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Symmetries, i.e transformations which leave the set of the solutions of the equations unchanged, play an important role in turbulence (conservation laws, wall laws, ...). They should not be destroyed by turbulence models. The symmetries of the heat convection equations are then presented, for a non-isothermal fluid. Next, the subgrid stress tensor and flux models are analyzed, using the symmetry approach.

Résumé

Analyse de modèles de sous-maille de la convection thermique par les symétries Les symétries, c'est-à-dire les transformations laissant invariant l'ensemble des solutions des équations, jouent un rôle important dans la turbulence (lois de conservation, lois de paroi, ...). Ils ne devraient pas être détruits par l'introduction des modèles de turbulence dans les équations. Dans ce papier, on analyse l'invariance des modèles se sous-maille pour la convection thermique sous l'action du groupe de symétrie des équations non filtrées.

Introduction

A turbulent fluid flow has natural and fundamental properties, such as the invariance of the motion equations under the action of their symmetry group. The symmetries of an equation are transformations which take a solution into another solution. They play an important role in turbulence (conservation laws [START_REF] Noether | Invariante Variationsprobleme[END_REF], wall laws [START_REF] Oberlack | Symmetries, invariance and scaling-laws in inhomogeneous turbulent shear flows[END_REF], spectrum form [START_REF]Application of equivalence transformations to inertial subrange of turbulence[END_REF], exact solutions [START_REF] Fushchych | Symmetry reduction and exact solutions of the Navier-Stokes equations I[END_REF], ...). In some extent, they contains the physics of the equations. Though, Oberlack ( [START_REF] Oberlack | Invariant modeling in large-eddy simulation of turbulence[END_REF]), and next Razafindralandy and Hamdouni ( [START_REF] Razafindralandy | Contribution à l'étude mathématique et numérique de la simulation des grandes échelles[END_REF][START_REF] Razafindralandy | Symmetry invariant subgrid models[END_REF]) showed that many subgrid stress models violate the symmetry group of Navier-Stokes equations, in the case of an isothermal fluid. This observation led the last authors to propose a new class of subgrid models which respect the symmetries of Navier-Stokes equations and then preserve the physical properties of the flow ( [START_REF] Razafindralandy | A class of subgrid-scale models preserving the symmetry group of Navier-Stokes equations[END_REF][START_REF] Razafindralandy | Analysis and development of subgrid turbulence models preserving the symmetry properties of navier-stokes equations[END_REF]). In addition, a test on a simple model of the class gave results which was better than those provided by Smagorinsky and the dynamic models, for ventilated cavity flow.

In this article, we will present the symmetry group of the heat convection equations for non-isothermal fluid flows and analyze the common turbulent subgrid stress tensor and flux models. This analysis is necessary before deciding if a development of symmetry consistent models is needed. The paper will be organized as follows. In section 2, the symmetry group of the heat convection equations will be presented. In section 3, a recall of the common subgrid models will be done. These models will be analyzed using the symmetry group of the equations in section 4.

The symmetry group of the heat convection equations

Consider an incompressible Newtonian fluid with a density ρ, kinematic viscosity ν, thermal expansion coefficient β and thermal diffusivity κ. Let g be the gravity acceleration and e 3 the ascending vertical unitary vector. If t is the time variable, x = (x i ) i the space variable, u the velocity field, p the pressure and θ the temperature then the motion of this fluid is governed by the heat convection equations:

       div u = 0, ∂u ∂t + div(u ⊗ u) + 1 ρ ∇p -div T r -βgθ e 3 = 0, ∂θ ∂t + div(θu) -div h r = 0. (1) 
In these expressions, T r = 2νS is the viscous stress tensor, S = [∇u + T ∇u]/2 the strain rate tensor and h r = κ∇θ the heat flux. Let y = (t, x, u, p). A one-parameter transformation of ( 1) is a function

T a : y → y = y(y, a)
which depends continuously on the real parameter a. T a is a symmetry of (1) if it leaves the set of solutions of (1) unchanged. Thanks to Lie's theory ( [START_REF] Olver | Applications of Lie groups to differential equations[END_REF]), all the one-parameter symmetries of the heat convection equations can be computed. They are generated by the following transformations:

-the time translation:

(t, x, u, p, θ) -→ (t + a, x, u, p, θ), (2) 
-the pressure translation:

(t, x, u, p, θ) -→ (t, x, u, p + ζ(t), θ), (3) 
-the pressure-temperature translation:

(t, x, u, p, θ) -→ (t, x, u, p + a βg x 3 , θ + a/ρ), (4) 2 
-the horizontal rotation:

(t, x, u, p, θ) -→ (t, Rx, Ru, p, θ), (5) 
-the generalized Galilean transformation:

(t, x, u, p, θ) -→ (t, x + α(t), u + α(t), p + ρ x α(t), θ), (6) 
the space translation corresponding to the case where the function α = (α i ) i is constant and the classical Galilean transformation to the case where α is linear, -and the first scaling transformation:

(t, x, u, p, θ) -→ (e 2a t, e a x, e -a u, e -2a p, e -3a θ) [START_REF] Oberlack | Symmetries, invariance and scaling-laws in inhomogeneous turbulent shear flows[END_REF] which shows how u, p and θ change when the spatio-temporal scale is multiplied by (e a , e 2a ). In these expressions, ζ and α are arbitrary functions of time and R a constant 2D horizontal rotation matrix. In addition to these symmetries, one can also consider one-parameter symmetries of the form (t, x, u, p, θ, ν, κ) -→ ( t, x, u, p, θ, ν, κ).

Such a symmetry, called equivalence transformation, takes a solution of (1) into a solution of other heat convection equations, with a different value of ν and κ. Again using Lie's theory, we obtain an equivalence transformation of (1), the second scaling transformation:

(t, x, u, p, θ, ν, κ) -→ (t, e a x, e a u, e 2a p, e a θ, e 2a ν, e 2a κ)

which shows the consequence of a change of the spatial scale.

Another known symmetry of the heat convection equations is the reflection:

(t, x, u, p, θ) → (t, Λx, Λu, p, ι 3 θ) (9) 
where Λ is the diagonal matrix Λ = diag(ι 1 , ι 2 , ι 3 ) and ι i = ±1, i = 1, 2, 3. The reflection is not a one-parameter transformation and could not thus be computed like the previous symmetries. The symmetry group of ( 1) is the group spanned by all the symmetries (2)-( 9). This group will be used to analyze the common subgrid models.

Common subgrid models

After filtering, the large-eddy simulation method gives

       divu = 0, ∂u ∂t + div(u ⊗ u) + 1 ρ ∇p -div(T r -T ) -βgθ e 3 = 0, ∂θ ∂t + div(θu) -div(h r -h) = 0. (10) 
The symbol bar (¯) stands for filtering. T = u ⊗ uu ⊗ u is the subgrid stress tensor and h = θu -θu the subgrid flux. These two terms must be modeled in order to close the equations.

-The most commonly used model is the Smagorinsky model which was derived by adopting the concept of turbulent viscosity for T and an analogy for h: -By using Germano-Lilly procedure ( [START_REF] Lilly | A proposed modification of the Germano subgrid-scale closure method[END_REF]), the model constants can be calculated in a dynamic way.

T d = -2(C s δ) 2 |S|S, h = - (C s δ) 2 P r sg |S|∇θ, with |S| 2 = 2 ij S 2 
This leads to the dynamic model:

T d = -2 C T δ 2 |S|S, h = -C h δ 2 |S|∇θ
where C T = tr(LM )/ tr(M 2 ), C h = tr(L T M )/ tr(M T M ) and

L = u ⊗ u -u ⊗ u, M = δ 2 | S| S -δ 2 |S|S, L = θu -θ u, M = δ 2 S∇θ -δ 2 S ∇θ.
The tilde symbolizes a test filtering, with a width δ. -Another model, which introduces the buoyancy term, is the Eidson model ( [START_REF] Eidson | Numerical simulation of the turbulent Rayleigh-Bénard problem using subgrid modelling[END_REF]):

T d = -2 C E δ 2 |S| 2 - βg P r sg ∂θ ∂x 3 S, h = - C E δ 2 P r sg |S| 2 - βg P r sg ∂θ ∂x 3 ∇θ,
where C E is a constant. In practice, when the term under the radical sign is negative, the model is put to zero. -To avoid the zero setting, Peng and Davidson ( [START_REF] Peng | Comparison of subgrid-scale models in LES for turbulent convection flow with heat transfer[END_REF]) propose a modified version of Eidson model:

T d = -2 C E δ 2 1 |S| |S| 2 - βg P r sg ∂θ ∂x 3 S, h = - C E δ 2 P r sg 1 |S| |S| 2 - βg P r sg ∂θ ∂x 3 ∇θ.
-The last model which will be considered is the similarity model, adapted from Bardina model to the non-isothermal case:

T d = u ⊗ u -u ⊗ u, h = θ u -θ u.

Model analysis

The set of solutions (u, p, θ) of ( 1) is preserved by each of the symmetries ( 2)-( 9). We then require that so is the set of solutions (u, p, θ) of ( 10) too, since (u, p, θ) is expected to be a good approximation of (u, p, θ). More clearly, if a transformation T : (t, x, u, p, θ) → ( t, x, u, p, θ) is a symmetry of (1), we require that the model is such that the same transformation, applied to the filtered quantities, T : (t, x, u, p, θ) → ( t, x, u, p, θ), is a symmetry of [START_REF] Razafindralandy | Symmetry invariant subgrid models[END_REF]. When it is the case, equations [START_REF] Razafindralandy | Symmetry invariant subgrid models[END_REF] and the model will be said invariant under the symmetry.

Time, pressure and Galilean translations

All the above models are invariant under the time and pressure translations because neither t nor p is explicitly present in their expressions. Next, applied to the filtered variables, the generalized Galilean transformation is: (t, x, u, p, θ) → ( t, x, u, p, θ) = (t, x + α(t), u + α(t), p + ρx α(t), θ).

-Since ∇u = ∇u and θ = θ, Smagorinsky and Eidson models are invariant under the generalized Galilean transformation. -For the similarity model, we have:

u ⊗ u -u ⊗ u = (u + α) ⊗ (u + α) -(u + α) ⊗ (u + α) = u ⊗ u -u ⊗ u, θ u -θ u = θ (u + α) -θ (u + α) = θ u -θ u.
The model is then invariant. Notice that the test filter is assumed not to destroy the invariance properties (see [START_REF] Oberlack | Invariant modeling in large-eddy simulation of turbulence[END_REF]).

-Using the same relations, it is easy to show that L = L, M = M , L = L and M = M . The invariance of the dynamic model follows from these expressions. In summary, all the models are invariant under the time translation, the pressure translation and generalized Galilean transformations.

Conclusion

The analysis result is summarized in table 1. From it, we can draw the same conclusion as in the case of Navier-Stokes equations. Only very few models are invariant under the symmetry group of the equations, namely the dynamic and the similarity models. In addition, these two models need a test filter, and the test filter may destroy the invariance properties. In a future paper, new invariant models will be proposed, using the same methodology as in ( [START_REF] Razafindralandy | A class of subgrid-scale models preserving the symmetry group of Navier-Stokes equations[END_REF]). Such models preserve the physical properties contained in the symmetries of the equations.

  ij . C s is the Smagorinsky constant and P r sg the subgrid Prandtl number. The superscript d stands for the deviatoric part, i.e. T d = T -1 3 tr T I d , I d being the identity matrix.

Pressure-temperature translation

The filtered equations [START_REF] Razafindralandy | Symmetry invariant subgrid models[END_REF] are invariant under the pressure-temperature translation if and only if T = T and h = h.

-Smagorinsky and Eidson models are invariant because S = S and θ = θ.

-Next,

The similarity model is then invariant. -For the dynamic model, L, M and L are unchanged. And since ∇θ = ∇θ, M is also unchanged.

The model is invariant.

Reflection and rotation

The rotation, applied to the filtered variables, is

This transformation is a symmetry of (10) if and only if T = R T T R and h = Rh.

-It is easy to show that S = R S T R and ∇ θ = R∇θ. Smagorinsky and Eidson models are then invariant. -Moreover, u ⊗ u = R(u ⊗ u) T R and θ u = R(θu). This leads to the invariance of the similarity model. -For the dynamic model, we have

Hence, C T = C T and C h = C h . So, T = T and h = h; the model is invariant. All the models are then invariant under the rotation.

Next, equations [START_REF] Razafindralandy | Symmetry invariant subgrid models[END_REF] are invariant under the reflection if and only if T = Λ T T Λ and h = ι 3 Λh. Using arguments similar to the previous ones, it can be shown that all the models are also invariant under the reflection.

Scaling transformations

The two scaling transformations can be combined into the following two-parameter transformation:

(t, x, u, p, θ, ν, κ) → (e 2a t, e b+a x, e b-a u, e 2b-2a p, e b-3a θ, e 2b ν, e 2b κ).

The first scaling transformation corresponds to b = 0 and the second to a = 0. The equations [START_REF] Razafindralandy | Symmetry invariant subgrid models[END_REF] are invariant if and only if T = e 2b-2a T and h = e 2b-4a h.

-Since S = e -2a S and ∇θ = e -4a ∇θ, we have, for Smagorinsky model T = e -4a T and h = e -6a h.

The model verifies the required conditions neither when a = 0 nor when b = 0. Thus, it is not invariant either under the first or under the second scaling transformation. -The first terms of Eidson models are similar to Smagorinsky model. These models are not invariant.

-The similarity model is invariant because

-For the dynamic model, C T = e 2b+2a C T , C h = e 2b+2a C h . This leads to the invariance of the model. In summary, only the dynamic and the similarity models are invariant under the scaling transformations. The non-invariance under these symmetries is very prejudicial for the models. Indeed, these symmetries have a particular role for example in the deduction of wall laws ( [START_REF] Oberlack | Symmetries of the Navier-Stokes equations and their applications for subgrid-models in large eddy simulation of turbulence[END_REF]) and in spectral analysis ( [START_REF]Application of equivalence transformations to inertial subrange of turbulence[END_REF]).