant under the two types of scaling transformations because

˜̂u⊗ û− ˜̂u⊗ ˜̂u = e2b−2a(ũ⊗ u− ũ⊗ ũ) and

˜̂
θ û−

˜̂
θ
˜̂
u = e2b−4a(θ̃ u− θ̃ ũ).

(58)

Condition (56) is verified.

– For the dynamic model (30), we have:

L̂ = e2b−2aL, M̂ = e−4aM , L̂′ = e2b−4aL′, M̂′ = e−6aM′. (59)

This implies that

ĈT = e2b+2aCT , Ĉh = e2b+2aCh. (60)

Thus,

T̂ = e2b−2aT and ĥ = e2b−4ah. (61)

The dynamic model is invariant.
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Time, pressure, Pressure-temperature Rotation, Scaling
Galilean reflection,

material

Smagorinsky invariant invariant invariant non-invariant

Dynamic invariant invariant invariant invariant

Eidson invariant invariant invariant non-invariant

Modified Eidson invariant invariant invariant non-invariant

Similarity invariant invariant invariant invariant

Mixed invariant invariant invariant non-invariant

Table 1 Result of the model analysis

– At last, the mixed model (36) is not invariant under the scaling transformations because of the
Smagorinsky part. However, the (Leonard) terms which correspond to the scale-similarity model
are invariant.

To sum up, only the similarity and the dynamic models are invariant under the scaling transforma-
tions. The scaling transformations have a particular importance though because, for example, Oberlack
used them to obtain wall laws which was validated in [18], [17] and [14]. Hence, a model which breaks
the scaling symmetries cannot capture these wall laws. As mentioned by Oberlack in [16], the inability
of the Smagorinsky model to properly represent the near-wall behaviour of the flow can be related to
its non-invariance under the scaling transformations. In the same way, any solution which is self-similar
according to one or both of the scaling transformations cannot be reproduced by a non-invariant model
([26]). In addition, the conservation laws related to these symmetries are violated.

Table 1 summarizes the result of the analysis. It can be observed that many models are not invariant
under the symmetry group of the equations. Only the dynamic and the scale-similarity models are
invariant. The mixed model which is studied here is not invariant under the scaling transformation
because of the Smagorinsky part. However, the mixing of a scale similarity type model with the dynamic
model could, of course, lead to other invariant models.

4 Conclusion

The analysis done in this paper completes the work done in ([16]) and ([24]) on the Navier-Stokes
equations. The calculation can easily be extended to the equation of a passive scalar.

As in the isothermal case, we showed that only the similarity and the dynamic models are invariant
under the symmetry group of the non-isothermal Navier–Stokes equations. In fact, if we do not look at
the test filter (which was supposed not to destroy the invariance properties), the scale-similarity model
has the same mathematical structure as the actual subgrid stress tensor. Hence, it is not surprising that
it is invariant. What is more interesting is the invariance of the dynamic model. In fact, the dynamic
evaluation of constants restores the scale invariance of any model (as well for T as for h).

However, these two invariant models are not always satisfactory. In particular, they use a test
filtering which was supposed to be compatible with all the symmetries of the equations. This is not the
case of all filters. In addition, the dynamic model is not conform to the second law of thermodynamics
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which not only is an important physical property but also a sufficient condition for the numerical
stability ([23,26]).

Other ways to develop invariant models are then needed. This can be done by extending the work
done in [25,24] on deriving invariant subgrid stress tensor models for isothermal fluid flows. In these
articles, a class of subgrid stress tensor models which are invariant under the symmetry group of the
Navier–Stokes equations and which are conform to the second law of thermodynamics were built. One
of these models was then tested numerically to the configuration of a ventilated room. A better result
than those provided by the Smagorinsky and the dynamic models was obtained.

A Symmetries of the convection-diffusion equation

In this section, we calculate “by hand” the symmetries of the convection-diffusion equation (62). The aim is to
present briefly the procedure used to calculate the symmetries of an equation.

Consider the following one-dimensional convection-diffusion equation:

∂θ

∂t
+ u

∂θ

∂x
− κ

∂2θ

∂x2
= 0 (62)

where u is a parameter. In order to find the one-parameter symmetries of (62), we must calculate the infinites-
imal generators

X = X1 ∂

∂t
+X2 ∂

∂x
+X3 ∂

∂θ
(63)

where the unknowns X1, X2 and X3 depend on t, x and θ. To be used with equation (62), X must be prolonged
into a vector field pr(X) which acts on the derivatives of θ. According to Lie’s theory ([19,9]), this vector field
has the following expression:

pr(X) = X1 ∂

∂t
+X2 ∂

∂x
+X3 ∂

∂θ
+Xt ∂

∂θt
+Xx ∂

∂θx
+Xxx ∂

∂θxx
(64)

where θt, θx and θxx are the derivatives of θ and Xt, Xx and Xxx are defined by (to be compared with (6)):

Xt =
∂θ̂t

∂a

∣∣∣∣
a=0

, Xx =
∂ θ̂x

∂a

∣∣∣∣
a=0

, Xxx =
∂ θ̂xx

∂a

∣∣∣∣
a=0

, (65)

a being the parameter of the transformation. Using a Taylor developpement, one obtains the following relations,
if Dt and Dx represent respectively the total differentiation operators according to t and x:

Xt = DtX
3 − θtDtX1 − θxDtX2,

Xx = DxX
3 − θtDxX1 − θxDxX2,

Xxx = DxX
x − θxtDxX1 − θxxDxX2.

(66)

Once the prolonged vector field pr(X) introduced, the variables t, x, θ and each of the derivatives of θ are
considered as independent variables (like new coordinates). X generates a symmetry of equation (62) if and
only if

θt + uθx − κθxx = 0 =⇒ pr(X).(θt + uθx − κθxx) = 0. (67)

The last equation of (67) gives:

Xt + uXx − κXxx = 0 (68)

Using (66), developping and replacing θxx by 1
κ

(θt+uθx), condition (68) leads to the following system of PDE’s:
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∂X3

∂t
+ u

∂X3

∂x
− κ

∂2X3

∂x2
= 0, (69)

−
∂X2

∂t
+ u

∂X2

∂x
− 2κ

∂2X3

∂x∂θ
−
∂2X2

∂x2
= 0, (70)

∂X3

∂θ
−
∂X1

∂t
− u

∂X1

∂x
+ κ

∂2X1

∂x2
−
∂X3

∂θ
+ 2

∂X2

∂x
= 0, (71)

2
∂X1

∂θ
+ 2κ

∂2X1

∂x∂θ
= 0, (72)

2v
∂X2

∂θ
− κ

∂2X3

∂θ2
+ 2κ

∂2X2

∂x∂θ
= 0, (73)

∂2X2

∂x2
= 0, (74)

∂2X1

∂θ2
= 0, (75)

∂X1

∂x
= 0, (76)

∂X1

∂θ
= 0. (77)

After integration, equations (69)-(77) give the following forms of the components of X:

X1 = a2t
2 + a1t+ a0, (78)

X2 = a2tx+
a1

2
x+

b1

2
t+

b0

2
, (79)

X3 =
1

4κ
θ(−a2x2 + 2ua2t+ ua1 −

a2

2
t+ c) + θ0(x, t), (80)

where the ai’s, bi’s and c are arbitrary constants and θ0 an arbitrary solution of the convection-diffusion
equation (62). X is then a linear combination of the following vector fields:

∂

∂t
, (81)

∂

∂x
, (82)

θ
∂

∂θ
, (83)

θ0(x, t)
∂

∂θ
, (84)

−2κt
∂

∂x
+ (x− ut)θ

∂

∂θ
, (85)

4κt
∂

∂t
+ 2κx

∂

∂x
+ (x− ut)uθ

∂

∂θ
, (86)

−4κt2
∂

∂t
− 4κxt

∂

∂x
+ [(x− ut)2 + 2κt]θ

∂

∂θ
. (87)

Each of these vector fields generates a symmetry of (62). The expressions of the symmetry transformations are
deduced from the definition of an infinitesimal generator. For example, to obtain the symmetry transformation
generated by the vector field (85), we solve the system

dt̂

da
= 0,

dx̂

da
= −2κt̂,

dθ̂

da
= (x̂− ut̂)θ̂, (88)

with the initial conditions

t̂(a = 0) = t, x̂(a = 0) = x, θ̂(a = 0) = θ. (89)

Equations (88) and (89) lead to

t̂ = t, x̂ = x− 2tκa, θ̂ = θ exp[(x− ut)a− tκa2]. (90)
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Using the same procedure for the other vector fields, we get the following symmetries of the convection-diffusion
equation (62), corresponding respectively to the infinitesimal generators (81)-(87):

(t, x, θ) 7−→ (t+ a, x, θ), (91)

(t, x, θ) 7−→ (t, x+ a, θ), (92)

(t, x, θ) 7−→ (t, x, θea), (93)

(t, x, θ) 7−→ (t, x, θ + θ0), (94)

(t, x, θ) 7−→ (t, x− 2tκa, θ exp[(x− ut)a− tκa2]), (95)

(t, x, θ) 7−→
(
te4κa, xe2κa, θ exp

[
− u

2κ
x(1− e2κa)− u2t

4κ
(1− e4κa)

])
, (96)

(t, x, θ) 7−→
(

t

1− 4tκa
,

x

1− 4tκa
, θ
√

1− 4tκa exp

[
a(x− κt)2

1− 4tκa

])
, (97)

where, as above, θ0 is any solution of (62).
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