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Abstract Complex fluids exhibit time-dependent changes in viscosity that have been ascribed to both 
thixotropy and aging. However, there is no consensus for which phenomenon is the origin of which changes.  A 
novel thixotropic model is defined that incorporates aging. Conditions under which viscosity changes are due to 
thixotropy and aging are unambiguously defined. Viscosity changes in a complex fluid during a period of rest 
after destructuring exhibit a bifurcation at a critical volume fraction φc2. For volume fractions less than φc2 the 
viscosity remains finite in the limit t→∞. For volume fractions above critical the viscosity grows without limit, 
so aging occurs at rest. At constant shear rate there is no bifurcation, whereas under constant shear stress the 
model predicts a new bifurcation in the viscosity at a critical stress σB , identical to the yield stress σy observed 
under steady conditions. The divergence of the viscosity for σ ≤ σB  is best defined as aging. However, for σ  > 
σB , where the viscosity remains finite, it seems preferable to use the concepts of restructuring and destructuring, 
rather than aging and rejuvenation. Nevertheless, when a stress σA (≤ σB) is applied during aging, slower aging is 
predicted and discussed as true rejuvenation. Plastic behaviour is predicted under steady conditions when σ >σB. 
The Herschel-Bulkley model fits the flow curve for stresses close to σB, whereas the Bingham model gives a 
better fit for σ >> σB. Finally, the model’s predictions are shown to be consistent with experimental data from 
the literature for the transient behaviour of laponite gels.  

 
Key Words: “paste transition”, thixotropic model, b ifurcation, yield stress, aging, rejuvenation. 
 
 
Résumé : Un modèle thixotrope qui décrit la viscosité η(t) au cours d’une période de repos, consécutive à 

une déstructuration, prédit l’existence d’une bifurcation pour une fraction volumique critique φc2 . Pour 
φ < φc2 , la limite η(t→ ∞ ) reste finie tandis que pour φ ≥ φc2 , la viscosité croît sans limite. C’est dans ce second 
domaine qu’a lieu le vieillissement. A l’inverse de l’absence de bifurcation lorsque le système est sous vitesse de 
cisaillement constante, le même modèle prédit l’existence, sous contrainte constante σ , d’une nouvelle 
bifurcation de η(t) pour une contrainte critique σB  qui s’identifie au seuil de contrainte σy observé en régime 
stationnaire. La divergence de η(t) lorsque σ ≤ σB  est de nouveau associée au vieillissement, mais il semble 
préférable d’utiliser les concepts de restructuration et de déstructuration plutôt que de vieillissement et de 
rajeunissement dans le domaine σ > σB  où la viscosité reste finie. Néanmoins, lorsqu’on applique une contrainte 
σA à un système en cours de vieillissement, le modèle prédit (si σ A ≤ σB) un ralentissement du vieillissement qui  
semble pouvoir être considéré comme un véritable rajeunissement. De plus, le comportement plastique, qui est 
prédit en régime stationnaire dans le domaine σ  > σB , est conforme au modèle d’Herschel-Bulkley au voisinage 
de σB  mais à celui de Bingham pour σ >>σB . Finalement, les prédictions du modèle sous vitesse de cisaillement 
constante, sont discutées par comparaison avec des mesures de vieillissement et de rajeunissement dans des gels 
de laponite. 

 
Mots-clés :  transition pâteuse, modèle thixotrope, bifurcation, seuil de contrainte, vieillissement, 

rajeunissement. 
 

                                                 
1 Most of this paper has been previously published in French [Quemada, 2004]  
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1. Introduction.1. Introduction.1. Introduction.1. Introduction.    

Recent studies of complex systems have shown strong analogies between the rheological 

behaviour of pastes (such as concentrated suspensions and emulsions, gels, foams,…) and 

glasses (such as amorphous solids and spin glasses) [Larson, 1999 ; Cloitre et al, 2000]. The 

liquid-to-paste transition is associated with the emergence of a yield stress, σy, as the volume 

fraction, φ, increases. Under steady conditions, as soon as σ > σy, non-linear plastic behaviour 

appears. It can often be described by the Herschel-Bulkley (HB) model: σ  = σy + Kγ& n (see 

[Cloitre et al, 2000], for instance). This yield stress has been considered as revealing a 

bifurcation in the viscosity of the system. 
 

Coussot et al. observed a bifurcation in the time evolution of the viscosity in three very 

different complex systems (an aqueous suspension of bentonite, a polymeric gel and a 

colloidal glass of laponite), under constant shear stress [Coussot et al, 2002a & 2002b].  All three 

systems exhibited a critical bifurcation stress, σB. When σ > σB  the limiting viscosity η(t→ 

∞) tended towards a finite value, whereas when σ < σB  η → ∞  as t→ ∞. 
 

Analogies between pastes and glasses have been attributed to two shared characteristics: 

structural disorder and metastability. Their origin is considered to be a dynamics in which 

thermal energy alone is insufficient to cause complete structural relaxation. Given these 

analogies, most of the modelling has been based on adding a rheological component to 

classical models for the glass transition in liquids and spin glasses [Bouchaud et al, 1995; Mason 

& Weitz, 1995 ; Sollich et al, 1997 ; Hebraud & Lequeux, 1998]. In concentrated dispersions and gels, 

a paste transition corresponds to the glass transition in classical solids and will represent the 

“jamming transition” observed in these systems [Trappe et al, 2001 ;  Segré et al, 2001]. The main 

measurable characteristics of pastes described by these models are the time evolution of the 

viscosity and the relaxation modulus [Abou at al, 2003 ; Derec et al, 2001]. 

These time-dependent viscosity changes are very similar, if not identical, to what 

rheologists have long defined as “thixotropy” [Mewis, 1979 ; Barnes, 1997]. Nevertheless, in the 

recent literature, what would previously have been called thixotropic behaviour has often 

been interpreted in terms of “aging” and “rejuvenation”. In addition, no attempt has been 

made to reconcile these two paradigms for viscosity changes. Thus, the current situation is 

ambiguous: are thixotropy and aging/rejuvenation identical? If not, under what circumstances 
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is each the appropriate description? The model defined here is a contribution to resolving this 

ambiguity, since the two phenomena coexist and have separate, well-defined roles.  

 

2. The non2. The non2. The non2. The non----linear structurlinear structurlinear structurlinear structural (NLS) modelal (NLS) modelal (NLS) modelal (NLS) model    

The complex system is approximated as a polydisperse dispersion, composed of 

individual particles (IP) which form structural units (SU) at high volume fraction 

(reference?).  IP and SU are considered in the framework of the hard sphere (HS) 

approximation. They have radii of a  and  aeff , respectively. 

The model is based on the following η(φ)-relation for hard spheres: η = ηF(1 − φ/φm) − 2 , 

with ηF the viscosity of the suspending fluid and φm the maximum packing fraction. This 

equation has been widely used for HS suspensions in the literature [de Kruif et al, 1985; Brady, 

1993; Rueb and Zukoski, 1998; Heyes and Sigurgeirsson, 2004]. Here, it is generalized for the 

viscosity of complex fluids (see [Quemada, 1998] for more details) to give: 

 

  η = ηF(1 − φeff /φm) − 2        (1) 

 

with φeff  the effective volume fraction, which depends on the degree of structuring via the 

equation: 

  φeff = (1 + CS) φ          (2) 

  

where S is the fraction of individual particles included in structural units and C=(ϕ −1− 1) is a 

factor related to the average SU compactness ϕ. The fraction S is the structural variable of the 

model. The limiting viscosities at low and high shear, η0 and  η∞, correspond respectively to 

complete structuring (S=1, under very low shear or at rest) and complete destructuring (S=0, 

under very high shear). They are given by: 

η0 = ηF(1 − φ /φ0) − 2        (3) 

 

η∞ = ηF(1 − φ /φ∞) − 2        (4) 

where 

φ0 = ϕ φm   and   φ∞ = φm         (5) 

 

are the maximum effective packing fractions in these two limits (see also the end of section 

6). 
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Under constant shear stress, σ , or shear rate,γ& , the time evolution of the system (SU+IP) 

is described by a kinetic equation for S. For simplicity, it is assumed to be a relaxation 

equation, given by: 

  

  S)S1(
dt

dS
DF κκ −−=        (6) 

 

The kinetic constants for formation, κF, and erosion, κD , of SU depend on a reduced shear 

rate or shear stress, Γ = (σ / σC) or (
C/ γγ && ), where σC  and 

Cγ&  are critical values 

characteristic of the particular system. Inserting the solution of eq. (6), S(Γ, t), into eq.(1) 

automatically gives η(Γ, t). Thus, we can model both the non-Newtonian and thixotropic 

properties of complex fluids, as can most structural models from the literature. However, note 

that the latter generally (and empirically) use a linear relation η(S), whereas the relation is 

non-linear in the present model. For this reason, we call it the Non-Linear Structural (NLS) 

model. In addition, the non-linearity is not empirical, but based on the physics underlying the 

viscosity relation, eq.(1), see Quemada, 1998. 

In dilute systems, non-Newtonian properties result from the competition between 

Brownian diffusion of particles and the friction exerted by the suspending fluid. These two 

forces respectively create and destroy SU. Taking in eq.(6) κF ∝ tBr
-1

  and κD ∝ γ& , this 

competition depends on the ratio κD/κF , i.e. the Péclet number, Pe= tBrγ&=  6πηF a3γ& /KT  

where  tBr ≈ a2/D0  is the Brownian diffusion time in the continuous phase. D0 ≈ KT/aηF  is the 

diffusion coefficient in this phase.  

As the volume fraction of particles increases, the diffusion of particles is increasingly 

hindered by their neighbours. This effect can be approximated by assuming that each particle 

diffuses through an effective medium with the viscosity of the dispersion. Then the diffusion 

time tDiff ≈ κF 
-1 ≈ η a3/ KT appears as a variable which depends on the structure through η 

=η(S). With κD /κF ≈ ηγ&  (in the absence of any interaction potential), one thus obtains an 

effective Péclet number:  
  

  Pe* ≈ σ a3/KT = σ /σCR         (7) 
 

with σCR  ≈ KT / a3  a critical stress. Hence, from eq.(1), tDiff  is an increasing function of φ , 

due to increased caging of particles, which increases both the probability of collision and the 

hydrodynamic interactions. This point is confirmed by the decrease, as φ  is increased, of the 
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two limits of the short and long time self-diffusion coefficients, DS
S and DS

L , which represent 

local particle motions at distances respectively less than aeff   and  greater than a few aeff . 

Therefore one obtains a structure-dependent slow relaxation mode, as the self-diffusion 

coefficients, specially the long-time one [Morris and Brady, 1996]. As the glass transition 

(defined by φg) is approached, particle diffusion slows. When φeff = φg (DS
L→ 0) the particles 

are totally confined inside the transient cages formed by their neighbours. On the other hand, 

at volume fractions above φg, DS
S remains finite, since particles can still vibrate within their 

cages. As the volume fraction increases, the cage size decreases, so this motion decreases. 

The limit DS
S→ 0 is reached when the volume fraction reaches random close packing (RCP) 

φeff = φm ≡ φRCP  [Brady, 1993; Knaebel et al, 2000]. This last limit agrees with the divergence of 

the zero shear viscosity, which has often been observed at this concentration [Heyes and 

Sigurgeirsson, 2004]. From these arguments, it seems quite justified to consider that the range φg 

< φeff < φm is the domain of the paste phase, where particle movement is restricted, but not 

impossible. 

 

3 3 3 3 –––– Th Th Th The paste transition:  Time evolution of viscosity at rest and aging.e paste transition:  Time evolution of viscosity at rest and aging.e paste transition:  Time evolution of viscosity at rest and aging.e paste transition:  Time evolution of viscosity at rest and aging.    

3.1 3.1 3.1 3.1 –––– Effect of volume fraction on  Effect of volume fraction on  Effect of volume fraction on  Effect of volume fraction on φφφφeff(t) 

 

The time-evolution of the viscosity is now analysed for a system at rest after 

destructuring (for instance, by filtering or application of a large amplitude oscillation). With 

the time-dependent viscosity η[ φeff(t)], the kinetic constant of formation can be written  κF ≈ 

(η a3/KT )-1= κA0 /ηR(t) = κF(t), where κA0 = (6πηF a3/KT)-1, is a constant with units of s -1. A 

natural unit for the dimensionless time is κA0t. As the viscosity η(t) of the system during 

restructuring is given by eq.(1), we obtain: 
 

  κF = κA0 (1− φeff /φm)2          (8) 
 

At rest, κD ≈ γ&= 0 and eq.(3) becomes dS/dt = κF (1− S). With eq.(8), this equation can be 

solved iteratively, starting from S = Sinit . 

Based on these considerations, Fig.1 shows typical results for the time-evolution of the 

effective volume fraction, φeff(t), as a function of dimensionless time. In particular, it shows 

how the final state of the system depends on the true volume fraction φ . Note that, as 

discussed at the end of the previous section, the two horizontal straight lines φeff =φg  and 
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φeff =φm limit two domains with different behaviour : fluid for φeff < φg and paste for φg < 

φeff < φm. A critical value φ  =φc2 divides the paste domain in two, depending on the limit of 

φeff  as t → ∞ : φeff(∞) remains less than φm when φ < φc2 , while φeff(∞) → φm when φ ≥ φc2 . 

Thus two states of the system can be distinguished: 1) when the steady viscosity remains 

finite, the system will be called a “soft paste”; 2) when the steady viscosity tends to infinity 

the system will be considered a “hard paste”. 

      

}

}
   

 

paste 

phases 

 

 

fluid 

phase 

Fig.1 – Evolution of the effective volume fraction vs. the reduced time κA0 t. The curves  φc1, φc2  and φc3  
divide the domain into sub-domains corresponding to the different states of the  system.  NLS-model 
parameters :  ηF = 1 mPas; φm =ϕ = 0.637; Sinit= 0.1; κA0 = 103 s-1 )  

 

There are two other critical volume fractions. First, φ = φc1 is the lowest volume fraction 

for which the glass phase can be reached: φeff(∞) → φg  and second, φ =φc3  is the lowest 

volume fraction for which the system is in the glass phase at time zero: φeff(0)= φg . If φ <φc1, 

the system will remain fluid; if φ >φc3 , the system is initially in the hard paste state and 

remains so indefinitely. For complete restructuring, i.e. when S = 1 at t→ ∞ ,  we can use 

eq.(2) to obtain: φc1 = ϕφg , φc2 = ϕφm and φc3 = φg /(1+CSinit).  
 

For the example shown in Fig.1, the critical values are φc1 = 0.369 , φc2 = 0.406  and φc3 = 

0.548. These values are due to the choice of ϕ = 0.637 for the mean compactness of SU. This 

choice does not affect the shape of the state diagram. It only influences the position of the 
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critical values. Table 1 summarises the behaviour corresponding to the various ranges of 

volume fraction. 

Table 1. Different types of behaviour 

Domain Behaviour Initial and final effective 
volume fractions 

φ  < φc1 Fluid φeff(0)<φg ; φeff(∞)<φg 

φc1<φ <φc2 Fluid → Soft Paste  φeff(0)<φg ; φeff(∞)<φRCP 

φc2<φ <φc3 Fluid → Hard Paste φeff(0)<φg ;  φeff(∞) = φRCP 

φc3<φ <φRCP Hard Paste  φeff(0 >φg ; φeff(∞) = φRCP 
 

3.2 3.2 3.2 3.2 –––– Effect of volume fraction on  Effect of volume fraction on  Effect of volume fraction on  Effect of volume fraction on η(t). 
 

Fig.2 shows the time evolution of the relative viscosity corresponding to these different 

kinds of behaviour at different, constant volume fractions. 

 
Fig.2 – Relative viscosity vs. reduced time κA0 t. The bold curves φc1, φc2  et φc3 separate the different 

domains of behaviour shown in Table 1. From bottom to top, the six intermediate curves correspond to φ = 
0.35; 0.38 ; 0.47 ; 0.5; 0.601 ; 0.6025. The top two curves, with φ >φc3, show the extremely rapid variation of 
the initial value of η as φ     approaches φm . Same values of the NLS-model parameters were used as for Fig.1. 

 

Studying the long time evolution of η(t) allows us to answer the following question, at 

least partly: Can the viscosity changes of hard pastes be regarded as aging? 

Starting from the expressions for η , φeff , dS/dt and κF(t), and putting  

          

fluid      
φ c1 

  

fluid →→→→ 
hard paste 

fluid →→→→ 
soft paste 

φ c2 

φ c3 

 

hard paste 
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  α = φ/φc2 – 1          (9) 
 

one obtains the following differential equation for the function u = (1-φeff /φm)−1  
 

  dt
u

du
A01

κ
α

=
+ −          (10) 

 

Crossing the boundary φ  = φc2 changes the sign of α . This leads to three types of solution to 

eq.(10), hence to three different types of behaviour, depending on whether α < 0, α > 0 or 

α = 0.  

A) If α < 0, φeff (t→ ∞ ) < φm  , so the limit of u is finite, and hence for η:  
 

  η (t→ ∞) ≈ ηF α−2{1- exp[-α2κA0 t]}
2      (11) 

 

which corresponds well to the viscosity limit at zero shear rate, eq.(3), with zero shear 

packing φ0  = ϕ φm , shown within the domain φ  < φc2 in Fig.2. 

 

B) If α > 0 , one has φeff → φm  if  t→ ∞ , so both u and η tend to infinity. Hence, the long 

time solution of eq.(10) reduces to  u ≈ α κA0 t , giving: 
 

  η (t→ ∞ )  ≈  ηF α 2(κA0 t)
 2       (12) 

 

This result agrees with the asymptotic limit of the curves in Fig.2 for φ  >φc2: a straight line 

with slope two in logarithmic coordinates2. 
 

C) If   α = 0 , eq.(10) gives u2 = 2κA0t + const  and, putting ηinit = η(t=0), leading to: 
 

  η = ηinit + 2 ηF κA0 t        (13) 
 

for the whole of time dependence, agreeing with the asymptotic limit of η along the boundary 

 φ =φc2 in Fig.2: a straight line with slope one in logarithmic coordinates. 

Therefore, the rheological behaviour of the system at rest shows a bifurcation at the 

critical volume fraction φ = φc2. Moreover, at rest, it appears that the absence of a limiting 

viscosity when φ ≥ φc2 is due to both aging and metastability of the system, as shown in the 

next section. 

 

                                                 
2 Clearly, this quadratic asymptotic behaviour is due to the form of eq.(1) with an exponent of −2. Changing to 

an exponent of −q will lead automatically to an asymptotic behaviour in  t q. 
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3.3 3.3 3.3 3.3 –––– Long time behaviour of hard pastes: aging and metastability Long time behaviour of hard pastes: aging and metastability Long time behaviour of hard pastes: aging and metastability Long time behaviour of hard pastes: aging and metastability        

        

In the framework of the analogy between the paste and glass transitions, the behaviour 

described by eq.(12) when φ >φc2  seems to correspond to the lack of equilibrium observed in 

glassy phases below the glass transition temperature Tg. Moreover, one also recovers the fact 

that the characteristic time tStr for “structuring”, associated to the evolution of η(t),  becomes 

longer and longer as time elapses. From eq.(12), using  tStr ≈ η(dη/dt) −1 to estimate the order 

of magnitude of this time, one obtains 

  tStr  ≈  t          (14) 

 

This dependence agrees with stress relaxation measurements of colloidal gels submitted to 

oscillations of very weak amplitude after some rest period of duration tw: these measurements 

show that the order of magnitude of the relaxation time evolves as tw , i.e. as the age of the 

system, which is a general characteristic of physical aging (see [Knaebel et al, 2000], for 

instance). As this age is identical to the evolution time of η(t), it seems justifiable to speak 

about aging when φ  > φc2 . 

Furthermore, as expected, restructuring is slower for harder pastes, i.e. when the initial 

effective volume fraction (at the end of the preparation) is closer to φm. In other words, the 

fluid-paste transition (at φeff  = φg) occurs sooner, leading to a slower restructuring.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Rate of restructuring as a function of φ . The fall is more and more abrupt as φ  increases above 
φc2 (here φc2 = 0.406) and becomes extremely steep as φ → φm. Same values of NLS-model parameters as in 
Fig.1, with κA0  tfin ≈≈≈≈ 2.10 4 . 
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Therefore, taking into account the fact that the rate of restructuring reached after a given 

long period decreases very abruptly, it appears justified to consider this abruptness as 

revealing the system metastability as φ  approaches φm. Fig.3 shows evidence for this 

metastability. Define the rate of restructuring as the ratio r(φ )= 100*(Sfin− Sinit )/(1− Sinit), 

where Sinit=S(t=0) and Sfin=S(t=tfin). Figure 3 shows that when φ  is increased above φc2, the 

“final” value (for κA0 tfin >>1 ) is increasingly far from S = 1, which is easily reached in the 

fluid phase, when φ < φ c2. 

 

 

4 4 4 4 ---- Evolution of  Evolution of  Evolution of  Evolution of ηηηη(t) (t) (t) (t) at constant shear rateat constant shear rateat constant shear rateat constant shear rate: : : : structuring and destructuring. structuring and destructuring. structuring and destructuring. structuring and destructuring.     
 

At constant shear rate, the viscosity always exhibits a plateau as t → ∞ , so the divergence 

of the viscosity and the bifurcation disappear. Using in eq.(6) a kinetic constant κD which 

depends linearly on shear rate:  
 

  κD = kC γ&          (15) 

 

defines the simplest NLS-model. Thus, at constant shear rate, this model does not predict 

either aging (in the sense used above) or, in consequence, rejuvenation. Moreover, for a given 

initial structure Sinit associated with an initial viscosity ηinit , there is a critical value 
Kγ&   

 

  
Kγ& = (κFO /ηinit)(1- Sinit)/ Sinit        (16) 

 

which cancels the RHS side of eq.(6). This value leads to S = constant, thus keeping its initial 

value Sinit , that is a constant viscosity η = ηinit  from t = 0 onwards. 

If γ&  
>

Kγ& , one has dS/dt < 0 , i.e. destructuring, which causes a viscosity decrease. 

Conversely, dS/dt > 0  if γ&  
<

Kγ&  , so the viscosity increases3, due to  structuring.  

Fig.4 illustrates these results (with 
Kγ& = 3.92  for Sinit= 0.4). It seems impossible to speak 

about aging in the case of this structuring and, a fortiori, about rejuvenation in the case of 

destructuring. These viscosity changes are only due to thixotropy. 

 

                                                 
3 For Sinit = 0 (i.e. if the agitation completely breaks down the structure), S and therefore η  should increase, 

starting from its minimal value η∞ , eq.(4).  
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Fig.4 –Relative viscosity vs. reduced time tR = κA0 t  under γ&  = const. 

Values of κD (s
-1) = kCγ&     (growing from top to bottom) : 0 ; 10-7 ; 10-5 ; 10-3 ; 10-1 ; 1 ; 10 ; 102 ; 103 ; 104  

The critical value which gives η = const  is  κDK = 1.96 
(φ = 0.50 ; kC = 0.5,  Sinit = 0.4 ;  same values for other parameters as for Fig.1) 

  

5 5 5 5 ---- Evolution of  Evolution of  Evolution of  Evolution of ηηηη(t) (t) (t) (t) under under under under constant stressconstant stressconstant stressconstant stress: aging and rejuvenation. aging and rejuvenation. aging and rejuvenation. aging and rejuvenation.    

 5.15.15.15.1---- The  The  The  The NLSNLSNLSNLS----model under constant stressmodel under constant stressmodel under constant stressmodel under constant stress. 

Using the structural viscosity defined above, η(t)=η[S(t)], the instantaneous shear rate 

under a constant shear stress is defined as γ& (t) = σ /η(t), leading, with eq.(15), to a time 

dependent kinetic constant for destructuring, κD =  kC σ / η(t). 
 

Using the relative viscosity ηR(t)=η(t)/ηF  and the critical stress σc=κA0 ηF / kC  in eq.(6) 

gives: 
 

  [ ])t(S)/1(1
)t(dt

dS
c

R

0A σση
κ

+−=       (17) 

 

Under steady conditions, (dS/dt=0), the solution of eq.(17) is Seq= (1+σ/σc)
-1. From 

eqs.(1−5), the viscosity can be written as η = ηF[1 − (1−χ) Seq]
−2 where χ =(1-φ/φ0)/(1-φ/φm) is a 

rheological index [Quemada, 1998]. The steady viscosity is thus given by: 

 

    

2

/

/1









+
+= ∞

c

c
RR σσχ

σσηη         (18) 
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This equation describes shear thinning behaviour when χ < 1 and plastic behaviour when χ < 

0. In the latter case, the relative viscosity is given by: 

 

  

2













−
+= ∞

y

c
RR σσ

σσηη         (19) 

 

where σ y  is the yield stress that depends on φ as: 

 

  








−
−

=
∞φφ

φφσσ
1

10
cy         (20) 

 

 

5.25.25.25.2    –––– Aging and rejuvenation under constant  Aging and rejuvenation under constant  Aging and rejuvenation under constant  Aging and rejuvenation under constant shear shear shear shear stressstressstressstress  

With σ = constant, the function u =  ηR
1/2 = (1− φeff /φm)−1 should verify the following 

equation, deduced from eq.(17): 
 

  dt
u

du
Ac 01

)/1( κσσ
β

+=
+ −        (21) 

 

with  

  
c

B

σσ
σσαβ

/1

)/1(

+
−=         (22) 

and 
   

  
m

2c
cB /1

1/
φφ

φφσσ −
−

=         (23) 

 

α  is defined by eq.(9).  

As for α = 0  in eq.(10), a bifurcation will be observed for β =0 in eq.(21), i.e. when σ 

reaches the critical stress σB given by eq.(23). Note that this bifurcation only exists (σB ≥ 0) if 

φc2 ≤ φ ≤ φm . Moreover, note that eq.(21) reduces to eq.(10) if α and κA0  are used in place of 

β  and κA0(1+Aσ), in agreement with the limits at σ = 0. It is thus possible to deduce directly 

the solutions of eq.(21) at κA0 t >>1 from the expressions for u that led to eqs.(11−13). 

Therefore, at long times the viscosity can behave in three ways: 
 

a/ if σ  >  σB 
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  η (t→ ∞ )≈ )]tBexp(1[
1/
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                 (24) 

 
 

 where  B = α2 (σ/σB -1)2 (1+σ/σc)
-1                   

 

b/ if σ  <  σB 

 

  η (t→ ∞ )  ≈  ηF α2(1-σ /σB )
2 κA0

2 t 2      (25) 
 

 

c/ if σ  =  σB 

            η = ηinit + 2ηF (1+σ/σc)κA0 t          (26)    
 

If σ is varied, at constant volume fraction, on both sides of the bifurcation σ = σB , one 

thus recovers behaviour similar to that observed at σ = 0 as φ  varied on both sides of the 

limit φ =φc2 . In particular, if σ ≤    σB , the absence of any limit for η(t) will be associated with 

aging. On the contrary, if σ >σB , the existence of a finite value for the limit η(t→ ∞ ) leads to 

a steady equilibrium that will be discussed below (section 6). 
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Fig.5- Relative viscosity vs. reduced time tR = κA0t .  
The bifurcation is observed at σ = σB  as the reduced stress σ /σc   is varied.  

Reduced stress values  (from top to bottom ) : 0.1 ; 0.3 ; 0.36 ; 0.371 ; 0.38 ; 0.4 ; 0.5 ; 1 ; 2 ; 10 ; 50 ; 100. 
 (Model parameters:  φ = 0.45;  ηF = 1 mPa.s; σc = 10 Pa ; ϕ= 0.637 ; Sinit= 0.1 ; κ A0 = 103 s-1). 

 
 

Fig.5 shows evolution of the relative viscosity, ηR, as a function of the dimensionless 

time,  tR=κA0t , for different values of the reduced stress, σR = σ /σc , with φc2 ≤ φ ≤ φm . The 
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lower limit is natural, since even at zero stress, there is insufficient structure for a bifurcation 

to occur.  Fig.5 shows: 

(i) steady viscosity plateaus, defined by eq.(24) as σ >σB ;  

(ii) the bifurcation line (with slope 1) at σ =σB ,  

(iii) viscosity divergences (asymptotes with slope 2) for σ <σB   
 

However, a stress, σK, exists which cancels the RHS of eq.(17), so the system remains in 

its initial state (S=Sinit). It is given by: 
 

  σK = σc(1− Sinit)/Sinit        (27) 

For any stress  in the range σB ≤    σ  < σK , increasing the viscosity from its initial value 

corresponds to restructuring (dS/dt > 0). For σ  > σK , decreasing the viscosity from its initial 

value corresponds, in contrast, to destructuring (dS/dt < 0). This is shown in Fig.6 for σK 

/σc=9  and Sinit = 0.1. It seems difficult to argue that this destructuring, due to thixotropy, 

could be considered as rejuvenation. So, as in the case of evolution at rest in the fluid domain, 

discussed in section 3.2, it is impossible here to consider restructuring, also due to thixotropy, 

as an aging process.  

On the other hand, for σ ≤ σB , the unbounded viscosity increase, as well its slowing 

down (with a characteristic time ≈ system age), does seem to correspond to aging. 

Nevertheless, an open question remains: what it will happen if, after aging under a given 

stress σ1 < σB , applied up to a time t0 , a higher stress, σ2 > σ1 , is applied from t = t0 ? If 

destructuring occurred, at least at the beginning, should it be called rejuvenation? This point is 

discussed in section 5.4 . 

Fig.6 shows the high shear stress behaviour, which is invisible in Fig.5, due to the 

scaling. On a linear scale, relative viscosity clearly decreases for σ  > σK  (= 9σC here), 

illustrating the shear-induced destructuring. 

Fig.6 shows a result comparable to that described in a recent article [Coussot et al, 2002a]. 

However, note that their model led to predictions which differ from those presented here. In 

this article, the stress value for bifurcation is defined by the structuring-destructuring 

equilibrium –hence it is identical to σK in eq.(27). Therefore, it cannot be considered as an 

intrinsic characteristic of the material, since its value depends on the initial structure. 
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Fig.6 – Idem Fig.5, but at high stresses .  
“Rejuvenation”  is observed  for σR > σ RK = 9  (see text). 

(Parameter values: idem Fig.5) 
 

 

The corresponding constant viscosity η = ηB, thus separates the region of destructuring 

(where η decreases towards a finite limit, η < ηB ) from that of structuring (where η increases 

without limit, η → ∞ ). On the contrary, Fig.6 well illustrates a characteristic of thixotropic 

fluids: the viscosity increases towards a finite value when the stress applied to a system at 

equilibrium is decreased. The resulting increase of η  is due to the system restructuring, as 

shown in Fig.6, for σR =5. 
 

5.3 5.3 5.3 5.3 ----    Effects of variations of initial structure.Effects of variations of initial structure.Effects of variations of initial structure.Effects of variations of initial structure.    
 

Figs.7A & 7B illustrate the effects of varying the initial structure, characterised by Sinit, 

for σ ≤ σB  and σ > σB  , respectively. 

In the first case, the structural variable is bounded by the upper limit of φeff  in the paste 

domain, φm. From eq.(2), this corresponds to the maximum value Sm = (φm /φ −1)/C. As Sinit 

increases, both φeff  and η increase. However, as dS/dt ≈ 0, there is a quasi-stationary 

viscosity4 along a higher and higher η-plateau of longer and longer duration, before the η-

divergence as t2 occurs. This is shown on Fig.7A where, as Sinit   is approaching Sm , all η -

plateaus → ∞ . 

 

                                                 
4 This corresponds to the abrupt fall of the restructuring rate shown in Fig.3 . 
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Fig.7  - Evolution of η(t) resulting from applying a constant stress,  
following rest periods of increasing lengths  

(thus leading to growth of Sinit  , however bounded by Sm ) 
 (A)  σ < σB  , with Sm = 0.729  and Seq =0.833          (B)  σ > σB  , with Sm = 0.729  and Seq =0.667 

(Model parameters:  φ = 0.45 ;  ηF = 1 mPa.s ; σc = 2 Pa ; ϕ = 0.637 ; Sinit= 0.4 ; κ A0 = 103 s-1 ). 
 

In the second case, σ > σB , the equilibrium structure is always accessible since  Seq< Sm , 

leading to a finite limit for η(t→∞). As Sinit is increased, there is first restructuring, if  Sinit  < 

Seq , then destructuring if Sinit  > Seq (with obviously η = const for Sinit  = Seq). As in the case 

σ ≤ σB , η increases more and more as Sinit approaches Sm , giving again a higher and higher 

η-plateau of longer and longer duration and a quasi-stationary state with dS/dt ≈ 0, even 

though the equilibrium structure,  Seq=(1+σ / σc)
-1, was not reached. Fig.7B shows these 

properties, where the trends are similar to those observed experimentally in bentonite 
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suspensions for increasing rest times (cf. [Coussot et al, 2002b, Fig.5]). The results in Fig.7A & B 

show that, under given stress σA , it is not possible to obtain the bifurcation by modifying Sinit 

: either η diverges, if σA ≤ σB , or η remains finite if σ1 > σB . In this model, the stress 

bifurcation is intrinsic, independent of initial conditions, in contrast to the predictions of 

Coussot and co-workers.  

In both cases, σ  ≤ σB  or  σ  > σB , ranges of quasi-steady viscosity can be considered as  

revealing a system metastability which grows with φ . Moreover, the presence of such 

viscosity plateaus might explain : i)  the time-dependence of the yield stress [Nguyen & Boger, 

1992], which is very frequently observed in hysteresis cycles and ii) much of the difficulty in 

the experimental determination of the yield stress (see [Cheng, 1986] for instance). 
    

5.4 5.4 5.4 5.4 –––– Rejuvenation under constant stress after aging Rejuvenation under constant stress after aging Rejuvenation under constant stress after aging Rejuvenation under constant stress after aging    
    

When a stress acts on a system which has aged, there is a return towards the previous 

state. It is natural to call this return rejuvenation. On the other hand, fluids and soft pastes 

evolve towards an equilibrium state, so such a process is quite foreseeable in the framework 

of a thixotropic model (remember that thixotropic systems are reversible). In this case, it 

seems clear that the term “rejuvenation” is inappropriate. However, it is much less clear for 

hard pastes, since they do not evolve towards equilibrium, so they may lose reversibility. The 

following discussion will demonstrate that the NLS-model can predict behaviour which can, 

to some extent, be considered as rejuvenation.  

If a system with φ  >  φc2 is at rest5 for a time t0 , it ages with a viscosity which grows as 

t2, in agreement with eq.(12),  as displayed on Fig.8, curve(a). At t = t0 , one applies a stress 

σm  which is maintained for  t > t0 . 

Several cases are possible, according to the σm-value in comparison with σB on the one 

hand and, on the other hand, a value σK  still defined by eq.(27), but with Sinit = S(t0). Fig.8 

illustrates three cases, for values of σm  (m = 1, 2, 3): 

(i) for σ1 such that σ1 >σK >σB , destructuring occurs at t > t0 . The viscosity decreases to 

the steady value corresponding to the equilibrium structure reached under σ1. Aging thus 

stops at t0  and it seems impossible to speak about rejuvenation after t = t0. This is shown 

in curve (b) of Fig.8, for values of the relative stress σR =σ /σc : σR1 =1.5 ; σRK =1.35 and 

σRB = 1.08. 

                                                 
5 It would be the same if the system had been left under any stress such as σ0  < σB . The special case σ0 =0  is 

here considered in order to simplify the discussion. This choice does not reduce the generality of the results. 
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relative viscosity  
φ = 0.50 ; σRB = 1.08
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Fig.8 - Relative viscosity vs. reduced time tR = κA0t .  

Effect of applying a reduced stress σ A /σc = σRA  , following a rest period (σR0 = 0 ; duration tR0).  

Curve Index: ( σR0 ; σRm )  means that σR = σR0   for  0 < tR <  t R0  and  σR = σRm  for  tR  > t  R0 .   

 “rest” corresponds to (0 ; 0)   --  Bifurcation appears for  σR =  σRB = 1.08 , value in between σR1  and σR2. -  

Duration: tR0 = 200. (same values of other NLS-parameters as for Fig.4) 
 

 

ii) for σ2 such that σK >σ2 >σB , structuring continues beyond t = t0, however without 

possibility to strictly speak about aging since, under σ2 = const, the viscosity grows towards a 

finite value. This means again that aging stops at t0  (see Fig.8 curve (c), for σR2 =1.2).  

iii) in contrast, for σ3 >σB , structuring continues beyond t0, with a viscosity which 

diverges as t2. Hence, aging now continues as shown in Fig.8 curve(d) for σR3 = 0.9 .  

Nevertheless, in the latter case, this divergence is delayed in comparison with what would 

be observed if the system remained at rest after t = t0 . In other words, the viscosity at each 

time t1 > t0  is lower than that it would be at the same time t1 if it had remained at rest. This 

slowing down of aging could be termed rejuvenation. 
 

It is worth noting one rather general characteristic : for a given system, the magnitude of 

applied stress at t = t0 , compared to that of σB, given by eq.(23), fixes the future behaviour of 

the system, whatever the duration of t0 .  
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Fig.9  - Evidence of the bifurcation at σR = σRB   

under applying a stress after a rest period (duration tR0 = 8.103). 

Rejuvenation under shear rate is associated to variations under σR < σRB 

(same SNL-parameter values than for Fig.4). 

 

Fig.9 illustrates this point. It shows one evolution from each side of the bifurcation. In 

comparison with aging at rest, the evolution for σR, which is slightly lower than σRB, shows an 

extremely large “rejuvenation”. To recover the same state of aging (choose the viscosity to 

define the age, for instance the value ηR ≈ 1010 reached after a rest duration tR0 ≈ 106), one 

must wait for a very large time (tR ≈109) for the system submitted to σR = 0.371 at t = tR0 to 

reach this state. Such a delay could be taken as a measure of the rejuvenation, still keeping 

this term to mean a slowing down of aging. 

 

6 6 6 6 –––– Ste Ste Ste Steady viscosity: shearady viscosity: shearady viscosity: shearady viscosity: shear----thinning and plastic behaviour thinning and plastic behaviour thinning and plastic behaviour thinning and plastic behaviour     

For σ >σB , eq.(24) gives the variations η(t). Under steady conditions (t → ∞), one 

recovers the behaviour of a fluid with a yield stress σB defined by eq.(23). The steady 

viscosity is obtained from eq.(24): 
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In recent work, this plastic behaviour, usually observed experimentally, has been very often 

represented by an empirical relation like the Herschell-Bulkley (HB) law 

 

  σ = σy + Kγ&m                     for σ > σy                                    (29) 

In order to compare eqs.(28) and (29), they must be written as γ&  = f(σ) . Eq.(28) becomes 
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  γ&  = 0                   for  σ ≤ σB 

using in eq.(30), the “high shear”  viscosity limit η∞  at σ  >> σB    and  σ  >> σc  , given by 

eq.(4). Eq.(29) can be expressed as: 
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Fig.10  - Fitting HB-model to NLS-model curves 

Parameters: NLS: η ∞= 10 mPa ; σc = 50 Pa ; σB = 10 Pa     

              HB: K = 1.806 Pa.sm ;  m = 0.458 ; σy = 10.1 Pa 
 

Despite the very different forms of eqs.(30) and (31), it is always possible to adjust the 

HB-model parameters K and σy to fit the variation described by eq.(28), with a fair 

determination of the yield stress. Clearly, the determination will be better if the fit is confined 

to data measured at low shear rates.  
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Fig.10 illustrates a fit to the flow curve calculated using the same parameters as were 

used for Fig.1. The agreement is very satisfactory, especially near the yield stress6. Obviously, 

this fit will not work at high shear rates, since the asymptotic behaviour of eq.(31) is only 

identical to the linear one of eq.(30) in the case of Bingham fluids (m=1). A large number of 

theoretical and experimental studies have shown 0.5<m<0.9, so using the NLS-model should 

be a step forward, compared with using a simple model, such as Herschell-Bulkley, which is 

the usual procedure in the literature. 
 

Finally, note that eqs.(28) and (23) are quite consistent with eqs.(19) and (20), if one 

takes φ0 ≡ φc2 = ϕ φm , φ∞ ≡ φm . See eq.(5). These values correspond to steady limits of φeff 

=φ (1+CS)  at very low and very high shear rate : as φ ≥ φc2 , one has the following limits at t 

→ ∞ : 

 (i) S = 1  for σ /σc << 1, giving  φeff = φ /ϕ , hence  φeff /φm ≡ φ /φc2 ;  

(ii) S = 0 for σ /σc >> 1, giving   φeff  ≡ φ .  

Thus, the limiting packing fractions φ0 at σ = 0 and φ∞  as σ → ∞  are identical to φc2 and φm, 

respectively. 
 

7 7 7 7 ----    Comparison with experimental data.Comparison with experimental data.Comparison with experimental data.Comparison with experimental data.    
        

 

The time-dependent behaviour of colloidal suspensions of synthetic Laponite at constant 

shear rate has recently been interpreted in terms of aging and rejuvenation [Abou et al, 2003]. 

Here the aim is to show that this data can be modelled using the (“purely thixotropic”) NLS-

model. This approach needs to choose the values of volume fraction φ  and kinetic constants 

kC and κA0 involved in eqs.(15) and (6). Such “modelling” of experimental data can be 

performed7 by only changing the values of φ and the pair (kC ;κA0) that will be respectively 

associated to parameters which characterize each measured sample, i.e. weight concentration, 

cm, and ionic strength, I . Although it seems plausible that I influences the kinetic processes, 

close association of I with kC  and κA0  would require complex theoretical work, which is not 

attempted here. Thus, here the correspondence is only phenomenological. In figure captions, 

it will be noted: 

[φ ; kC ; κA0 (s
-1)] ↔ [cm % ; I mM]). 

                                                 
6 For instance (Fig.10), the relative error in σy  is less than 2 % for 0 <γ&< 200 s−1   .   
7  keeping the other NLS parameters unchanged :  φm = 0.637; ηF = 1 mPa.s ; ϕ = 0.637 however with  Sinit= 0 . 
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Figs.11, 12, 13 and 14 are comparable to experimental data [Abou et al, 2000 ; Figs.2, 4, 5 and 

6, respectively8]. The figures show a fair correspondence between φ  and cm and, the pair (kC 

;κA0) and  I . Naturally, free values for φ , kC  and κA0 have been used, although imposed to be 

common for all data having same sample characteristics (cm=1.5%; I=7.10-3), hence for 

Figs.11(a), 12 and 13.  

 

 
 

 

 

Fig.11 – Restructuring under γ& = 500 s−−−−1 

(a) [0.35 ; 2.10-3; 20]  ↔↔↔↔  [1.5 ; 7.10-3] ; 
(b) [0.35 ; 3.10-4;  3]  ↔↔↔↔ [1.5 ; 5.10-3] 

 

 
Fig.12 – Restructuring or destructuring 

under γ& = 500 s−−−−1  starting from states first submitted to 
restructuring during periods of rest during 

(a): tw = 0 min;  (b): tw = 20 min;  (c): tw = 40 min. 
With  [0.35 ; 2.10-3; 20]  ↔↔↔↔  [1.5 ; 7.10− 3− 3− 3− 3] 

 

Comparison of Fig.11(b) with Fig.11(a) shows that slightly decreasing  I leads to a 

change in kC and κA0 , however their ratio (kC /κA0=10−4) is unchanged, which is compatible 

with an increase of effective particle radius.  

 Fig.129 shows viscosity changes towards equilibrium states after different periods at rest. 

Restructuring occurs in curves (a) and (b)10, while destructuring occurs in curve (c), since the 

initial state is more structured than at equilibrium. As a matter of fact, after complete 

destructuring (Sinit = 0), “aging dynamics” (in fact, restructuring) under γ&  = 0 , S(t) reaches 

the values  S(20 min)= 0.546  and  S(40 min)= 0.703 . These values are the Sinit ones, required to 

calculate evolutions under γ&  =500 s−1, shown, respectively, in Fig.12, (b) & (c). 

                                                 
8 Figs.1 and 3 from [Abou et al, 2003] were not used, as they concern complex viscosity, which is not considered 

here.  
9 with the same parameter values as in Fig.11(a). 
10 curve (a) is identical to curve (a) of Fig.11  
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In the case of Fig.13, using same parameter-values leads to plateaus at 100 and 50 s -1, 

lower than the measured ones. Note that this could obtained by assuming a slight dependence 

of kC on γ&  (i.e. discarding the hypothesis of linearity in γ&  for structure kinetics, assumed 

here for simplicity). 
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Fig.13 – “Rejuvenation” under constant shear rates  γ& ( s−−−−1 ) =  (a): 50 ;  (b): 100 ; (c): 500 . (see text).    

(with [0.35 ; 2.10-3; 20]  ↔↔↔↔  [1.5 ; 7.10− 3− 3− 3− 3]) 
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Fig.14 – Steady viscosity  vs γ& .   

(Curve drawing limited to used experimental 
domain  (10 <γ&  <104) 

(a)  [0.35 ; 2.10-3; 20]    ↔↔↔↔  [1.5 ; 7.10− 3− 3− 3− 3].  
(b) [0.40 ; 4.10-3; 500] ↔↔↔↔  [3.7 ; 10-4]. 

Fig.15 – Steady viscosity  vs γ&  . 

(a) [0.35 ; 2.10-3; 20] 
(b) [0.40 ; 4.10-3; 500] 
(c) [0.4057 ; 4.10-3; 500]. 

 

Finally, acceptable model predictions of steady behaviour are shown by curves (a) and (b) 

in Fig.14. However, variations of φ  and cm occur in the right way in contrast with those of 

(kC;κA0) and I. Such discrepancies could result, at least partially, from the difficulty of 
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experimentally reaching a true steady state: the laponite samples under study require 

restructuring times of many hours. 

Nevertheless, it is satisfying to see in Fig.15 that the same parameters used for Fig.14 lead 

to Newtonian plateau viscosities at very low and very high shear rates, as expected for a 

concentrated dispersion. Curves (a) and (b) in Fig.15 indeed represent the same curves as the 

corresponding ones on Fig.14, but over a larger range of shear rate. Moreover, curve (c) 

shows that the limit of plastic behaviour (with η → ∞ ) is well recovered as φeff → φc2  (here 

φc2 = 0.40577 , keeping same values of  φm and ϕ ). 

The relationship between a) the model values: φ , kC and κA0 and b) the experimental 

values: weight concentration cm and ionic strength, I , have not been yet discussed. It will now 

be shown that use of the NLS-model is justified if the complex structure of laponite 

dispersions is taken into account.  

First, it seems clear that the equivalent particles (the “Hard Spheres” of the NLS-model), a 

priori unidentified, are large, mesoscopic structures rather than at the platelet-scale11. 

Moreover, the cm-values can be linked to φ, the HS-volume fraction, by taking into account 

the structural characteristics of the system :  

(i) the laponite Primary Particles (PP) studied in [Abou et al, 2003], are disks with diameter 2a 

= 25 nm,  thickness e = 1 nm and  specific mass ρ = 2.5 g/cm3  

(ii) structures analysed by light, neutron and X ray scattering [Pignon et al, 1997] and by 

cryofracture, TEM et SAXS [Mourchid et al, 1995] as detailed below.  

For I = 10 -3 M  and a weight fraction cm > 1.5 %, [i.e. a true volume fraction cV  = (cm/ρ) 

> 0.006], the system at rest consists of structures at three length scales : a network of fractal 

clusters (FC) with radius R and fractal dimension D, each of them made up of dense 

aggregates (DA) with radius r , themselves made up of sub-units of radius aP (cf. [Pignon et al, 

1997, Fig.3]). The latter could be considered as oriented microdomains (OM) in the form of 

platelets [Mourchid et al, 1995], with diameter 2aP and thickness eP . This thickness is the worst 

defined parameter. Then, the effective volume fraction of OM is evaluated12 from their 

hydrodynamic volume ∝ (aP)
3, leading to φOM = (4/3)(aP /eP)cV . If the DA-compactness is 

close to random close packing (ϕRCP = 0.64), the volume fractions of DA and FC are 

respectively φDA = φMO /ϕRCP  and φFC = φDA (R/aP)
(3-D).  

 

                                                 
11  with interactions of the “soft sphere” type  at low I  [Levitz et al, 2000]). 
12 A similar definition has already been used to model montmorillonite suspensions [Baravian et al, 2003]. 
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Application to data [Abou et al, 2003] (with cm = 0.015 g/ml , thus cV = 0.006). For the 

following evaluation, take 2aP = 30 nm for platelets and 2R ≈ 5 µm, D =1.8, 2r ≈ 1 µm for the 

mesoscopic structures observed at I = 10−3 M [Pignon et al, 1997]. Choosing 3 ≤ eP ≤ 4 µm , one 

obtains13 0.43 ≥ φFC ≥ 0.32 . Without considering that this result confirms the value φ = 0.35 

used for modelling, it supports identifying the FC as the model Hard Spheres, hence with a 

volume fraction φ  >> cV . Furthermore, if the value (= 23) of the ratio φ /cm  was supposed to 

be maintained14 as cm increases, the sol-gel transition would be observed at cm* = φG /23 = 

0.025 (i.e. cV* = 0.01). Three arguments suggest that this transition value is compatible with 

those deduced from experiments: (i) for the re-entrant transition line in the phase diagram 

[Levitz et al, 2000] ; (ii) for the beginning of the viscosity divergence [Baravian et al, 2003] ; (iii) 

for the change (2 → 3) of exponent m in the power law describing the φ-dependent yield 

stress, σy ∝ φ m [Pignon et al, 1997].  

Obviously, an actual data fitting with the NLS-model could be obtained only from better 

knowledge of changes in laponite under shear. This could be achieved by measurements, both 

structural and rheological, under transient conditions in order to improve modelling of the 

structure kinetics.  

 

7 7 7 7 –––– Conclusions and future prospects Conclusions and future prospects Conclusions and future prospects Conclusions and future prospects    

In conclusion, both for systems at rest and under controlled stress, the NLS-model of 

thixotropy has been shown to give satisfactory modelling of aging and, to some extent, shear-

induced rejuvenation. This result has been obtained through giving prominence to bifurcations 

in the time-evolution of viscosity.  

At rest, different domains of volume fraction have been found, that depend on the initial 

structure, i.e. the previous history of the material. This has led to distinguish fluid and paste 

domains, the latter being divided into two states: hard and soft pastes.  

At constant shear rate, the model predicts neither aging nor rejuvenation. Only shear-

induced restructuring or destructuring occurs, depending on initial state of the material. 

On the contrary, under constant shear stress, there is a viscosity bifurcation at a critical 

stress. The critical value has been found to be the plastic yield stress, which depends on the 

volume fraction. As the latter is usually described by the empirical Herschell-Buckley law 

                                                 
13  Larger values, 0.50≥ φAF ≥  0.37 could be obtained using the size 2aeff = 35 nm observed in [Pignon et al, 

1997]. 
14  A hypothesis that is valid for fractal mesostructures. 
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with constant yield, some progress can be expected by using instead the present, physically 

based modelling.  

The importance of distinguishing aging and rejuvenation from simple structural changes, 

restructuring or destructuring, either due to thixotropy alone or also in the presence of shear 

has been emphasized. This need has been illustrated by a satisfactory comparison of model 

predictions with data on laponite submitted to shear rate steps and under steady conditions.  

 Finally, as the model works under all types of transient conditions, further testing can be 

done using stress relaxation and hysteresis cycles. 
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