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Abstract Complex fluids exhibittime-dependent changes in viscosity that have lzsenibed to both
thixotropy and aging. However, there is no conserisuwhich phenomenon is the origin of which chesigA
novel thixotropic model is defined that incorposasaying. Conditions under which viscosity changesdae to
thixotropy and aging are unambiguously defined.costy changes in a complex flugtiring a period of rest
after destructuring exhibit a bifurcation at aiceat volume fractiong.,. For volume fractions less thag, the
viscosity remains finite in the limit— c. For volume fractions above critical the viscogitpws without limit,
SO aging occurs at rest. At constant shear rate fiseno bifurcation, whereas under constant skgass the
model predicts a new bifurcation in the viscosityaritical stressj , identical to the yield stress, observed
under steady conditions. The divergence of theosgisg for o< g is best defined as aging. However, &or>
os, Where the viscosity remains finite, it seems gnadble to use the concepts of restructuring anthudgsring,
rather than aging and rejuvenation. Neverthelebgyva strese, (< dg) is applied during aging, slower aging is
predicted and discussed as true rejuvenation.i®laahaviour is predicted under steady conditiohemo >0g.
The Herschel-Bulkley model fits the flow curve fetresses close tag, whereas the Bingham model gives a
better fit for g >> gg. Finally, the model's predictions are shown tocoasistent with experimental data from
the literature for the transient behaviour of laip@gels.

Key Words: “paste transition”, thixotropic model, bifurcation, yield stress, aging, rejuvenation.

Résumé :Un modéle thixotrope qui décrit la viscosné) au cours d’'une période de repos, consécutive a
une déstructuration, prédit I'existence d'une kiatron pour une fraction volumique critiqug@,. Pour
P< @, lalimite n(t - «) reste finie tandis que powr= @, , la viscosité croit sans limite. C'est dans ce sdcon
domaine qu’a lieu le vieillissement. A l'inverse kBbsence de bifurcation lorsque le systéme ast sidesse de
cisaillement constante, le méme modele prédit $texice, sous contrainte constamte, d'une nouvelle
bifurcation des(t) pour une contrainte critiques qui s'identifie au seuil de contraint observé en régime
stationnaire. La divergence dgt) lorsque o < gz est de nouveau associée au vieillissement, maisnible
préférable d'utiliser les concepts de restructoratet de déstructuration plutét que de vieillisseimet de
rajeunissement dans le domame gz ou la viscosité reste finie. Néanmoins, lorsqu’pplejue une contrainte
On @ un systeme en cours de vieillissement, le mqu@eit (sioa < gg) unralentissement du vieillissementi
semble pouvoir étre considéré comme un véritajungsssement. De plus, le comportement plastiqueest
prédit en régime stationnaire dans le domame gz, est conforme au modeéle d’Herschel-Bulkley au inaige
de gz mais a celui de Bingham poar>>gg . Finalement, les prédictions du modéle sous \ategscisaillement
constante, sont discutées par comparaison avememses de vieillissement et de rajeunissement diesigels
de laponite.

Mots-clés : transition pateuse, modele thixotropejifurcation, seuil de contrainte, vieillissement
rajeunissement.

! Most of this paper has been previously publisimeirench [Quemada, 2004]



1. Introduction.

Recent studies of complex systems have shown staoalpgies between the rheological
behaviour of pastes (such as concentrated suspenaia emulsions, gels, foams,...) and
glasses (such as amorphous solids and spin glgsaes), 1999 ; Cloitre et al, 2009. The
liquid-to-paste transition is associated with theeegence of a yield stress;;, as the volume
fraction, @ increases. Under steady conditions, as soan>agy, non-linearplasticbehaviour

appears. It can often be described by the Herdghikley (HB) model:o = gy + K y” (see

[Cloitre et al 200Q, for instance). This yield stredsas been considered as revealing a

bifurcation in the viscosity of the system.

Coussotet al. observed a bifurcation in the time evolution of thiscosity in three very
different complex systems (an aqueous suspensiobenfonite, a polymeric gel and a
colloidal glass of laponite), under constant skstggsgCoussotet al, 2002a & 2002h. All three
systems exhibited a critical bifurcation stregs, Wheno >gg the limiting viscosityn(t -

o) tended towards a finite value, whereas whrenogg 7 - « ast - .

Analogies between pastes and glasses have beduitatrto two shared characteristics:
structural disorder and metastability. Their origin is considered to be a dynamics in \Whic
thermal energy alone is insufficient to cause cateplstructural relaxation. Given these
analogies, most of the modelling has been baseadaing a rheological component to
classical models for the glass transition in liguasthd spin glasseBduchaudet al, 1995 Mason
& Weitz, 1995 ; Sollichet al, 1997 ;Hebraud & Lequeux, 1999. In concentrated dispersions and gels,
a paste transitiorcorresponds to the glass transition in classiolds and will represent the
“jamming transition” observed in these systemagpe et al, 2001 ; Segréet al, 200]. The main
measurable characteristics of pastes describetidse tmodels are the time evolution of the
viscosity and the relaxation modulus$u at al, 2003; Derecet al, 2001.

These time-dependent viscosity changes are verylasjnif not identical, to what
rheologists have long defined as “thixotropyiefvis, 1979; Barnes, 1997. Nevertheless, in the
recent literature, what would previously have beatied thixotropic behaviour has often
been interpreted in terms of “aging” and “rejuven@it In addition, no attempt has been
made to reconcile these two paradigms for viscadignges. Thus, the current situation is

ambiguous: are thixotropy and aging/rejuvenatiantatal? If not, under what circumstances



is each the appropriate description? The modehddfhere is a contribution to resolving this

ambiguity, since the two phenomena coexist and baparate, well-defined roles.

2. The non-linear structural (NLS) model

The complex system is approximated as a polydispelispersion, composed of
individual particles (IP) which form structural tmi (SU) at high volume fraction
(reference?) IP and SU are considered in the framework of thed hsphere (HS)
approximation. They have radii af and acf, respectively.

The model is based on the followimgg-relation for hard spheress = 7:(1 - @a,) "2,
with 7 the viscosity of the suspending fluid aggl the maximum packing fraction. This
equation has been widely used for HS suspensiotigifiterature de Kruif et al, 1985; Brady,
1993; Rueb and Zukoski, 1998; Heyes and Sigurgeims, 2004. Here, it is generalized for the

viscosity of complex fluids (se®{iemada, 1998 for more details) to give:

n=ne(l - @i /gh) " (1)

with @ the effective volume fraction, which depends be tlegree of structuring via the
equation:
@i =(1+CS ¢ (2)

whereSis the fraction of individual particles includedstructural units an@=(¢ *-1) is a
factor related to the average SU compactgedshe fractionSis thestructural variableof the
model. The limiting viscosities at low and high ahep, and 7., correspond respectively to

complete structuringS=1, under very low shear or at rest) and complete detstring S=0,

under very high shear). They are given by:

o =ne(1 - /@) ° 3)

Ne =Ne(1 - @/@.) " ? (4)
where

B=¢ @ and @ =g (5)

are the maximum effective packing fractions in ¢heso limits (see also the end of section
6).



Under constant shear stress,or shear ratgy, the time evolution of the system (SU+IP)

is described by a kinetic equation f8r For simplicity, it is assumed to be a relaxation
equation, given by:

ds
gt KF(1=S)=koS (6)

The kinetic constants for formatiory, and erosionkp , of SU depend on a reduced shear

rate or shear stress; = (g/oc) or (y/yc), where oz and y. are critical values

characteristic of the particular system. Insertihg solution of eq. (6)S(/, t), into eq.(1)
automatically gives(/, t). Thus, we can model both the non-Newtonian andothopic
properties of complex fluids, as can most stru¢tonadels from the literature. However, note
that the latter generally (and empirically) usénaar relation 77(S), whereas the relation is
non-linear in the present model. For this reasam,call it theNon-LinearStructural (NLS)
model In addition, the non-linearity is not empirichlt based on the physics underlying the
viscosity relation, eq.(1), see Quemada, 1998.

In dilute systems, non-Newtonian properties redutim the competition between
Brownian diffusion of particles and the frictionested by the suspending fluid. These two

forces respectively create and destroy SU. Taking@q.(6) < 7 ts;* and xp [7 y, this
competition depends on the ratg/kr , i.e. the Péclet numbeRe= 5 )= 677 a3y/KT

where tg; =a?/D is the Brownian diffusion time in the continuquisaseD, =KT/are is the
diffusion coefficient in this phase.

As the volume fraction of particles increases, diféusion of particles is increasingly
hindered by their neighbours. This effect can ber@amated by assuming that each particle
diffuses through an effective medium with the vstpof the dispersion. Then the diffusion
time toir = k¢ * = na’l KT appears as a variable which depends on the steutitoughs

=7(S). With ko /&= =n) (in the absence of any interaction potential), dnes obtains an

effective Péclet number:
Pe* =~ ga’ /KT = o/ocr (7)

with ger =KT / & a critical stress. Hence, from eq.(fys is an increasing function a,
due to increased caging of particles, which ina@esdsoth the probability of collision and the

hydrodynamic interactions. This point is confirm®gdthe decrease, s is increased, of the



two limits of the short and long time self-diffusicoefficients Ds® andDs-, which represent
local particle motions at distancesspectively less thages and greater than a feas .
Therefore one obtains a structure-dependent sldaxatgon mode, as the self-diffusion
coefficients, specially the long-time on®idris and Brady, 1996]. As the glass transition
(defined byg) is approached, particle diffusion slowghen @ = ¢ (DsLﬁ 0) the particles
are totally confined inside the transient cagemfat by their neighbours. On the other hand,
at volume fractions above, Ds> remains finite, sincarticles can still vibrate within their
cages. As the volume fraction increases, the camgedecreases, so this motion decreases.
The limit Ds°— 0 is reached when the volume fraction reaches rantlose packing (RCP)
@t = ¢ = ¢hep [Brady, 1993; Knaebel et al, 200p This last limit agrees with the divergence of
the zero shear viscosity, which has often been reedeat this concentratiorH¢yes and
Sigurgeirsson, 2004 From these arguments, it seems quite justifeecbinsider that the rangg

< @< ¢his the domain of the paste phasdere particle movement is restricted, but not

impossible.

3 — The paste transition: Time evolution of viscosity at rest and aging.
3. 1 - Effect of volume fraction on @(t)

The time-evolution of the viscosity is now analysémr a system at rest after
destructuring (for instance, by filtering or applion of a large amplitude oscillation). With
the time-dependent viscosity @«(t)], the kinetic constant of formation can be writtep =
(n &3KT ) = kno/nr(t) = ke(t), wherekao = (6777 a/KT)?, is a constant with unitsf s ™. A
natural unit for the dimensionless timekigt. As the viscosity;(t) of the system during

restructuring is given by eq.(1), we obtain:
Ke = Kno(1- (léff/(l?n)z (8)

At rest, kp = =0 and eq.(3) becomesS/dt = = (1-S) With eq.(8), this equation can be
solved iteratively, starting frol8 = St -

Based on these considerations, Fig.1 shows typgsallts for the time-evolution of the
effective volume fractiong(t), as a function of dimensionless time. In particutashows
how the final state of the system depends on the #olume fractiong. Note that, as

discussed at the end of the previous sectiba,two horizontal straight linegs«=¢ and



@ = ¢ limit two domains with different behaviour : fluibr @< ¢ and paste forg <
@x< ¢ A critical valueg = @, divides the paste domain in two, depending onlithi of
@ ast — oo @) remains less thag, wheng< @, , while @) - @, whengp=> @,.
Thus two states of the system can be distinguishedvhen the steady viscosity remains
finite, the system will be called &6ft paste} 2) when the steady viscosity tends to infinity

the system will be considered laatrd paste”

0.65
m
hard paste paste
soft pasie phases
0.55 4 ‘
¢ eff | fluid
0.5 - fluid
&z phase
0.45 - — critical
wolume
fractions
¢ el i
0.4' T T T T
01 1 10 100 1000 10000
K 40 t

Fig.1 — Evolution of the effective volume fractiovs. the reduced timexg t. The curves @i, @, and @3
divide the domain into sub-domains correspondingthe different states of the systerflLS-model

parameters 7 = 1 mPas;@, =@ = 0.637; $= 0.1; kno = 10°s*)

There are two other critical volume fractions. Eigg= @, is the lowest volume fraction
for which the glass phase can be reachd«~) - ¢ and secondp=gqs is the lowest
volume fraction for which the system is in the glafase at time zer@«(0)= @ . If p<@.,
the system will remain fluid; ifp> @3 , the system is initially in the hard paste stael

remains so indefinitely. For complete restructuring. whenS = latt—- o, we can use

eq.(2) to obtaing: = @@, @2= dgm and@s= ¢ /(1+CSni).

For the example shown in Fig.1, the critical valaesg: = 0.369 ,@2>= 0.406 and @3=
0.548.These values are due to the choicg ef0.637for the mean compactnesESU. This

choice does not affect the shape of the state ahaglt only influences the position of the



critical values.Table 1 summarisethe behaviour corresponding to the various ranges of
volume fraction.

Table 1. Different types of behaviour

Domain Behaviour Initial and final effective
volume fractions
P< @ Fluid @i(0)<@; @i)<@

R< P< @2 Fluid — Soft Paste @#0)<qy; @il 0)<¢kep
REXP<@3 Fluid -~ Hard Paste  @#0)<@; @) = ¢kep
R=<P<¢kcp Hard Paste @0 >q; @) = ¢rep

3.2 — Effect of volume fraction on 1(t).

Fig.2 shows the time evolution of the relative wsity corresponding to these different

kinds of behaviour at different, constant volumecfions.

1.E+08 -

1.E+06 A

hard paste | fluid -
hard paste

MR

1.E+04 A

¢02

fluid -
soft paste
1.E+02 A
¢ c3 . ¢ cl
fluid
1.E+00 T T T T 1
0.1 1 10 100 1000 10000

Fig.2 — Relative viscosity vs. reduced timg, t. The bold curvesg@,, @, et @3 separate the different
domains of behaviour shown in Table 1. From bottdm top, the six intermediate curves correspondgs
0.35; 0.38 ; 0.47 ; 0.5; 0.601 ; 0.6025. The topteurves, withg>g@s, show the extremely rapid variation of
the initial value of /7 as @ approachesg,. Same values of the NLS-model parameters were wsetbr Fig.1.

Studying the long time evolution @f(t) allows us to answer the following question, at
least partly: Can the viscosity changes of hardgsase regarded as aging?
Starting from the expressions fgr, @, dS/dtandi(t), and putting



a=@a—1 9)
one obtains the following differential equation fbe functionu = (1-¢g« /¢ ™

du
a+u™

= KAOdt (10)

Crossing the boundary = @, changes the sign @f . This leads to three types of solution to
eg.(10), hence to three different types of behayidapending on whether< 0, a> 0 or
a=0.

A)If a<0, @x(t- @) < ¢, so the limit ofu is finite, and hence foy.
n(t— o) =n a1- exp[-0°Kao ]} (11)

which corresponds wello the viscosity limit at zero shear rate, eq.(Bjth zero shear

packingg = @ @, , shown within the domaig< ¢@.in Fig.2.

B) If a> 0, one hasg« —» ¢ If t— o, so bothu and# tend to infinity. Hence, the long

time solution of eq.(10) reduces to=a kap t, giving:
Nt— @) = nea’(knot)? (12)

This result agrees with the asymptotic limit of theves in Fig.2 fo > @, a straight line

with slope two in logarithmic coordinafes
C)If a=0,eq.(10) gives® = 2kadt + const and, puttingi.ic = 7(t=0), leading to:
1= it + 2 ITe Kno't (13)

for the whole of time dependenagreeing with the asymptotic limit gf along the boundary
@= @, in Fig.2: a straight line with slope one in loglamic coordinates.

Therefore, the rheological behaviour of the syst@nrest shows difurcation at the
critical volume fractiongp= @,. Moreover, at rest, it appears that the absence lohiting
viscosity whenp=> @ is due to both aging and metastability of the esystas shown in the

next section.

2 Clearly, this quadratic asymptotic behaviour ig doi the form of eq.(1) with an exponent-@ Changing to
an exponent ofq will lead automatically to an asymptotic behavigurt .



3.3 — Long time behaviour of hard pastes. aging and metastability

In the framework of the analogy between the pastkglass transitions, the behaviour
described by eq.(12) whep> @, seems to correspond to the lack of equilibrium oleskin
glassy phases below the glass transition temperdguMoreover, one also recovers the fact
that the characteristic tintg, for “structuring”, associated to the evolution/gt), becomes
longer and longer as time elapses. From eq.(18gusy = 7(dr/dt) *to estimate the order
of magnitude of this time, one obtains

tsyr = t (14)

This dependence agrees with stress relaxation mezasuats of colloidal gels submitted to
oscillations of very weak amplitude after some psiod of duration,,: these measurements
show that the order of magnitude of the relaxatiore evolves a$, , i.e. as theage of the
system, which is a general characteristic of playsaging (see Knaebel et al 200q, for
instance). As this age is identical to the evolutiome of 7(t), it seems justifiabléo speak
aboutagingwheng> @ .

Furthermore, as expected, restructuring is slowehéarder pastes.,e. when the initial
effective volume fraction (at the end of the prepan) is closer tag,. In other words, the

fluid-paste transition (agas = ¢g) occurs sooner, leading to a slower restructuring.

Restructuration rate (%)

100 ~

10 A

0,1 ; ; ; ; T )
0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65

¢

Fig.3 Rate of restructuring as a function ofp. The fall is more and more abrupt a@ increases above
@, (here @, = 0.406) and becomes extremely steepgas @, Same values of NLS-model parameters as in
Fig.1, with Kag tin =2.10%.
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Therefore, taking into account the fact that the & restructuring reached after a given
long period decreases very abruptly, it appearsifipts to consider this abruptness as
revealing the systemmetastability as @ approachesg, Fig.3 shows evidence for this
metastability. Define theate of restructuringas the ratior(@)= 100*(Sin— Snit )/(1—Snit),
whereSnii=S(t=0) and Si,=S(t=tsin). Figure 3 shows that whep is increased above,, the
“final” value (for kxtin >>1) is increasingly far frons = 1, which is easily reached in the

fluid phase, whemp < @...

4 - Evolution of n(?) at constant shear rate. structuring and destructuring.

At constant shear rate, the viscosity always exh#plateau as— o, so the divergence
of the viscosity and the bifurcation disappear.ngdsin eq.(6) a kinetic constart, which

depends linearly on shear rate:
Ko=ke y (15)

defines the simplest NLS-model. Thus, at constheas rate, this model does not predict
either aging (in the sense used above) or, in cuesEe, rejuvenation. Moreover, for a given

initial structureSp associated with an initial viscositgi, there is a critical valug,

Vi = (Kol Mini) (1- Shit)/ St (16)

which cancels the RHS side of eq.(6). This valael$etoS = constantthus keeping its initial
value Sy, that is a constant viscosity= 7, fromt = 0 onwards.

If p >y one hasdS/dt < 0 , i.e.destructuring, which causes a viscosity decrease.
ConverselydS/dt > 0if y < Yy + SO the viscosity increasedue to structuring.
Fig.4 illustrates these results (wi};}?< = 3.92 for Spnii= 0.4). It seems impossible to speak

about aging in the case of this structuring adortiori, about rejuvenation in the case of
destructuring. These viscosity changes are onlytaltigxotropy.

® For Sy = O (i.e. if the agitation completely breaks down the sine)f Sand therefore7 should increase,
startingfrom its minimal valuey., , €q.(4).
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relative viscosity
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1.E+01 T T .
1E-1 1.E+1 1.E+3 1.E+5 1.E+7 1.E+9

tr

Fig.4 —Relative viscosity vs. reduced titge= Axot under y = const
Values ofkp (s?) = ke (growing from top to bottom)0 ; 107;10°; 10%; 10%; 1; 10; 16; 10°; 1¢*

The critical value which gives = const is xpx = 1.96
(@=0.50; kc = 0.5, S =0.4; same values for other parameters as for Fig.1)

5 - Evolution of 7(f) under constant stress: aging and rejuvenation.

5. 1- The NLS-model under constant stress.

Using the structural viscosity defined abovgt)=7/S(1)/, the instantaneous shear rate

under a constant shear stress is defineg/ @ = o/7(t), leading, with eq.(15), to a time

dependent kinetic constant for destructurikigs ke o/ n(t).

Using the relative viscosity(t)=7(t)/7- and the critical stresg=kx, 7=/ k- in €q.(6)

gives:

Snmli-(1ral )] 17)

Under steady conditions,d$/dt=0, the solution of eq.(d is S+ (1+ o/g)™. From
egs.(15), the viscosity can be written as=7:/1 - (1-x) S.d > wherey =(1- @@)/(1- @@, is a
rheological index [Quemada, 1998]. The steady &sgas thus given by:

1+0l g, i
1Te =1Treo (18)

Xxtal g,
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This equation describes shear thinning behaviowengh< 1 and plastic behaviour when<

0. In the latter case, the relative viscosity is gibgn

o+0, ’
M = ORW{ } (19)

g-0,

whereoy is the yield stress that dependsgas:

Jyzdc{w/% _1} (20)

5.2 - Aging and rejuvenation under constant shear stress

With o = constant the functionu = 75" = (1- @« /@) " should verify the following

equation, deduced from eq.(17):

ﬁi”u_l = (1+0/0,) Kt 21)
with

= 22)
and

oy =0t 23)

a is defined by eq.(9).

As for a =0 in eq.(10), a bifurcation will be observed {68r=0 in eq.(21),i.e. when o
reaches the critical stresg given by eq.(23). Note that this bifurcation oelists g = 0) if
@2 < P< ¢ . Moreover, note that eq.(21) reduces to eq.(1@) and kap are used in place of
[ and kao(1+A0), in agreement with the limits a= 0. It is thus possible to deduce directly

the solutions of eq.(21) atxo t >>1 from the expressions fan that led to eqs.(HL3).

Therefore, at long times the viscosity can behawdiee ways:

alif o > og
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olo.+1
,7(1:_) 00)_,:,7_':|:—C

2
a2l olo _1} [:l-_e)(p(_BKAot )] (24)
B
where B = & (0/0s-1)* (1+0/0)™
b/if o < o
N(t— o) = ne d?(1-0/08)° Kno t 2 (25)
clif o = o

N = Ninit + 27 (1+0/0c) Knot (26)
If ois varied, at constant volume fraction, on bottesiof the bifurcatiowr = gg , one
thus recovers behaviour similar to that observed at0 as ¢ varied on both sides of the

limit @=g@-. In particular, ifo < gg, the absence of any limit fgy(t) will be associated with

aging. On the contrary, >0, the existence of a finite value for the limit — o) leads to

a steady equilibrium that will be discussed belsec{ion 6).

1.E+7
o/oc 0.
é\ 0.371
) ]
8 1E+s
&)
0 7
>
g o
® LES ” 0.5
] ”
v ’
~ 2
1.E+1 o= ‘
1.E1 1.E+2 1.E+5
tr

Fig.5- Relative viscosity vs. reduced timge= Axct .
The bifurcation is observed ar =gz as the reduced stress/c; is varied.
Reduced stress values (from top to bottom ) ;0.3 ; 0.36; 0.371;0.38;0.4;0.5; 1; D;;50 ; 100.

(Model parameters:@= 0.45; =1 mPa.s;0, = 10 Pa ;¢= 0.637 ; $= 0.1 ; kK po = 10° s%).

Fig.5 shows evolution of the relative viscositys, as a function of the dimensionless

time, tg=kact , for different values of the reduced stregs= /0 , with @, < ¢ < @,. The
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lower limit is natural, since even at zero strélsre is insufficient structure for a bifurcation
to occur. Fig.5 shows:

() steady viscosity plateaus, defined by eq.(Z4y 2 0s;

(i) the bifurcation line (with slope 1) at=0z,

(ii) viscosity divergences (asymptotes with sl@)dor o <os

However, a stresgy, exists which cancels the RHS of eq.(17), so fts¢esn remains in

its initial state $=S;). It is given by:

Ok = Oc(1— Snit)/Snit (27)
For any stressin the rangegs < o < ok , increasing the viscosity from its initial value
corresponds to restructurind/dt > Q. For o > ok, decreasing the viscosity from its initial
value corresponds, in contrast, to destructurihg/dt < Q. This is shown in Fig.6 fook
lo=9 andS,; = 0.1. It seems difficult to argue that this destruatgridue to thixotropy,
could be considered asjuvenation.So, as in the case of evolution at rest in thelfdomain,
discussed in section 3.2, it is impossible hereotosider restructuring, also due to thixotropy,

as an aging process.

On the other hand, for < gg, the unbounded viscosity increase, as well its sigw

down (with a characteristic time: system age), does seem to correspond to aging.
Nevertheless, an open question remains: what It veippen if, after aging under a given
stressoy <o , applied up to a tim& , a higher stressp, >0y , is applied front = to ? If
destructuring occurred, at least at the beginrshguld it be called rejuvenation? This point is
discussed in section 5.4 .

Fig.6 shows the high shear stress behaviour, wiichvisible in Fig.5, due to the
scaling. On a linear scale, relative viscosity dieaecreases foo > ok (= 9oc here),
illustrating the shear-induced destructuring.

Fig.6 shows a result comparable to that describesl iecent articleoussotet al, 20024.
However, note that their model led to predictiortsah differ from those presented here. In
this article, the stress value for bifurcation isfided by the structuring-destructuring
equilibrium —hence it is identical tok in eq.(27). Therefore, it cannot be consideredras

intrinsic characteristic of the material, sinceviédue depends on the initial structure.
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relative viscosity
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1.E1 1.E+0 1.E+1 1.E+2

tr

Fig.6 — Idem Fig.5, but at high stresses .
“Rejuvenation” is observed foor >or=9 (see text).
(Parameter valuegdemFig.5)

The corresponding constant viscosity= /7s, thus separates the region of destructuring
(wheren decreases towards a finite limit,< 77z ) from that of structuring (wherg increases
without limit, 7 — o). On the contrary, Fig.6 well illustrates a chaeaistic of thixotropic
fluids: the viscosity increases towards a finitdueawhen the stress applied to a system at

equilibrium is decreased. The resulting increas® @ due to the system restructuring, as

shown in Fig.6, foiog =5.

5.3 - Effects of variations of initial structure.

Figs.7A & 7B illustrate the effects of varying timatial structure, characterised I8,
for c<sog ando > g , respectively.

In the first case, the structural varialdebounded by the upper limit @ in the paste
domain, ¢, From eq.(2), this corresponds to the maximume/&y= (@,/@ —1)/C. As Sqit
increases, botley and 77 increase. However, adS/dt = 0, there is a quasi-stationary
viscosity’ along a higher and higher-plateau of longer and longer duration, before the
divergence a$* occurs. This is shown on Fig.7A where,%g is approaching, , all 77-

plateaus— 0.

* This corresponds to the abrupt fall of the restming rate shown in Fig.3 .
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Fig.7 - Evolution of 77(t) resulting from applying a constant stress,
following rest periods of increasing lengths
(thus leading to growth of & , however bounded by,3
(A) o< s, with §,= 0.729andS,,=0.833 (B) 0> o, with §,= 0.729andS,;=0.667
(Model parameters:@=0.45 ; 7-= 1 mPa.s ;0. =2 Pa ;¢ = 0.637 ; $it= 0.4 ; K po= 10° s™).

In the second case;,> gg, the equilibrium structure is always accessiESIS:< Sy,
leading to a finite limit for(t — o). As St is increased, there is first restructuring,Sfi: <
Sq ., then destructuring iBnir > Sq (With obviously 77 = constfor Syt = Sq). As in the case
O < 0g, ) increases more and more &g approaches,, , giving again a higher and higher
n-plateau of longer and longer duration and a gst&gionary state witldS/dt = 0, even
though the equilibrium structure S;=(1+ o/ady)?, was not reached. Fig.7B shows these

properties, where the trends are similar to thobsered experimentally in bentonite
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suspensions for increasing rest times (Cbufsotet al, 2002b, Fig.}). The results in Fig.7A & B
show that, under given stregg, it is not possible to obtain the bifurcationmgdifying Sy

. either n7 diverges, ifon < 0g , or n remains finite ifor > gg . In this model, the stress
bifurcation isintrinsic, independent of initial conditionan contrast to the predictions of
Coussot and co-workers.

In both casesg < g5 or o > gg, ranges of quasi-steady viscosity can be congidase
revealing a system metastability which grows wigh Moreover, the presence of such
viscosity plateaus might explain : i) the time-degence of the yield strefsguyen & Boger,
1997, which is very frequently observed in hysteresisles and ii) much of the difficulty in

the experimental determination of the yield stigs®[Cheng, 198 for instance).

5.4 - Rejuvenation under constant stress after aging

When a stress acts on a system which has agee, ither return towards the previous
state. It is natural to call this returajuvenation On the other hand, fluids and soft pastes
evolve towards an equilibrium state, so such ags®ds quite foreseeable in the framework
of a thixotropic model (remember that thixotropygstems are reversible). In this case, it
seems clear that the term “rejuvenation” is inappede. However, it is much less clear for
hard pastes, since they do not evolve towardsibquiin, so they may lose reversibility. The
following discussion will demonstrate that the Nhf®del can predict behaviour which can,
to some extent, be considered as rejuvenation.

If a system withg > @ is at rest for a timet , it ages with a viscosity which grows as
t?, in agreement witkeq.(12), as displayed on Fig.8, curve(a)tAtty, one applies a stress
Om Which is maintainedior t > to.

Several cases are possible, according todgtfrealue in comparison witlwg on the one
hand and, on the other hand, a vatge still defined by eq.(27), but witB: = S(k). Fig.8
illustrates three cases, for valuesgpf (m =1, 2, 3:

(i) for o1 such thaio > ok >0g , destructuring occurs at tp. The viscosity decreases to

the steady value corresponding to the equilibritiacsure reached under. Aging thus

stops atp and it seems impossible to speak about rejuvenaftent = ty. This is shown

in curve (b) of Fig.8, for values of the relativeessor =0 /0;: 0r1=1.5 ; orc=1.35and

Ore= 1.08.

® It would be the same if the system had been hefeuany stress such s < gy . The special case =0 is
here considered in order to simplify the discussidris choice does not reduce the generality oféiselts.
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relative viscosity
@=0.50; ogg = 1.08

1.E+07

1.E+05

1.E+03

1.E+01 T T
1.E-01 1.E+01 1.E+03 1.E+05
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Fig.8 - Relative viscosity vs. reduced tige= Aact
Effect of applying a reduced stregs, /0.= 0ra , following a rest period ¢ro= 0 ; duration tg).
Curve Index( Oro; Orm) Means thabr= drg for 0 <tg < tgro and or= Orm for tr >tgo.
“rest” corresponds to (0 ; 0) -- Bifurcationpegars for or = grg= 1.08, value in betweenk, and dr,. -

Duration:tgg= 200. (same values of other NLS-parameters as {paFi

i) for o» such thatoyx >0, >0 , structuring continues beyond= to, however without
possibility to strictly speak about aging sincegdenos; = const,the viscosity grows towards a
finite value This means again that aging stopt &see Fig.8 curve (c), farr,=1.2).

i) in contrast, for o; >0z , structuring continues beyortg, with a viscosity which
diverges a#®. Hence, aging now continues as shown in Fig.8efdivfor gz,= 0.9 ..

Nevertheless, in the latter case, this divergescliayed in comparison with what would
be observed if the system remained at rest aftety . In other words, the viscosity at each
timet; > tg is lower than that it would be at the same timi it had remained at rest. This

slowing down of agingould be termedejuvenation

It is worth noting one rather general charactarisfor a given system, the magnitude of
applied stress dt= ty, compared to that af, given by eq.(23), fixes the future behaviour of

the system, whatever the duratiornf



19

relative viscosity
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Fig.9 - Evidence of the bifurcation atir = grs
under applying a stress after a rest period (dudatitgg= 8.1F).
Rejuvenation under shear rate is associated to &tians underdi < grs

(same SNL-parameter values than for Fig.4).

Fig.9 illustrates this point. It shows one evolatirom each side of the bifurcation. In
comparison with aging at rest, the evolutiondgr which is slightly lower thawgg, shows an
extremely large “rejuvenation”. To recover the sastete of aging (choose the viscosity to
define the age, for instance the valme~ 10'° reached after a rest duratitg~ 1), one
must wait for a very large timér(10°) for the system submitted tr = 0.371att = tro to
reach this state&Such a delay could be taken as a measure of theergtion, still keeping

this term to mean slowing down of aging.

6 — Steady viscosity: shear-thinning and plastic behaviour

For o >05 , eq.(24) gives the variationgt). Under steady conditiong (-~ ), one
recovers the behaviour of a fluid with a yield strez defined by eq.(23). The steady

viscosity is obtained from eq.(24):

2
Mog= L | T2 o o> 0 (28)
(1_¢/¢m) U_JB
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In recent work, this plastic behaviour, usually etved experimentally, has been very often
represented by an empirical relation like the HeefleBulkley (HB) law

og=og+Kp" for> g (29)

In order to compare eqs.(28) and (29), they mustiitéen aspy =f(g). Eq.(28) becomes

L_O|(o-0, ’
V—”— - for o>0p (30)
y=0 foro<os

using in eq.(30), the “high shear” viscosity limit atoc >> gz and o >> ¢; , given by

ed.(4). Eq.(29) can be expressed as:

o-g, )
( " yj for o >g (31)

y=0 foros gy

~-
I

35

| Shear stress (Pa)

HB
NLS

0 50 100 150 200
Shear rate (s™)

Fig.10 - Fitting HB-model to NLS-model curves
Parameters: NLS7 .= 10 mPa ;o = 50 Pa ; gz = 10 Pa
HB: K = 1.806 Pa.8; m =0.458 ;g,= 10.1 Pa

Despite the very different forms of eqs.(30) andl)(3t is always possible to adjust the
HB-model parameter&K and gy to fit the variation described by eq.(28), with airf

determination of the yield stress. Clearly, theedmination will be better if the fit is confined

to data measured at low shear rates
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Fig.10 illustrates a fit to the flow curve calc@dtusing the same parameters as were
used for Fig.1. The agreement is very satisfacespecially near the yield str&s©bviously,
this fit will not work at high shear rates, sindeetasymptotic behaviour of eq.(31) is only
identical to the linear one of eq.(30) in the caé8ingham fluids (h=1). A large number of
theoretical and experimental studies have shOwrm<0.9 so using the NLS-model should
be a step forward, compared with using a simpleehalich as Herschell-Bulkley, which is

the usual procedure in the literature.

Finally, note that eqs.(28) and (23) are quite =test with eqgs.(19) and (20), if one
takes@ = @ = ¢ @, @= @ . See eq.(5). These values correspond to stewaui [0f ¢
=@(1+CS) at very low and very high shear rate :¢ga8 @, , one has the following limits &t
- 00!

()S=1forolo.<< 1, giving @#= @/¢ , hence @«/@= ¢/ @,

(i) S=0for ogla. >> 1, giving @ = @.

Thus, the limiting packing fractiong at o= 0 and @, aso — « are identical tag, and ¢,

respectively.

7 - Comparison with experimental data.

The time-dependent behaviour of colloidal susperssaf synthetic Laponite at constant
shear rate has recently been interpreted in tefnagiog and rejuvenatiompou et al 2003.
Here the aim is to show that this data can be nhedielsing the (“purely thixotropic”) NLS-
model. This approach needs to choose the valugsloime fractiong and kinetic constants
ke and ki involved in eqs.(15) and (6). Such “modelling” otperimental data can be
performed by only changing the values gfand the pailke ; kx) that will be respectively
associated to parameters which characterize eaaburesl sample.e. weight concentration,
Cm, and ionic strength, . Although it seems plausible thiinfluences the kinetic processes,
close association dfwith k. and k», would require complex theoretical work, which ist no
attempted here. Thus, here the correspondencdyigphanomenological. In figure captions,

it will be noted:
[@; Ke; Kno (ST)] © [Cm%0 ;1 mM]).

® For instance (Fig.10), the relative errorgnis less than 2 % fdy <p< 200s* .
" keeping the other NLS parameters unchanggr= 0.637; 7= 1 mPa.s ;¢ = 0.637 however with S;;= 0 .
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Figs.11, 12, 13 and 14 are comparable to experahdata pbou et al 2000 ;Figs.2, 4, 5 and
6, respectivel§]. The figures show a fair correspondence betwg@emd c, and, the pairkc
;Kno) and | . Naturally, free values fop, ke and kap have been used, although imposed to be
common for all data having same sample charadtesigt,=1.5%; 1=7.10°), hence for
Figs.11(a), 12 and 13.

viscosity (Pa.s) viscosity (Pa.s)
0.020
1.6E-2 1
[ a 0.015 | &
1.2E-2]
b &/
/
0.010 {2
8.0E-3
AOE3 | | | 0.005 : ‘ ‘
0 4 8 12 16 0 2 4 6
tw (h) t-1ty (h)
Fig.11 — Restructuring unde Y =500s! Fig.12 — Restructuring or destructuring
(@) [0.35;2.10% 20] « [1.5;7.107; under V = 500 $* starting from states first submitted to
(b) [0.35;3.10% 3] « [1.5;5.107 restructuring during periods of rest during

(@): ty = 0 min; (b): t, =20 min; (c): {, = 40 min.
With [0.35;2.10% 20] « [1.5;7.109

Comparison of Fig.11(b) with Fig.11(a) shows thhghdély decreasing | leads to a
change inkc and ka0 , however their ratiokt /xx=107) is unchanged, which is compatible
with an increase of effective particle radius.

Fig.12 shows viscosity changes towards equilibrium stafes different periods at rest.
Restructuring occurs in curves (a) and-{byhile destructuring occurs in curve (c), since th
initial state is more structured than at equilibriuAs a matter of fact, after complete
destructuring $nir = 0), “aging dynamics” (in fact, restructuring) undpr= 0 , S(t) reaches
the valuesS@o min= 0.546 and S@o0 min= 0.703 .These values are tis;; ones, required to

calculate evolutions undgr =500 s?, shown, respectively, in Fig.12, (b) & (c).

8 Figs.1 and 3 fromAbou et al, 2003 were not used, as they concern complex viscositych is not considered
here.

° with the same parameter values as in Fig.11(a).

1% curve (a) is identical to curve (a) of Fig.11

vierncityv (DA o)
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In the case of Fig.13, using same parameter-vdkasts to plateaus 400 and50 s™,
lower than the measured ones. Note that this coloddined by assuming a slight dependence

of ke on y (i.e. discarding the hypothesis of linearity # for structure kinetics, assumed

here for simplicity).

4.E-2
_
n a
@ 3.E-2 -
o
N
2 b
()] -2
o 2.E-2
(&)
)
= 1.E-2 - C
0.E+0 . : T
0 4 8 12
tw (h)

Fig.13 — “Rejuvenation” under constant shear rate;'/(s'l) = (a): 50 ; (b): 100 ; (c): 500 . (see text).
(with [0.35 ; 2.10% 20] « [1.5;7.109)

1.E+1 1E+5
w @ c
& 1E0] 8 1E3d
E >
‘0 1E1 ‘» 1E1{ b
o o
3 -\ g
B 1E2 N Z 1E1 a—.—.\\‘—
1.E3 T T 1E3 T T T
1.E+1 1.E+2 1.E+3 1.E+4 1.E4 1.E1 1.E+2 1.E+5
shear rate (s'l) shear rate (s™)
Fig.14 — Steady viscosity ‘F Fig.15 — Steady viscosity ‘F .
(Curve drawing limited to used experimental (a) [0.35 ; 2.10% 20]
domain (10 g <109 (b) [0.40 ; 4.10% 500]

(@) [0.35;2.10%20] « [1.5;7.109. () [0.4057 ; 4.10; 500

(b) [0.40 ; 4.1¢% 500] -~ [3.7 ; 10%.
Finally, acceptable model predictions of steadyavéur are shown by curves (a) and (b)
in Fig.14. However, variations @b andcy, occur in the right way in contrast with those of

(kc; ka0) and I. Such discrepancies could result, at least pbstilom the difficulty of
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experimentally reaching d&rue steady state: the laponite samples under studwireeq
restructuring times of many hours.

Nevertheless, it is satisfying to see in Fig.15 tha same parameters used for Fig.14 lead
to Newtonian plateau viscosities at very low andyveigh shear rates, as expected for a
concentrated dispersion. Curves (a) and (b) inlbigndeed represent the same curves as the
corresponding ones on Fig.14, but over a largegeganf shear rateMoreover, curve (C)
shows that the limit of plastic behaviour (with— <) is well recovered ag« — @, (here

@, =0.40577, keeping same values af, and ¢ ).

The relationship between a) the model valugs:kc and xap and b) the experimental
values: weight concentratiam, and ionic strength,, have not beeyet discussed. It will now
be shown that use of the NLS-model is justifiedthe complex structure of laponite
dispersions is taken into account.

First, it seems clear that the equivalent partifles “Hard Spheres” of the NLS-moded),
priori unidentified, are large, mesoscopic structures eratthan at the platelet-scale
Moreover, thec-values can be linked t@ the HS-volume fraction, by taking into account
the structural characteristics of the system :

() the laponite Primary Particles (PP) studieflabou et al, 2003, are disks with diamet&a
=25 nm thicknes® = 1 nmand specific mas® = 2.5 g/cnd
(ii) structures analysed by light, neutron and ¥ saattering Pignonet al, 1997 and by
cryofracture, TEM et SAXSMourchid et al, 1999 as detailed below.

Forl =103 M and a weight fraction,> 1.5 %, [i.e. atrue volume fractioncy = (c/,0)
> 0.00€, the system at rest consistssbfuctures at three length scalea network offractal
clusters (FC) with radius R and fractal dimensiorD, each of them made up alense
aggregategDA) with radiusr , themselves made up of sub-units of radiu&f. [Pignonet al,
1997, Fig.3). The latter could be considered asented microdomain§OM) in the form of
platelets Mourchid et al 1999, with diameter2a. and thickness. . This thickness is the worst
defined parameter. Then, the effective volume foacof OM is evaluated from their
hydrodynamic volumél (a5)°, leading togw = (4/3)(a /es)oy . If the DA-compactness is

close to random close packingrtp = 0.64), the volume fractions of DA and FC are

respectivelyga = @io /@rce andgc= goa (R/a)CP).

1 with interactions of the “soft sphere” type awll [Levitz et al, 200().
12 A similar definition has already been used to maaentmorillonite suspension8#ravian et al, 2003.
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Application to data [Abou et al, 2003 (with ¢, = 0.015 g/ml, thuscy = 0.006. For the
following evaluation, tak@a> = 30 nmfor plateletand2R =5 um D =1.8, 2r =1 umfor the
mesoscopic structures observed atl0™= M [Pignonet al 1997. Choosing3 &> <4 pum, one
obtaing® 0.43 > g¢ > 0.32. Without considering that this result confirms treue g= 0.35
used for modelling, it supports identifying the B€ the model Hard Spheres, hence with a
volume fractiong >> cy. Furthermore, if the value=(23) of the ratiog/cy, was supposed to
be maintainetf ascy, increases, the sol-gefnsition would be observed af* = @ /23 =
0.025(i.e. g = 0.01). Three arguments suggest that this transitioneveéd compatible with
those deduced from experiments: (i) for the reastittransition line in the phase diagram
[Levitz et al, 200q ; (ii) for the beginning of the viscosity divengee Baravian et al, 2009 ; (iii)
for the change2 — 3) of exponentm in the power law describing th@dependent vyield
stress gy [7 @™ [Pignonet al, 1997.

Obviously, an actual data fitting with the NLS-mbdeuld be obtained only from better
knowledge of changes in laponite under shear. dtusgd be achieved by measurements, both
structural and rheological, under transient coodgiin order to improve modelling of the

structure kinetics.

7 — Conclusions and future prospects

In conclusion, both for systems at rest and unaertrolled stress, the NLS-model of
thixotropy has been shown to give satisfactory rimdeof aging and, to some extent, shear-
induced rejuvenation. This result has been obtaihexligh giving prominence to bifurcations
in the time-evolution of viscosity.

At rest, different domains of volume fraction haseen found, that depend on the initial
structure,i.e. the previous history of the material. This has tledlistinguish fluid and paste
domains, the latter being divided into two statesd and soft pastes.

At constant shear rate, the model predicts neifdggng nor rejuvenation. Only shear-
induced restructuring or destructuring occurs, ddpgy on initial state of the material.

On the contrary, under constant shear stress, thexeviscosity bifurcation at a critical
stress. The critical value has been found to bepthstic yield stress, which depends on the
volume fraction. As the latter is usually descridgdthe empirical Herschell-Buckley law

13 Larger valuesp.50> g > 0.37could be obtained using the si2e.s = 35 nmobserved in Pignon et al,
1997.
4" A hypothesis that is valid for fractal mesostuues.
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with constant yield, some progress can be expdayedsing instead the present, physically
based modelling.

The importance of distinguishing aging and rejutiemafrom simple structural changes,
restructuring or destructuring, either due to thi@py alone or also in the presence of shear
has been emphasized. This need has been illusbgtedsatisfactory comparison of model
predictions with data on laponite submitted to shate steps and under steady conditions.

Finally, as the model works under all types ohsiant conditions, further testing can be

done using stress relaxation and hysteresis cycles.
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