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ABSTRACT. The phenomenon of jet attachment to a wall by Coanda effect is very important in
many industrial applications (sound reduction, bad dispersion of the air in a ventilated room...).
In order to control it, it is necessary to know its occurrence according to the various parameters
of the flow. In this article the asymptotic numerical method (ANM) is used to study the Coanda
effect which occurs in several flow configurations (sudden expansion with or without divergent
and open cavity). The ANM is a fast, efficient and robust method to determine these stationary
bifurcations. The attachement Reynolds numbers obtained with the ANM are compared to the
results found in the literature. Finally, evolution laws of critical Reynolds numbers according
to the various geometrical parameters are proposed.

RESUME. Le phénomene d’attachement d’un jet a une paroi par effet Coanda, qui se retrouve
dans de nombreuses applications industrielles, joue un role important (réduction sonore, mau-
vaise dispersion de [’air dans une piece ventilée ...). Afin de le contrdler, il est nécessaire de
connaitre son apparition en fonction des différents parametres caractérisant ’écoulement. Dans
cet article la méthode asymptotique numérique (MAN) est utilisée pour étudier [’effet Coanda
qui se produit dans différentes configurations d’écoulement (expansion brusque avec ou sans
divergent et cavité ouverte). La MAN s’avere étre un moyen efficace, robuste et tres rapide pour
déterminer ces bifurcations stationnaires. Ainsi apres avoir comparé les nombres de Reynolds
d’attachement obtenus par la MAN a ceux existant dans la littérature, des lois d’évolution du
nombre de Reynolds critique en fonction des différents parametres géométriques sont proposées.

KEYWORDS: ANM, stationary bifurcation, Coanda effect, sudden expansion, open cavity, diffuser.

MOTS-CLES : MAN, bifurcation stationnaire, Effet Coanda, Expansion brusque, cavité ouverte.



1. Introduction

It is well known that when a body is immersed in a flow, the jet shows a strong
tendency to become attached to the solid surface. This phenomenon of attachment,
called Coanda effect, is intensively used in industrial applications to control the flows.
In particular, this effect was applied, by Coanda, to improve the scavenging of internal
combustion engines, to produce nozzle with high thrust augmentation and to increase
the maximum lift coefficient of a wing. It is also the origin of an important noise re-
duction in the air flow crossing two diaphragms in tandem inside a cylindrical duct
[GUE 01]. In this case, the Coanda effect, which is associated to an hysteresis loop,
appears by the attachment of a jet to the diffuser walls. Therefore, to obtain the maxi-
mum noise reduction, it is necessary to control the Coanda effect. The jet attachment
is also used in ventilation to stabilize the injected jet and to prevent that, under the
gravity effect, it does not fall too quickly into the room. In this case, the Coanda ef-
fect can also be avoided. Indeed, for an air-conditioned room, the Coanda effect can
deteriorate the mixing of the injected air with the air of the room.

Thus to be able to control the advantages or the drawbacks related to the Coanda
effect, it is necessary to know its dependency with respect to the various parameters of
the problem (the Reynolds number or the geometrical parameters). For these reasons
the numerical asymptotic method (ANM) is used in the work. Actually, this technique,
unlike the usual methods used in fluid mechanics, allows to compute the totally solu-
tion paths, that is very well adapted to a parametric study.

Usually, the nonlinear equations depending on a single parameter, like the equa-
tions governing the viscous fluid flow, are solved by using prediction-correction me-
thods, the most used being the incremental iterative Newton-Raphson method. These
methods have been successfully applied to a wide variety of nonlinear problems, but
do not take advantage of the special nature of the given non-linearity. Therefore the
computing time is generally large. When the non linearity is quadratic, a possible alter-
native, is the use of an Asymptotic Numerical Method (ANM). Let us note that when
non linearity is more than quadratic, ANM can also be used, see [POT 97] for more
explanations. This method, based on the coupling between a technique of perturbation
and a finite element discretization' allows to transform the initial non linear problem
into a series of linear problems. Those discretizated problems have the same matrix
of rigidity which is assembled and triangulated only once. Consequently, the ANM
1s very efficient and much less expensive than standard methods [CAD 97]. Associa-
ted to a continuation method [COC 94], the ANM becomes an automatic and efficient
algorithm to obtain solution paths of a non-linear problem.

The asymptotic numerical methods were suggested in solid mechanics in 1968 by
Thompson and Walker [THO 68] and, in fluid mechanics in 1976 by Kawahara et al.
[KAW 76]. But they were intensively used only at the end of the eighties, due to the
progress in computing power and in numerical techniques. Then, these methods have

1. It is possible to use a finite volume discretization [ALL 02].



been successfully applied in various fields of solid mechanics, in static (rod, plate
and shell problems) or in dynamic conditions (non linear vibrations). In the middle of
years 90, the ANM was applied to the resolution of the Navier-Stokes equations (Had;i
[HAD 97], Tri [TRI 96], Cadou [CAD 97], Cadou et al. [CAD 01]). Associated to a
continuation method, the ANM leads to compute the non linear fundamental branch. It
1s also proved to be an effective way for the resolution of bifurcated paths. Indeed close
to a bifurcation point, the ANM gives an accumulation of steps. A modification of
ANM parameters leads to compute bifurcated branches. In the fluid mechanics scope,
Tri et al. [TRI 96] has associated the ANM to a stationary bifurcation indicator which
has been initially proposed by Boutyour [BOU 94]. Moreover bifurcating branches
can also be computed, see Vannuci et al. [VAN 98]. First, they introduce a perturbation
in the ANM equations, and then perform a linearization.

In this paper, we describe the bases of Asymptotic Numerical Method in Fluid
Mechanics. This technique is then applied to characterize the Reynolds number of
attachment of a jet to a wall in the case of : a sudden expansion configuration with or
without divergent and in the open cavity configuration. The influence of geometrical
parameters on the critical Reynolds numbers is determined. The ANM results allow
us to define evolution laws of the critical Reynolds number according to the other
parameters.

2. Asymptotic Numerical Method (ANM)
2.1. Position of the problem

We consider a bounded domain €2 of R? ; the boundary is noted I'. In this domain,
we consider a Newtonian and incompressible fluid. The fluid density is denoted p and
the dynamic viscosity p. In each position x of {2 and for each time ¢, the velocity field
is written u(x,t) and the pressure is noted p(x,t). The boundary I is divided into
I' =T, UT',. Boundary conditions of Dirichlet type are imposed on I';, and boundary
conditions of Neumann type are imposed on I',. The body forces are neglected. The
governing equations are :

div(u) =0 and % + Div(u ® u) = Div(o) [1]
with the following boundary and initial conditions :
u(z,t) = f(x,t) on Ty, on =h(z,t)onl, and wu(x,ty) = g(x)
n is the outward normal to I', and o i1s the stress tensor defined by 0 = —pl + 7. The

viscous stress tensor 7 is defined by 7 = p(gradu +¢ gradu) where (o) corresponds
to the transpose operator.

The resolution of Navier-Stokes equations (1) with the incompressibility condi-
tion, requires the computation of consistent pressure and velocity field which must



satisfy the motion equations and the mass conservation equation. This is difficult to
negotiate because the pressure does not explicitly appear in the mass conservation
equation. To solve this problem several methods are possible : prediction-correction
algorithms, projection methods or a penalization method. In this work the latter tech-
nique is used. Even if this technique is less accurate than the other ones, it has the
advantage to keep the efficiency of the asymptotic numerical method. With the pena-
lization technique the incompressibility condition is :

m

. r
divu — = =0

K

where £ 1s a very large parameter.

2.2. Variational formulation of Navier-stokes equations

are linear and quadratic operators of the unknown mixed vector U (U = (u, p)). The
boundary conditions of Dirichlet type are taken in the following form u = Aug where
A is a parameter which can be identified to the Reynolds number. We obtain thus :
d
u d—M(U)+L(U)+Q(U,U):OinQ
Find U = { » } solution of ¢ [2]

u = Augonly,

4

(M(U), 60 = p / Suude  (QU,UY,8U) = p / tSuDiv(u © u)dz
Q Q
: . dou
with ¢ (L(U),0U) = —/ pdivdudx —I—/ Tr(r——)dx
Q Q 8213
—/ Op divudr + l/ popdx —/ tSuhdl
\ Q KkJa r

(o8

forall ou € V = {du € {H'(Q)}? such as du|r, = 0} and all 6p € L*(Q).

We consider now only the stationary case (i.e @M (U) = 0) and homogeneous Neu-

mann boundary conditions (i.e A = 0).

2.3. Perturbation method

The ANM is based on a perturbation technique. In this way, from a regular and
solution point (Uy, Ag) we expand the unknowns (U, A) in series with respect to a
path parameter “a” :

U=Uy+alU; +a°Us+... and X=X +a); +a’Xs+ ... [3]



For a well posed problem, the parameter “a”’must be defined. We simply define it?
with the projection of velocity increment u — ug and parameter increment A — Ao on
the tangent vector (u1, A1) :

1
a = 8_2 (U—UO,U1)+()\—)\0))\1)} [4]

where (o, @) is the inner product in L?(Q2) and s is a scalar.
The developments (3) are then introduced into (2). Equating powers of “a ”, we obtain
a succession of linear problems :

Order 1 : Orderq > 2 :
, ( qg—1
S ~ T AT = —N O 7. .\
Ly(Uy) =0 Hi\Yq) [, we\YrsYg—r)
) ) r=1
\ 4
uy = Ajug on [y uy = Agug on Ty,
— 2
L (ul,ul)—l—)\l)\l =S . (uq,u1)+)\q)\1 =0

[5]

where L, is the tangential operator defined by :

Li(e) = L(e) + Q(Uo, ®) + Q(e, U)

The ANM allows therefore to reduce the Navier-Stokes equations (1), which are non
linear, to a serie of linear problems which have the same tangential operator L;. Then,
only one inversion or decomposition of matrix is needed to solve (5). The second
member is built with the solutions computed at the previous orders.

2.4. Discretization by a Galerkin formulation-Condensation

a) Discretization

The finite elements used are quadrangles with 9 velocity nodes and 3 for pressure.
Thus, the pressure interpolation functions are linear and those of the velocity field are
quadratic. The pressure is then discontinuous between the elements. This leads, with
the penalization of the incompressibility equation, to build a weak numerical scheme
in pressure. For a Galerkin formulation, the unknowns (u,p) and the test functions
(du,0p) are approximated by :

{u} = [Nu{w} {ou} =[Nu{6u} and p="{N}{P} dp="{N}{op}

2. Cochelin [COC 94] suggests other definitions of this parameter.



where [N,,] (resp. { N, }) are the velocity (resp. pressure) shape functions and {e} are
the nodal unknown factors. By introducing these definitions in the system of equations
(5), the discrete problem at the order ¢ is written :

(o ot ()] () izi{mr,w} N

( [Kuwu]=>_ [ 'BCBdx [Kup]z—Z/ ‘B, 'N,ydz

Qe

nel nel

nel

with ¢ [Ny (o)] = pZ/ tNu{qurad(Nu) + Grad(uo)Nu}dﬂc

[K,p] = %Z/ N,'Nydz  F(ur,Ug—r) :pZ/Q ' NutwrGrad(ug—,)dx

\ Qe

nel nel

The matrix B connects the deformations D to the nodal field of velocity, i.e.’ {D} =
B{w}. It contains the derivatives of the velocity shape functions. C' is a 3 x 3 ma-
trix which allows to write the behavior law between* {7} and {D}. The line vector

B, allows to connect the divergence of velocity to the nodal unknown factors, so
divu = B,{u}.

The discrete form of the path parameter is :

Ha Hau b + AgA =0 [7]

b) Condensation of the pressure

The condensation method, which consists in eliminating the unknown factors of
nodal pressure {p}, is done at the elementary level. The matrix K, being invertible
the pressure at the order q 1s defined by

{1_7(1} = _[Kpp]_lt[Kuzo]{ﬂq} [8]

By introducing this relation into the discrete equations of momentum (6), the problem
to be solved is :

q—1
[ (o) ]{ug} = _Z{F(ﬂrvﬂq—r)} [9]
r=1
where [ K} (ug)] is the tangential matrix defined by

[Kt(EO)] = [Kuu + NUU(QO)] - [Kup][Kpp]_lt[Kup] [10]

3. {D} = (D11, Ds2,2D12) with D = %(Gra,du +* Gradu).

4.7} =" (111, 722, T12)



The resolution of the previous system (9) gives the values of the nodal velocities @,
for each increment A (or for each value of Reynolds number). The pressure is obtained
by introducing the computed velocity %, into (8).

¢) Taking into account applied velocities

The applied velocities u = Aug on I',, are modified into given loads on the edge
[BAT 90]. The equation (9) becomes

qg—1

[ (o) {ug ) = Ag{Fu} - Z{F(ﬂraﬂq—r)} [11]

r=1

where [K ()] is the tangential matrix, after taking into account the imposed veloci-
ties, and F, is the applied load.

Finally the system of discrete linear problems to be solved is written :

Order 1 : Orderq > 2:
[K¢(wo)|[{u1} = M{Fu} [Ki(wo){uq} = Ag{Fu} — Z{F(ﬂmﬂq—r)}
Y@} + N = s (G HmE AN =0

[12]
The scalar s which appears at order 1 is a parameter imposed by the user (usually equal
to 1) and the initial field (Up, A\g) is solution of (2). The resolution of the previous
problem (12) leads to the solution in the following integro-power series of a :

U=Uy+ al; +CL2U2+CL3U3—|-... [13]

2.5. Method of continuation

As the convergence radius of series (13) is finite, the solutions computed with
ANM are only valid up to a certain value of the path parameter’ a. To compute the
whole solution branch, a continuation method is used. This technique, suggested ini-
tially by Cochelin[COC 94], consists in introducing into the equations a new starting
point (Up,\o), located inside the range of validity of the series. By applying once again
the ANM from this point, an additional part of the curve solution is obtained. By using
this technique successively, we obtain the whole curve solution. The only difficulty
lies on the evaluation of a new starting point (Up,\g). Cochelin has suggested a simple
criterion® coming from the fact that two successive polynomial approximations move
away brutally as soon as the radius of convergence is reached. Thus, this criterion

5. So of the Reynolds number because Re = g(\, tref,drer) and a = f(u, A).
6. A second criterion based on the residual method exists.



(criterion of velocity), which takes a very small computing time, consists in requiring
that the difference between two consecutive orders of the series is lower than a given
parameter . That results in :

IS0 = Snall _ — lla"un||

— <e [14]
1S, — Sol| llaur + ... + |

n
with S,, = Z a*uy, is a polynomial approximation. The continuation method is then

k=1
automatic. The step length is adjusted according to the difficulty encountered on the

curve solution.

2.6. Indicator of stationary bifurcation

Tri et al. [TRI 96], Cadou [CAD 97] have introduced an indicator of stationary
bifurcation for the incompressible fluid flows. This indicator, which is well adapted to
the polynomial approximations previously described, is explained in this section.

Let us suppose that the path (U, A¢) which passes through a given point (Up, Ag)
solution of the problem (12) is known. To detect, on this fundamental path (U, Ay),
the possible stationary bifurcation in the vicinity of (Uy, Ag), we introduce a dis-
turbance load 8F where (8 represents the intensity of the load and F is a random
load vector. The response to this disturbance is a fluctuation of velocity Av such as
U=U; + Av.

This relation is introduced into the Navier-Stokes equations (2). By neglecting the
non linear terms in Av, the disturbed equilibrium problem is written :

Lt(AV) = 5f in
Av =0 onI, [15]
(Av — Avg, Ayy) =0

where L;(Av) is the tangential operator defined by
Li(Av) = L(Av) + Q(Uy, Av) + Q(Aw, Uy)

An orthogonality condition (Av — Avgy, Avg) = 0 is added in order to have a well
posed problem. The disturbance intensity [ is associated to a measurement of rigidity.
A stationary bifurcation point on the fundamental path, corresponds to the loss of this
rigidity (8 = 0). Thus, the scalar 3 defined along the path is equal to zero in all
points where the operator L; is singular (bifurcation or limit point). Therefore, it is
the indicator of bifurcation.

After discretization by finite elements of the problem (15) the indicator 5 and the

bifurcation mode Av are written :
< Avg, Ayg >

B = >

(K (Up)|7H{F}, Avg >

and  {Av} = B[K,(Up)] {F} [16]



where {Avg} is solution of {Avg} = [K¢(Up)]"H{F}

In the numerical simulations, at each point of the fundamental path, the bifurca-
tion indicator 1s obtained by (16). Finally, the numerical experiments [CAD 97] have
shown that in the vicinity of a bifurcation (as well as limit points) a phenomenon of
step accumulation occurs. So it is not necessary to compute the indicator on the whole
fundamental path, but only where these zones of step accumulations appear. It is a
visual criterion of detection of bifurcation which is refined by the resolution of the
equations (16).

The technique, reported in this section, will be applied to detect the stationary
bifurcation phenomenon due to the Coanda effect. The numerical scheme features
(truncation order, parameter €, mesh) will be given during the study of each flow
configuration.

3. Application of the ANM to the Coanda effect

In this section, the ANM is applied to study the evolution of the attachment Rey-
nolds number of a jet to a wall versus the various geometrical parameters. Three par-
ticular two-dimensional configurations are considered and presented on figure 1 : sud-

den expansion with or without divergent and open cavity. The air flow through these
Uoh

three configurations is considered. The Reynolds number is given by Re =

where Uy is the maximum velocity at the inlet of the jet, / is the inlet height andV v
is the kinematic viscosity of the fluid. At the inlet of the channel a parabolic velocity
profile is imposed. Non-slip boundary conditions (v = 0) are applied along the rigid
walls. At the exit, the boundary condition o.n = 0 is applied where o is the stress
tensor and n the outward normal of exit border I',,.

L
>
L ! [
h I h, h I h, |h, ht j W Th
a) sudden expansion b) sudden expansion C) open cavity

with divergent

Figure 1. Geometry studied in the article. A basis (Ox,y), whose origin O is at middle
height of the exit of the inlet, is introduced

The stationary bifurcation, which is characterized by the loss of the flow symme-
try, may be obtained with the ANM in two ways : either by using the indicator of
bifurcation presented in the previous section, or by following the evolution of the ver-



tical velocity v in a point on the axis of symmetry (Oy) versus the Reynolds number.
In this last case the bifurcation Reynolds number corresponds to the one for which v
becomes equal to zero. These two ways were applied to the study of the flow through
a sudden expansion. We have noted that the maximum difference concerning the pre-
diction of the bifurcation Reynolds number was very small (around 1%). Thereatter,
the critical Reynolds number is the Reynolds number for which the vertical velocity
in a point of the axis is equal to 0.01 time the highest velocity.

3.1. Study of a sudden expansion

For expansion ratios (£ = hy/h where h is the height of the inlet channel and
hy the height of the exit channel) higher than 1.5 and for low Reynolds numbers, the
flow into a sudden expansion is symmetrical. It is characterized by the presence of
two equal zones of recirculation located on both sides of the central axis. When the
velocity increases, a stationary instability appears, which breaks the symmetry of the
flow. One zone of recirculation increases more quickly than the other, which implies
the attachment of the jet to one of the expansion walls. This behavior’ is represented
on figure 2 for a sudden expansion (£ = 2). This phenomenon of attachment is attri-
buted to the Coanda effect and is interpreted in the following way : under the impulse
of a disturbance, the jet is deflected towards one of the walls leading to a velocity
increasing along this wall and, thus, to a pressure decreasing. This pressure difference
between the two walls accentuates the deflection of the jet and involves its attachment
to the wall. For low Reynolds numbers, there is a single symmetrical stable path. When
Reynolds number is high, a supercritical bifurcation occurs where two asymmetrical
stable states can exist [MIZ 00]. For larger Reynolds numbers, the flow oscillates per-
1odically in time and this characterizes a Hopf bifurcation. On the other hand, if the
expansion ratio F is small, Abott and Kline [ABB 62] showed that a Hopf bifurcation
exists and that the flow oscillates without passing through a stationary bifurcation.

———— e —
a) Before bifurcation (Re ~ 210) b) After bifurcation (Re ~ 228)

Figure 2. Streamlines for Reynolds numbers close to the critical Reynolds number.
(Re. ~ 213.6 in the case of a sudden expansion . = 2)

Many experimental [CHE 78][FEA 90], numerical [BAT 97][DRI 97][CHI 00] or
theoretical (by linear stability analysis [SHA 90], nonlinear stability analyses [MIZ 00]
[RUS 99]) studies have been carried out to characterize the attachment Reynolds num-

7. On figure 2 the jet is attached to the higher wall of the sudden expansion but it can be attached
randomly to one or the other of the walls.
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ber. Although the systematic dependence is not established theoretically, the critical
value Re. decreases when the expansion ratio E or the aspect ratio A ® increases.

As Sobey and Mullin [SOB 93] have noted that the critical Reynolds number Re,
is sensitive to the modelling parameters and to the discretization scheme, the influence
of these various parameters is preliminary tested.

3.2. Influence of the various geometrical parameters

The influence of the grid on the phenomenon of attachment of the jet to the wall is
tested for a sudden expansion with a ratio E equal to 2. Various grids have a regular
step (A/h), identical in the vertical and the horizontal direction. It is noted that from a
step A/h equal to 0.125 the grid size does not influence the critical Reynolds number.
In what follows, for expansion ratios E lower or equal to 6, the step in the vertical
direction is taken constant and equal to A/h = 0.125. On the other hand for higher
ratios, in order to decrease the number of nodes, the grid in y is relaxed from y/h > 6
and y/h < —6. The horizontal step is always equal to A/h = 0.125. We also noted
that when the exit length is greater than L/h = 40, it does not have any influence
on the Reynolds number of attachment. Thus, in order to avoid the numerical diffi-
culties, due to the exit boundary condition o.n = 0, the exit length is taken equal to
L /h=>50. Finally, we noticed that if the entry length L. is greater than 2A the flow is
not influenced. Thus, in order to have a fully developped flow , the length of the inlet
is taken equal to L, = 4h. To give an example of the number of unknowns of the
computational tests, for &2 = 2 the mesh consists of 2432 cells and 10169 nodes.

3.3. Influence of the various parameters of the ANM on Re,

The influence of the parameter €, which appears in the equation (14), and the trun-
cation order of the series on the critical value of bifurcation is investigated. Initially
the truncation order is fixed and equal to 15, the influence of € is tested. As shown on
figure 3, for e = 1072 the flow is symmetric (v is null) for all the Reynolds numbers.
For ¢ < 10~%, a Reynolds number exists for which the jet becomes attached to one
or one of the two walls according to the choice of . The modification of this parame-
ter introduces numerical disturbances, directing the solutions towards one of the two
bifurcated branchs. The larger the parameter ¢ is, the higher the length of each step
of continuation is. Thus, for e = 1073 it is possible that the bifurcation is jumped.
Moreover, figure 3 shows that the bifurcation is supercritical. We also noted that for
e < 10~4, the critical Reynolds number Re. is not influenced by the value of €.

Secondly, € was fixed at 10~ and the truncation order of the series varies. We
showed that the truncation order (bounded by 6 and 18) does not influence the critical

8. In the three-dimensional case the aspect ratio A is defined as being the relationship between
the depth of the sudden expansion d and the height of the inlet channel h (A = d/h).
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Reynolds number Re... In the following, ¢ is equal to 10~ and the truncation order is
15.

0.5
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Figure 3. Evolution of vertical velocity with the parameter ¢ = 107" for a point
located on the symmetry axis (x/h = 10, y/h = 0) for E = 2

3.4. Evolution of Re. versus the expansion ratio E

The numerical study is carried out for expansion ratios F ranging from 1.5 to 20.
Although to our knowledge, no results exist on the limits of existence of the attachment
phenomenon according to the expansion ratio, it is reasonable to think that when the
walls are too distant, they do not have any influence and consequently the attachment
phenomenon does not occur. Thus the study is limited to expansion ratios £ < 20.
For expansion ratios 1.5 < FE < 1.8, the flow becomes attached for large Reynolds
numbers”.

Table 1 gives the values obtained by the ANM and those found by other authors
for 2 < E < 10. Critical Reynolds numbers obtained are very close to those existing
in the literature. These results confirm the validity of the ANM to get the critical Rey-
nolds numbers, in the case of the sudden expansion. Confident in the validity of our
approach, the study is extended to various expansion ratios which are not yet treated in
the literature. From the ANM results, a law of evolution of the critical Reynolds num-

ber Re. according to the expansion ratio F is also obtained. This relation is written
for1.8 < E <20:

Re. = exp[f1{InE}f*]  with 5y =4.6128 and p; = —0.4187 [17]

Figure 4 shows the good agreement between the results obtained numerically by ANM
and the curve of equation (17). This equation predicts the numerical results with a
maximum error of 7%. Therefore this equation is a fast and efficient way to estimate
the critical Reynolds number.

9.E=16 —609.3and £ = 1.5 — 927

12



Authors FE Obtention Re, ANM Re..

Drikakis [DRI 97] 2 numerical 216 213.6
Shapira et al. [SHA 90] 2 numerical 215 /!
Chedron et ai. [CHE 78] | 2 | experimental > 185 //

Battaglia et al. [BAT 97] | 3 numerical 80.7 80.5
Fearn et al. [FEA 90] 1 3 numerical 80.9 /!
Shapira et al. [SHA 90] 3 theoretical 82.6 //

Drikakis [DRI 97] 4 numerical 03 < Re. < 55 93.8
Drikakis [DRI 97] 6 // 33 < Re, < 37 39
Drikakis [DRI 97] 8 // 28 29
Drikakis [DRI 97] 10 // 26 25

Table 1. Comparison of critical Reynolds numbers obtained by ANM to those obtained
by other authors

350
300 r
250 1
200 r \‘
150
100 1
50 1 o

0

ANM e

'\
l Law ——

Critical Reynolds number

0 2 4 6 8 10 12 14 16 18 20
Expansion ratio E

Figure 4. Variation of the attachment critical Reynolds number Re. according to the
expansion ratio

These results indicate that the critical Reynolds number Re. decreases when the
expansion ratio of E increases. For 1.8 < E < 10 the critical Reynolds number
decreases strongly varying from 329 for £ = 1.8 to 25 for £ = 10. Beyond £ = 10
the decrease is slower. In these cases the walls play a significant stabilizing role. When
the walls are close to each other, a great disturbance is necessary in such a way that
the jet becomes attached to one of the walls. This is explained by the fact that the
recirculation zones at the inlet of the expansion are small because they do not have
enough space to develop. Then a significant velocity is necessary to develop these
recirculation zones and then break the flow symmetry. When the walls are distant
enough, the jet is less stable and a small disturbance is needed to create the instability.
In this case the recirculation zones are large at low velocity and quickly break the
symmetry of the flow.
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4. Study of a sudden expansion with divergent at the inlet

In the configuration flow of the sudden expansion with divergent, in addition to
the expansion ratio £ = h; /h two additional geometrical parameters are introduced :
the angle « indicating the wall divergent inclination and the ratio E; = hy/h where
hso 1s the height of the divergent exit. The addition of a short divergent, at the entry
of the expansion, (figure 1 b)) does not change the bifurcation phenomenon. There is
always a critical Reynolds number Re. beyond which the flow becomes asymmetrical
and attached to one of the two walls of the sudden expansion. If hy = hs (i.e £ = Ey)
Shapira et al. [SHA 90] have noted that the critical Reynolds number Re. is sensitive
to the angle of inclination of the divergent walls. It decreases when the inclination
angle increases. The recirculation zones appear on the walls of the diffuser (figure 5).
As shown in figure 6, if h is not equal to ho, the recirculation zones are located in the
exit channel and not in the diffuser. Therefore, the jet is attached to one of the walls of
the exit channel but not to the walls of the diffuser.

f —

a) Before bifurcation b) After bifurcation

Figure 5. Streamlines before bifurcation for Re = 53 and after bifurcation for Re=90
(o =40°, FE = E4 =4)

W
e e ———

a) Before bifurcation b) After bifurcation

Figure 6. Streamlines before bifurcation for Re = 51 and after bifurcation for Re=68
(a =50°, E=4and E; = 2)

In the next two parts, the influence of various geometrical parameters (« and Fy)
on the critical Reynolds number for sudden expansions with divergent is analyzed.
The ratio F4 is small and not equal to F (i.e. hy # ho).

14



4.1. Influence of the inclination angle o with E; = h» / h fixed

In this section Ey = ho/h is given and the angle of the divergent is varied. If the
angle a changes, so does the divergent length'® L, : L, increases when the angle o
decreases. Figure 7 a) shows that the critical Reynolds number Re. decreases when
the diffuser angle increases. For small angles < 50° the reduction is significant. When
the angle is small, the divergent walls are close to each other and their length are more
significant. This increases the containment and delays the development of a perturba-
tion. For higher angles, Re. decreases more slowly and tends towards the breaking
value of the expansion without divergent. In this case the divergent is very short and
its influence is limited.

The results obtained by ANM show that the critical Reynolds number Re., for a
given E, follows the law of evolution bellow with respect to the inclination angle « :

Re. = expla(E){lna}*®)] [18]

The coefficients a and b depend on the expansion ratio £. The maximum error between
the results obtained by the ANM and those obtained by the evolution law (18) is 5%.
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Figure 7. Variation of the critical Reynolds number versus the parameters Eq = ho [ h
and a for various expansion ratios E = 3,4,5

4.2. Influence of E; = hy/h for a given angle

In this part «, is fixed at 40° and the ratio F; varies. The divergent length L,
increases linearly with the expansion ratio E4. For the case EE = Fg, critical Reynolds
numbers are similar to those obtained by Shapira et al. [SHA 90]. Figure 7 b) shows
that the critical Reynolds number Re. increases slightly when the expansion ratio of
the divergent F; grows. The case with F/; = 1 corresponds to the sudden expansion.

10. Lg/h = (Eq — 1) /2sin(a)
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When the angle « is fixed, the critical Reynolds number obtained by ANM varies with
the divergent expansion ratio E4 in the following way :

Re. = expla(E){InE4}*®)] [19]
The two functions a and b depend on the expansion ratio £. The maximum error
between the results obtained by the ANM and the law of evolution (19) is 1.6%.

The presence of the divergent delays the appearance of the stationary bifurcation.
The longer the diffuser is, and the more significant the confinement is (i.e. the smaller
« 1s), the more the loss of symmetry occurs for larger Reynolds numbers. When the
diffuser is very short, it does not have almost any influence on the critical Reynolds
number Re. and similar results to those obtained in the case of an expansion without
divergent are retrieved.

5. Open cavity

As in the case of a sudden expansion, for small Reynolds numbers, the flow through
an open cavity (figure 1 ¢)) is symmetrical and is characterized by the presence of two
recirculation zones of same size inside the cavity. When the Reynolds number in-
creases, the flow becomes asymmetrical. As shown in figure 8, if the length L is small
the jet becomes attached to a wall of the exit channel. If the length L is large enough
the jet can be attached to the walls of the cavity (figure 9). This configuration was stu-
died experimentally and numerically by Maurel [MAU 94|, Maurel et al. [MAU 96],
Bouchet [BOU 96] and Mizushima et al. [MIZ 97] .

a) Before bifurcation b) After bifurcation

Figure 8. Streamlines before bifurcation for Re=>58 and after bifurcation for Re = 66
(L/h =125, W/h =10 and hs/h = 5)

In this section, the influence of the various geometrical parameters on the statio-
nary bifurcation, computed with the ANM is studied. Preliminary calculations were
carried out to determine a grid which does not influence the stationary bifurcation.
Thus, in this section, simulations were carried out on a grid with a constant step
Az/h = Ay/h = 0.125. The length of the exit channel is s = 10hs and the length
of the inlet channel is [e = 6h. For example, for a square cavity L/h = W/h = 15
and hs/h = 5, the mesh consists of 23561 cells and 5760 nodes.
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a) Before bifurcation b) After bifurcation

Figure 9. Streamlines before bifurcation for Re = 23 and after bifurcation for Re=30
(L/h =17.5,W/h =10 and hs/h = 5)

5.1. Influence of the cavity length L

As shown in table 2, the critical Reynolds numbers Re. for which the jet is atta-
ched to the exit channel, obtained by the ANM, are very close to those obtained by
Bouchet!! [BOU 96]. This confirms the good validity of the code. For W/h = 25, the
jetis always attached to the exit channel for lengths L /h < 22.5. For W/h = 15 (resp.
W /h = 10) the jet is attached to one wall of the exit channel for alength L/h < 21.25
(resp. L/h < 13.75) and to one of the walls of the cavity for higher lengths. When the
distance of the horizontal walls of the cavity are large, the length of the cavity must
be important to attract the jet towards one of these walls. This change of attachment
walls results in a discontinuity on figure 10 a). For low lengths L/h < 5, whatever
the height of the cavity is, the jet behaves as if there were no cavity and the attache-
ment occurs for the same Reynolds number as for a sudden expansion of ratio 5. Up to
L/h = 8.75, the height of the cavity does not influence the critical value Re.. Beyond
this length, its role becomes dominating : the larger its height is, the more important
the number Re. is. Finally when the jet becomes attached to a cavity wall, the critical
Reynolds number Re. is similar with that one obtained in the case of an sudden ex-
pansion with an expansion ratio £ = /h. In this case the exit channel does not have
almost any influence on the phenomenon of attachment.

L/h | Re.ANM Re. ANM Re. Bouchet[BOU 96]
bhaced on I/~ bhacedon /. bhacedon /.. .
uuuuuuuu O uasCG O Urmnoy DasCG O Umnoy

12.5 69.4 46.3 46 £+ 0.5
15 79.5 53 54 £ 0.5
17.5 90.1 60 62 £ 0.5
20 100.7 67.1 67+ 0.7

22.5 107.9 71.9 72 £ 0.7

Table 2. Comparison between the Reynolds numbers of bifurcation obtained with the
ANM and those obtained by Bouchet (W /h = 25 and hs/h = 5)

11. The Reynolds numbers given by Bouchet are based on mean velocity Uy, . In the case of
a parabolic profile Uy = 3Upoy /2 where Uy is the highest velocity.
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Figure 10. Variation of the attachment Reynolds number according to the length L
and the height W

5.2. Influence of the cavity height W

The length of the cavity and the diameter of exit are fixed (L/h = 12.5 and
hs/h=6). The effect of the height on the critical Reynolds number Re, is tested. As
shown in figure 10 b), for 6.5 < W/h < 14, Re. increases strongly with the distance
of the cavity walls. The more the walls are close to each other, the less the jet is stable.
For higher values of 1/ h, the contribution of the horizontal cavity walls becomes less
important and the critical Reynolds number Re. does not change.

5.3. Influence of the exit diameter hs

In this section, the length and the height of the cavity are fixed and the exit diameter
hs varies. The curves (figure 11 a)) are similar to to the curves obtained in the case
of a sudden expansion where the ratio expansion E varies (4). On figure 11 a), hs/h
corresponds to the expansion ratio E. Thus, one can note that when the diameter of
the exit channel increases, the critical value Re,. decreases and tends towards a limit
value, starting from hs/h = 8. For small dimensions of the cavity, the results are
close to those obtained in the case of a simple sudden expansion and consequently the
critical Reynolds number is small.

5.4. Square open cavity

Finally the evolution of the critical Reynolds number in the case of a square cavity
(W/h = L/h)is studied. Figure 11 b) shows that the evolution of the critical Reynolds
number Re. is linear with respect to the cavity length. This figure confirms that when
hs/h decreases, the bifurcation is delayed. The evolution laws drawn on figure 11 b)
give a maximum error of 4.8%.
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Figure 11. Variation of attachment Reynolds number, for a square open cavity, with
the length L/h and the height of the exit channel hs/h

To sum up, the flow through an open cavity is symmetrical for small Reynolds
numbers, and becomes asymmetrical by Coanda effect. When the cavity length is
small, the jet is identical to the one with no cavity and a phenomenon of attachment
in the exit channel occurs. The Reynolds numbers at bifurcation tend towards those
observed in a sudden expansion with an expansion ratio £ = hs/h. When the length
of the cavity L is large, the jet becomes attached to the cavity walls, and the Reynolds
numbers correspond to expansion ratios £ = W/h.

6. Conclusion

In this article, the efficiency of the stationary ANM to detect the attachment Rey-
nolds numbers of a jet to a wall by Coanda effect and for several geometrical configu-
rations (sudden expansion with or without divergent and open cavity) is shown. This
method allows to find similar results to those existing in the literature and to esta-
blish laws of evolution of the critical Reynolds number versus the various geometrical
parameters.

For other flow configurations, like flow through a long diffuser, the Coanda effect
1s associated with a phenomenon of hysteresis. The dynamics of this flow, which is
of interest since it is at the origin of an important sound reduction for the flow of air
crossing two diaphragms in tandem inside a cylindrical pipe, cannot be obtained by
resolution of the stationary Navier-Stokes equations [ALL 02]. The first computations
carried out with the non stationary ANM [COC 00][JAM 02] are very encouraging
and a characterization of the attachment phenomenon of this flow can be expected in
a very short terms.
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