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Abstract: This paper deals with the state and input observability analysis for Networked Control Systems
which are composed of interconnected subsystems that exchange data through communication networks.
The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the
system’s structure. More precisely, for the so-called distributed decentralized and distributed autonomous
observation schemes, we express, in simple graphic terms, necessary and sufficient conditions to check
whether or not a considered subsystem is strongly observable. These conditions, which allows also to
characterize all the strongly observable state and input components of each subsystem, are easy to check
because they are based on comparison of integers and on finding paths in a digraph. This makes our
approach suited to study large scale distributed systems.
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1. INTRODUCTION

Networked Control systems (NCS) are in general composed of
a large number of interconnected devices or subsystems that
exchange data through communication networks. Examples in-
clude industrial automation, building supervision, automotive
control, . . . NCSs provide many advantages such as modular
and flexible system design, fast implementation, distribution.
However, some disadvantages such as loss of information, time
delays in the data transmission may also have an effect on the
general performances of the global system. The observability of
the internal state or of the input components of each subsystem
is one of the main properties which is strongly linked to the
configuration of the distributed subsystems and to the data they
exchange. Indeed, even if the global system is observable, when
we subdivide it into several subsystems, the latter may be not
structurally observable. Thus, an analysis of the observability of
the distributed system, for different configurations and in func-
tion of the informations exchanged on the network, is important
for the observer design and so in the general conception of the
system.
The issue of this paper is to analyse the observability of each
subsystem using the knowledge of its own local measurements
and eventually the measurements arriving trough the network.
As we will show, such problem is very close to the analysis
of the strong observability of a given part of the state and the
input of a linear system, which is a very significant question
in the general observation theory. Indeed, the problem of re-
constructing any desired part of the state and/or the unknown
input is of a great interest mainly in control law synthesis, fault
detection and isolation, fault tolerant control, supervision and
so on. In many applications, the estimation of only a part of
the state and the unknown input of the system is necessary.
In this respect, many works (Chu [2000], Chu and Mehrmann
[1999], Hou et al. [1999], Trinh and Ha [2000], Tsui [1996],
Kudva et al. [1980]) are focused on the design of full or reduced
state observers for linear systems with unknown inputs. Other-
wise, for classical centralized observation schemes, the issue
of simultaneously observing the whole state and the unknown
input has been investigated in (Hou and Müller [1992], Koenig
[2005]). Among the most important works dealing with the

state and input reconstructibility, we can cite the approach de-
veloped in (Basile and Marro [1969], Hautus [1983]) where the
author gives the definitions of strong detectability and strong
observability and the conditions for existence of observers that
estimate a functional of the state and unknown inputs.
On the other hand, many studies deal with the observation of
decentralized systems even if it is not in the context of Net-
worked Control Systems. In this way, in the early 70’s, Sanders
et al. [1974] propose, under some decoupling assumptions, the
design of a filter for interconnected dynamical systems in which
the information pattern is decentralized. More recently, in (Saif
and Guan [1992]) the authors propose a method for the design
of decentralized reduced state estimator for large scale systems
composed by interconnected systems using unknown input ob-
servers under some "matching condition". Also on the basis
of unknown input observers, in (Hou and Müller [1994]), de-
centralized state function observer are designed for large scale
interconnected systems. Three kinds of interconnections are
considered and the design of the state function local observer is
done under the solvability of some matrix algebraic equations.

In the latter papers as in most other, the studies on the state
or/and input observability or on decentralized systems deal with
algebraic and geometric tools (Basile and Marro [1973], Hou
and Patton [1998], Trentelman et al. [2001], Yang and Zhang
[1995]). The use of such tools requires the exact knowledge
of the state space matrices characterizing the system’s model.
However, in many modeling problems, only zero entries of
these matrices, which are determined by the physical laws, are
fixed while the remaining entries are not precisely known. To
study the properties of these systems in spite of poor knowledge
we have on them, the idea is that we only keep the zero/non-
zero entries in the state space matrices. Thus, we consider
models where the fixed zeros are conserved while the non-zero
entries are replaced by free parameters. There is a huge amount
of interesting works in the literature using this kind of models
called structured models. The analysis of such systems requires
a low computational burden which allows one to deal with large
scale systems. Many studies on structured systems are related to
the graph-theoretic approach to analyse some system properties
such as controllability, observability or the solvability of sev-



eral classical control problems including disturbance rejection,
input-output decoupling, . . . . These workes are reviewed in
the survey (Dion et al. [2003]) from which it results that the
graph-theoretic approach provides simple, efficient and elegant
solutions.
However, the well-known graphic observability conditions for
linear structured systems recalled in (Dion et al. [2003]) cannot
be applied to systems with unknown inputs. Moreover, the state
and input observability conditions provided in (Boukhobza
et al. [2007]) for centralized linear systems with unknown in-
puts are not adapted to study the observability of only a part of
state and input components, which is quite necessary to study
the observability of Networked Control Systems. Otherwise,
authors of (Boukhobza et al. [2006]) express, in graphic terms,
necessary and sufficient conditions for the observability of any
given state part of a descriptor structured system. These results
are obviously applicable to the partial state and input observ-
ability analysis of linear systems. Nevertheless, the proposed
conditions are quite complicated and not efficient from a com-
putational point of view.
In this context, the purpose of this paper is to use a graph-
theoretic approach for providing necessary and sufficient con-
ditions for the generic observability of structured Networked
Control systems in function of their configuration. Note finally
that our method is mainly an analysis one and we do not deal
with the observer design problem. So contrary to many studies
cited above, we do not propose a method for the design of
estimators for decentralized systems. Nevertheless, in almost all
the latter design methods, the authors impose some conditions
linked to their observer construction and so which are only
sufficient observability conditions, while our analysis is a struc-
tural one and so is not related to an observer form. Moreover,
in many works based on unknown input observers the input
estimation is not studied whereas our approach considers the
observability of both the state and input components.

The paper is organised as follows: after Section 2, which is
devoted to the problem formulation, a digraph representation
of Networked Control systems is given in Section 3. The main
result is enounced in Section 4. Finally, a conclusion ends the
paper.

2. PROBLEM STATEMENT

In this paper, we consider Networked Control Systems having
the following model:

(Σ) :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (1)

where x ∈ R
n y ∈ R

p, u ∈ R
q and are respectively the

state vector, the output or the measurement vector and the
unknown input vector which may be constituted with control
measured inputs, disturbances and faults. We assume that only
the zero/nonzero structure of A, B, C and D is known. This
means that, to each entry in these matrices, we only know
whether its value is fixed to zero, in which case we call it a fixed
zero, or it has an unknown real value, in which case we call it
a free parameter. In a structured system with h nonzero entries
in A, B, C and D, we can parameterize these nonzero entries
by scalar real (nonzero) parameters λi, i = 1, . . . , h forming a

parameter vector Λ = (λ1, . . . , λh)
T
∈ R

h. We denote by Aλ,

Bλ, Cλ and Dλ respectively the matrices obtained by replacing
the nonzeros in A, B, C and D by the corresponding parameters
λi, i = 1, . . . , h, and we denote

(ΣΛ) :

{
ẋ(t) = Aλx(t) + Bλu(t)
y(t) = Cλx(t) + Dλu(t)

(2)

If all parameters λi are numerically fixed, we obtain a so-called
admissible realization of structured system (ΣΛ). More pre-
cisely, a realization of (ΣΛ) is a linear system (Σ) which has no
indeterminate parameter and has the same structure than (ΣΛ)
i.e. all the matrices describing (Σ) have the same zero/nonzero
structure than the ones defining (ΣΛ).
We say that a property is true generically (van der Woude
[2000]) if it is true for almost all the realizations of structured
system (ΣΛ). Here, “ for almost all the realizations ” is to be
understood (Dion et al. [2003], van der Woude [2000]) as “ for
all parameter values (Λ ∈ R

h) except for those in some proper
algebraic variety in the parameter space ”. The proper algebraic
variety for which the property is not true is the zero set of some
nontrivial polynomial with real coefficients in the h system
parameters λ1, λ2, . . . , λh or equivalently it is an algebraic
variety which has Lebesgue measure zero (Reinschke [1988]).
Consider that the structured linear system (ΣΛ) (2) is a dis-
tributed system. It is then constituted of several subsystems

(ΣR
i ), i = 1, . . . , N . Each subsystem satisfies to a model of

the form:

(ΣR
i )





ẋi(t) = Aλ
i xi(t) + Bλ

i ui(t) +

N∑

j=1,j 6=i

Aλ
i,jxj(t)+

N∑

j=1,j 6=i

Bλ
i,juj(t)

yi(t) = Cλ
i xi(t) + Dλ

i ui(t) +

N∑

j=1,j 6=i

Cλ
i,jxj(t)+

N∑

j=1,j 6=i

Dλ
i,juj(t)

(3)
where for i, j = 1, . . . , N , j 6= i, xi ∈ R

ni is the state vector

of subsystem (ΣR
i ), yi ∈ R

mi is the output vector of subsystem

(ΣR
i ) and ui ∈ R

pi is the input vector of subsystem (ΣR
i ).

Matrices Aλ
i , Bλ

i , Aλ
i,j , Bλ

i,j , Cλ
i , Dλ

i , Cλ
i,j and Dλ

i,j represent

matrices of appropriate dimensions whose elements are either
fixed to zero or assumed to be free non-zero parameters.
All the subsystems are linked together through a network. The

measurements arriving to each subsystem (ΣR
i ) can be modeled

in the most general form as:

ỹi = C̃λ
i xi(t)+D̃λ

i ui(t)+

N∑

j=1,j 6=i

C̃λ
i,jxj(t)+

N∑

j=1,j 6=i

D̃λ
i,juj(t)

We assume, without loss without loss of generality, that the
measurements arriving through the network to subsystem i are
linearly independent from the ones constituting yi.

In this paper, we study the generic partial state and input ob-
servability of structured subsystems constituting (ΣΛ). This
notion is related to the strong observability and the left invert-
ibility (Trentelman et al. [2001]). Let us recall the definition
of the generic state and input observability in the case of a
structured linear system:

Definition 1. We say that structured system (ΣΛ) is generically
state and input observable if and only if it is generically strongly
observable and left invertible. In this case, we say that all the
state components xi,k, k = 1, . . . , ni and ui,j , j = 1, . . . , qi
for i = 1, . . . , N are strongly observable.

Clearly, we cannot guarantee the existence of a causal observer
which allows to give an estimate of any strongly observable
component. Nevertheless, the strong observability of a compo-
nent is obviously a necessary condition to the existence of such



observer and it ensures the existence of a generalized observer
(which can use the measurement derivatives) which allows to
give an estimate of any strongly observable component (Hou
and Müller [1999]).
For the present study, we are interested in the generic strong
observability of only a part of the state or the input of each

subsystem (ΣR
i ), i = 1, . . . , N , and we consider two cases. In

the first case, we assume that subsystem (ΣR
i ) is linked to the

network and can use the measurement vector ỹi to reconstruct
its state or input components. We call this case, the distributed
decentralized observation scheme. In the second case, we con-
sider that there is no external measurements arriving through

the network to (ΣR
i ). So, subsystem (ΣR

i ) can use only its own
measurements vector yi to reconstruct its state or input compo-
nents. We call this case, the distributed autonomous observation
scheme.

We define now the strong observability of an input or a state
component, relatively to the considered observation scheme, as
follows:

Definition 2. Consider structured system (ΣΛ). For i ∈
{1, . . . , N}, we say that state component xi,k, k ∈
{1, . . . , ni} (respectively input component ui,j , j ∈
{1, . . . , qi}) is generically strongly observable in a distributed
decentralized observation scheme if for all initial state x0 and
for every input function u(t), yi(t) = 0 and ỹi(t) = 0 for t ≥ 0
implies xi,k(t) = 0, ∀t ≥ 0 (respectively ui,j(t) = 0, ∀t > 0).
Similarly, we say that state component xi,k (respectively input
component ui,j) is generically strongly observable in a dis-
tributed autonomous observation scheme if for all initial state
x0 and for every input function u(t), yi(t) = 0 for t ≥ 0 implies
xi,k(t) = 0, ∀t ≥ 0 (respectively ui,j(t) = 0, ∀t > 0).

Roughly speaking, the generic strong observability of state
component xi,k (respectively input component ui,j) means

that a change in xi,k(0) (respectively ui,j(0
+)) is necessarily

reflected in a change of measurements accessible to the studied
subsystem in the considered observation scheme.

3. GRAPH REPRESENTATION OF STRUCTURED
LINEAR SYSTEMS

To structured system (ΣΛ) constituted by subsystems (ΣR
i ),

i = 1, . . . , N , we associate a digraph noted G(ΣΛ) which
is constituted by a vertex set V and an edge set E . More

precisely, V =

N⋃

i=1

(
Xi ∪ Ui ∪ Yi ∪ Ỹi

)
, where Xi =

{xi,1, . . . ,xi,ni
} is the set of state vertices for subsystem i,

Ui = {ui,1, . . . ,ui,qi
} is the set of input vertices for subsys-

tem i, Yi = {yi,1, . . . ,yi,pi
} is the set of output vertices for

subsystem i, Ỹi = {ỹi,1, . . . ,yi,p̃i
} is the set of output vertices

associated to the measurements arriving through the network to
subsystem i. The edge set is

E =

N⋃

i=1

(
Ai-edges ∪ Bi-edges ∪ Ci-edges ∪ Di-edges ∪

C̃i-edges ∪ D̃i-edges

N⋃

j=1,j 6=i

(
Ai,j-edges ∪ Bi,j-edges ∪

Ci,j-edges ∪ Di,j-edges ∪ C̃i,j-edges ∪ D̃i,j-edges
))

, where

Ai-edges =
{
(xi,j,xi,k) |Aλ

i (k, j) 6= 0
}

,

Bi-edges =
{
(ui,h,xi,l) | B

λ
i (l, h) 6= 0

}
,

for j 6= i, Ai,j-edges =
{
(xj,l,xi,h) | Aλ

i,j(h, l) 6= 0
}

,

Bi,j-edges =
{
(uj,l,xi,h) | Bλ

i,j(h, l) 6= 0
}

,

Ci-edges =
{
(xi,h,yi,l) | C

λ
i (l, h) 6= 0

}
,

Di-edges =
{
(ui,h,yi,l) | D

λ
i (l, h) 6= 0

}
,

for j 6= i, Ci,j-edges =
{
(xj,l,yi,h) | Cλ

i,j(h, l) 6= 0
}

,

Di,j-edges =
{
(uj,l,yi,h) | Dλ

i,j(h, l) 6= 0
}

,

C̃i-edges =
{

(xi,h, ỹi,l) | C̃
λ
i (l, h) 6= 0

}
,

D̃i-edges =
{

(ui,h, ỹi,l) | D̃
λ
i (l, h) 6= 0

}
,

for j 6= i, C̃i,j-edges =
{

(xj,l, ỹi,h) | C̃λ
i,j(h, l) 6= 0

}

and D̃i,j-edges =
{

(uj,l, ỹi,h) | D̃λ
i,j(h, l) 6= 0

}
.

Here, M(i, j) is the (i, j)th element of matrix M and (v1,v2)
denotes a directed edge from vertex v1 ∈ V to vertex v2 ∈ V .
The following example illustrates the previous settings.

Example 3. Consider the following structured distributed sys-
tem constituted of three subsystems:
Subsystem 1:

Aλ
1 =

(
0 λ1 0
0 0 0
0 0 0

)
, Aλ

1,2 =

(
0 0 0
λ2 0 0
0 0 0

)
, Aλ

1,3 = 0, Bλ
1 =

(
0
λ3

0

)
, Bλ

1,2 =

Bλ
1,3 = 0, Cλ

1 =
(

λ4 0 λ5

)
and Cλ

1,2 = Cλ
1,3 = Dλ

1 = Dλ
1,2 = Dλ

1,3 = 0.

Subsystem 2:

Aλ
2 =

(
0 λ6 0
0 0 0
0 0 0

)
, Aλ

2,1 = A2,3 = 0, Bλ
2 =

(
0
λ7

λ8

)
, Bλ

2,1 = Bλ
2,3 = 0,

Cλ
2 =

(
λ9 0 0
0 0 λ10

)
, Cλ

2,1 = 0, Cλ
2,3 =

(
0 0
0 λ11

)
, Dλ

2 =

(
0

λ12

)
and

Dλ
2,1 = Dλ

2,3 = 0 .
Subsystem 3:

Aλ
3 =

(
0 λ13

0 0

)
, Aλ

3,1 = Aλ
3,2 = 0, Bλ

3 =

(
0

λ14

)
, Bλ

3,1 = Bλ
3,2 = 0,

Cλ
3 =

(
λ15 0
λ16 0

)
, Cλ

3,1 =

(
0 0 λ17

0 0 0

)
and Cλ

3,2 = Dλ
3 = Dλ

3,1 = Dλ
3,2 = 0.

To such a model, we associate the digraph in figure 1. For a
sake of simplicity in this example, the set of output vertices

associated to the measurements Ỹi arriving through the network
to each subsystem are not represented. In many cases, this
set is a subset of the whole subsystems measurements set i.e.

Ỹi ⊆

N⋃

j=1, j 6=i

Yj.

 

y1,1

x2,3

x1,2

y2,1

x1,3

y3,1

y3,2

u1,1y2,2

u2,1 x1,1x2,1

x3,1

x3,2u3,1

x2,2

Figure 1. Digraph associated to Example 3

Let us now give some useful definitions and notations.
• Two edges e1 = (v1,v′

1) and e2 = (v2,v′
2) are v-disjoint if

v1 6= v2 and v′
1 6= v′

2. Note that e1 and e2 can be v-disjoint
even if v′

1 = v2 or v1 = v′
2. Some edges are v-disjoint if they

are mutually v-disjoint.
• Path P containing vertices vr0 , . . . ,vri is denoted P =



vr0 → vr1 → . . . → vri , where (vrj ,vrj+1
) ∈ E for

j = 0, 1 . . . , i − 1. We say that P covers vr0 , vr1 ,. . . , vri .
• Path P is an Y-topped path if its end vertex is an element
of Y. An Y-topped path family consists of disjoint simple Y-
topped paths.
• A cycle is a path of the form vr0 → vr1 → . . . → vri →
vr0 , where all vertices vr0 , vr1 ,. . . , vri are distinct. Some
paths are disjoint if they have no common vertex. A path is
simple when every vertex occurs only once in this path. A set
of disjoint cycles is called a cycle family.
• The union of an Y-topped path family, and a cycle family
is disjoint if they have no vertices in common. If such union
contains a path or a cycle which covers a vertex v, it is said to
cover v.
Let V1 and V2 denote two subsets of V .
•The cardinality of V1 is noted card(V1).
• A path P is said a V1-V2 path if its begin vertex belongs to
V1 and its end vertex belongs to V2. If the only vertices of P
belonging to V1∪V2 are its begin and its end vertices, P is said
a direct V1-V2 path.
• A set of ℓ disjoint V1-V2 paths is called a V1-V2 linking of size
ℓ. The linkings, which consist of a maximal number of disjoint
V1-V2 paths, are called maximum V1-V2 linkings. We define by
ρ [V1,V2] the size of these maximum V1-V2 linkings.
• µ [V1,V2] is the minimal number of vertices covered by a
maximum V1-V2 linking.

• Vess(V1,V2)
def
=

{
v ∈ V |v is covered by every maximum

V1-V2 linking
}

.

Roughly speaking, vertex subset Vess(V1,V2) denotes the set of
all essential vertices (van der Woude [2000]), which correspond
by definition to vertices present in all the maximum V1-V2
linkings.
• S ⊆ V is a separator between sets V1 and V2 if every
path from V1 to V2 contains at least one vertex in S. We call
minimum separators between V1 and V2 any separators having
the smallest size. According to Menger’s Theorem, the latter is
equal to ρ [V1,V2].
• There exist a uniquely determined minimum separator be-
tween V1 and V2 noted So(V1,V2) such that:
So(V1,V2) is the set of begin vertices of all direct Vess(V1,V2)-
V2 paths, where Vess(V1,V2)∩ V2 is considered, in the present
definition, as input vertices. Vertex subset So(V1,V2) is called
the minimum output separator.
It results, from the previous definitions, that Vess(V1,V2) ∩
V2 ⊆ So(V1,V2).
• θ(V1,V2) is the maximal number of v-disjoint edges which
begin in V1 and end in V2.

Definition 4. For each vertex subsets V such that V ⊆ V , we
define the following vertex subsets:

• X̄(V) = X \ (V ∩ X);
• Ū(V) ⊆ U \ (V ∩U) such that card(Ū(V)) = ρ

[
U,V

]
=

ρ
[
Ū(V),V

]
and µ

[
Ū(V),V

]
= µ

[
U,V

]
. Note that Ū(V)

always exists but is not necessarily unique.

• X1(V)
def
=

{
xi ∈ X̄(V) | ρ

[
U ∪ {xi},V

]
> ρ

[
U,V

]}
;

• Υ0(V)
def
=

{
vi ∈ V | ρ

[
U,V

]
> ρ

[
U,V \ {vi}

]}
= V ∩

Vess(U,V);

• Υ1(V)
def
= V \ Υ0(V);

•U0(V)
def
=

{
ui ∈ Ū(V) | θ

(
{ui},X1(V) ∪ Υ1(V)

)
= 0

}
;

• U1(V)
def
= Ū(V) \ U0(V);

• So(V)
def
= So(U0(V),V);

• Xs(V)
def
= So(V) ∩ X̄(V).

• X0(V)
def
= X̄(V) \ (X1(V) ∪ Xs(V)).

• β1(V) is the maximal number of vertices included in
X1(V) ∪ Xs(V) ∪ U1(V) covered by a disjoint union of

- a Xs(V) ∪ U1(V)-Υ1(V) linking of size

ρ
[
Xs(V) ∪ U1(V),Υ1(V)

]
,

- a Υ1(V)-topped path family and
- a cycle family covering only elements of X1(V).

• β0(V)
def
= µ

[
U0(V),So(V)

]
− ρ

[
U0(V),So(V)

]
;

• β(V)
def
= β1(V) + β0(V) + card

(
V \ Y

)
.

4. MAIN RESULTS

In this section, we enounce the main result of the paper which
consists on the exact characterization, in the two considered
observation schemes, of the set of all the strongly observable
input and state components for each subsystem of NCS (ΣΛ).
For the sake of simplicity, at first, we do not consider that (ΣΛ)
is a networked Control System. So, let us develop some ideas
on a general structured linear system (ΣΛ) on the form

(ΣΛ) :

{
ẋ(t) = Aλx(t) + Bλu(t)
y(t) = Cλx(t) + Dλu(t)

(4)

First, let us notice that if some vertices of X ∪ U are not the
begin vertices of an Y-topped path, then these state or input
components are obviously not observable. So, without loss of
generality, we can remove all these vertices from the digraph
and the corresponding input or state components from the sys-
tem, in order to study the strong observability of the other state
and input components. Consequently, we will consider in the
sequel that all the state and input vertices are the begin vertices
of Y-topped paths. In this case, we say that the input and state
vertices are output connectable.
Moreover, using the results of (Commault et al. [1997]), where
authors treat the disturbance rejection problem, we have that

input components included in U \ Ū(Y) can be rendered un-

observable using the Ū(Y) components i.e. there exist inputs

Ū(Y) such that output y(t) is not sensitive to the input com-

ponents associated to U \ Ū(Y). Hence, the input components

associated to vertices U \ Ū(Y) are not strongly observable
and so, for a sake of simplicity, we restrict our study only to

the input components associated to Ū(Y). Hence, let us denote

by B̄λ (resp. D̄λ) the submatrix of Bλ (resp. Dλ) associated

to Ū(Y) i.e. matrix B̄λ (resp. D̄λ) is constituted by the con-

catenation of columns Bλ
j (resp. Dλ

j ) of Bλ (resp. Dλ) where

uj ∈ Ū(Y). Let us denote q̄ = card(Ū(Y)) and the pencil ma-

trix of system (Aλ, B̄λ, Cλ, D̄λ) by Pλ(s) =
(

Aλ − sIn B̄λ

Cλ D̄λ

)
.

For each realization of system (ΣΛ), we can compute the n-

rank of Pλ(s). This rank will have the same value for al-

most all parameter values λ ∈ R
h (Reinschke [1988], van der

Woude [2000]). This so-called generic n-rank of Pλ(s) will be

denoted by g_n-rank(Pλ(s)). Generic rank of matrix Pλ(s),
denoted g_rank(Pλ(s)), is quite different as it depends on s.

Hence, g_rank(Pλ(s)) = r, ∀ s ∈ C means that for almost all

parameter values λ ∈ R
h, rank(Pλ(s)) = r, ∀ s ∈ C.

On the one hand, applying results of (van der Woude [2000]),

we have that system (Aλ, B̄λ, Cλ, D̄λ) is generically input and

state observable iff g_rank(Pλ(s)) is equal to n plus the max-

imal size of a Ū(Y)-Y linking i.e. g_rank(Pλ(s)) = n + q̄

or in other words iff Pλ(s) generically has full column rank.



On the other hand, as all the state and input components are

the begin vertices of Y-topped paths and as ρ
[
Ū(Y),Y

]
=

card(Ū(Y)) = q̄, using the results of (van der Woude [2000]),

we have also that the generic normal rank of Pλ(s) is equal
to n + q̄. According to the generically full column n-rank of

Pλ(s), this implies that g_rank(Pλ(s0)) < n+ q̄ is equivalent
(Trentelman et al. [2001]) to the existence of a nonzero vector(
xT

0 , uT
0

)T
such that the output y resulting from the initial

conditions u(t) = u0e
s0t and x(0) = x0 is zero and so that

there exists a direction in the extended state and input space
which is not strongly observable.
Consequently, we have that the generic dimension of the
strongly observable subspace in the extended state and input

subspace (xT , uT )T is closely related to the generic num-

ber of invariant zeros of Pλ(s) i.e. the complex roots of

g_rank(Pλ(s)) < n + q̄ (Trentelman et al. [2001]). Indeed,
if we denote g_ninv,z this number, the generic dimension of
the strongly observable subspace in the extended state and input

subspace (xT , uT )T is equal to n+q̄−g_ninv,z . Note that in the
case where the input and state vertices are output connectable

and as ρ
[
Ū(Y),Y

]
= q̄, g_rank(Pλ(s0)) < n+ q̄ is possible

only for s0 = 0.
The first lemma hereafter, allows us to characterize graphically
number g_ninv,z .

Lemma 5. Consider structured system (ΣΛ) represented by
digraph G(ΣΛ). We have that n + q̄ − g_ninv,z = β(Y) where

g_ninv,z is the number of invariant zeros of Pλ(s).

Proof.
Due to the properties of subdivision presented in Definition 4
(Boukhobza et al. [2007]), we have that there is no edge from
X0(Y) ∪ U0(Y) to X1(Y) ∪ Υ1(Y) and So(U0(Y),Y) =
Xs(Y) ∪ Υ0(Y). Thus, we can write (ΣΛ) as:





Ẋ0(t) = Aλ
0,0X0(t) + Aλ

0,sXs(t) + Aλ
0,1X1(t)+

Bλ
0,0U0(t) + Bλ

0,1U1(t)

Ẋs(t) = Aλ
s,0X0(t) + Aλ

s,sXs(t) + Aλ
s,1X1(t)+

Bλ
s,0U0(t) + Bλ

s,1U1(t)

Ẋ1(t) = Aλ
1,sXs(t) + Aλ

1,1X1(t) + Bλ
1,1U1(t)

Υ0(t) = Cλ
0,0X0(t) + Cλ

0,sXs(t) + Cλ
0,1X1(t)+

Dλ
0,0U0(t) + Dλ

0,1U1(t)
Υ1(t) = Cλ

1,sXs(t) + Cλ
1,1X1(t) + Dλ

1,1U0(t)

(5)

where X0, Xs, U0, U1, Υ0 and Υ1 represent the variables
associated to vertex subsets X0(Y), Xs(Y), U0(Y), U1(Y),
Υ0(Y) and Υ1(Y) respectively.
Therefore, with some appropriate permutations on the rows and

columns of Pλ(s), we can transform Pλ(s) into

P̃λ(s) =




Aλ
0,0 − sIn0

Aλ
0,s Bλ

0,0 Aλ
0,1 Bλ

0,1

Aλ
s,0 Aλ

s,s − sIns
Bλ

s,0 Aλ
s,1 Bλ

s,1

Cλ
0,0 Cλ

0,s Dλ
0,0 Cλ

0,1 Dλ
0,1

0 Aλ
1,s 0 Aλ

1,1 − sIn1
Bλ

1,1

0 Cλ
1,s 0 Cλ

1,1 Dλ
1,1




For a sake of simplicity, let us define n0 = card(X0(Y)), ns =
card(Xs(Y)), n1 = card(X1(Y)), q0 = card(U0(Y)), q1 =
card(U1(Y)), p0 = card(Υ0(Y)) and p1 = card(Υ1(Y)).
Since the edges associated to Aλ

1,s link Xs(Y) to X1(Y)

and the edges associated to Cλ
1,s link Xs(Y) to Υ1(Y), we

have that g_rank
(

Aλ
1,s

Cλ
1,s

)
= θ(Xs(Y),X1(Y) ∪ Υ1(Y)).

According to Statement St3 of Lemma 6 in (Boukhobza et al.

[2007]), this implies that matrix
(

Aλ
1,s

Cλ
1,s

)
has generically a full

column rank i.e. g_rank
(

Aλ
1,s

Cλ
1,s

)
= ns and so the number of

invariant zeros of Pλ(s) is equal to the number of invariant

zeros of Pλ
e (s), where

P
λ
e (s) =




Aλ
0,0 − sIn0

Aλ
0,s Bλ

0,0 Aλ
0,1 Bλ

0,1 0

Aλ
s,0 Aλ

s,s − sIns Bλ
s,0 Aλ

s,1 Bλ
s,1 0

Cλ
0,0 Cλ

0,s Dλ
0,0 Cλ

0,1 Dλ
0,1 0

0 Ins 0 0 0 0

0 0 0 Aλ
1,1 − sIn1

Bλ
1,1 Aλ

1,s

0 0 0 Cλ
1,1 Dλ

1,1 Cλ
1,s




Let us denote Pλ
0 (s)

def
=




Aλ
0,0 − sIn0

Aλ
0,s Bλ

0,0

Aλ
s,0 Aλ

s,s − sIns Bλ
s,0

Cλ
0,0 Cλ

0,s Dλ
0,0

0 Ins 0


 and

Pλ
1 (s)

def
=

(
Aλ

1,1 − sIn1
Bλ

1,1 Aλ
1,s

Cλ
1,1 Dλ

1,1 Cλ
1,s

)
.

Pλ
0 (s) can be seen as the pencil matrix of a square system

denoted (Σ0), defined by input U0(Y), state X0(Y)∪Xs(Y)
and output Ys ∪ Υ0(Y), where Ys is a virtual output

connected to Xs(Y) such that Ys = Xs. Matrix Pλ
1 (s) can be

seen as the pencil matrix of a system denoted (Σ1), defined
by input U1(Y) ∪ Xs(Y), state X1(Y) and output Υ1(Y)
and which has generically full column n-rank even after the
deletion of an arbitrary row (Boukhobza et al. [2007]).

We have that g_n-rank(Pλ
0 (s)) is equal to the number of

rows of Pλ
0 (s) and g_n-rank(Pλ

1 (s)) is equal to the number

of columns of Pλ
1 (s). Thus, counting the zeros with their

multiplicities, it is easy to see that the number of invariant

zeros of Pλ
e (s) is equal to the sum of the number of invariant

zeros of Pλ
0 (s) and the number of invariant zeros of Pλ

1 (s).
On the one hand, applying Theorem 5.1 of (van der Woude

[2000]), we have that the number of invariant zeros of Pλ
0 (s) is

equal to n0 + ns + q0 minus the minimum number of edges
in a maximum size (size q0) U0(Y)-Υ0(Y) ∪ Ys linking.

This implies that the number of invariant zeros of Pλ
0 (s)

is equal to n0 + ns + q0 − µ
[
U0(Y),So(U0(Y),Y)

]
+

ρ
[
U0(Y),So(U0(Y),Y)

]
− ns. Note that the presence of

the latter term ns is due to the fact that the output of system
(Σ0) is Ys and not Xs. Moreover from Theorem 5.2 of (van

der Woude [2000]), the number of invariant zeros of Pλ
1 (s) is

equal to n1 + ns + q1 minus the maximal number of vertices
of X1(Y) ∪ Xs(Y) ∪ U1(Y) covered by a disjoint union of:
- a Xs(Y) ∪ U1(Y)-Υ1(Y) linking of size

ρ
[
Xs(Y) ∪ U1(Y),Υ1(Y)

]
,

- a Υ1(Y)-topped path family and
- a cycle family covering only elements of X1(Y).
Therefore, using notations of Definition 4, the number of

invariant zeros of Pλ
e (s) and also of Pλ(s) is equal to n0+q0+

n1+ns+q1−β0(Y)−β1(Y) = n+q̄−β0(Y)−β1(Y). Thus,
the generic dimension of the strongly observable subspace
of (ΣΛ) in the extended state and input subspace is equal to

n + q̄ − g_ninv,z = β1(Y) + µ
[
U0(Y),So(U0(Y),Y)

]
−

ρ
[
U0(Y),So(U0(Y),Y)

]
= β1(Y) + β0(Y) = β(Y). △

The previous lemma allows us to write that the generic dimen-
sion of the strongly observable subspace in the extended state

and input subspace (xT , uT )T is equal to β(Y).
If β(Y) < n + q then (ΣΛ) is not generically input and state
observable and it may be interesting to know which state com-
ponent xi (resp. input component uj) is generically strongly ob-

servable. At this aim, we compare β(Y∪{xi}) or β(Y∪{uj})
to β(Y). Indeed, this amounts to compare the generic dimen-



sion of the strongly observable subspace in the extended state

and input subspace (xT , uT )T of (ΣΛ) to the generic dimension
of the strongly observable subspace in the extended state and

input subspace (xT , uT )T of the same system (ΣΛ) with an
additional sensor which measures the component xi (resp. uj).
In fact, adding to the system a sensor, which measures the state
component xi (resp. input component uj) is equivalent to add

in the digraph an output vertex yp+1 and an edge (xi,yp+1)
(resp. (uj,yp+1)). For the new system obtained by the addi-
tion of yp+1, the computation of the generic dimension of the
strongly observable subspace in the extended state and input

subspace (xT , uT )T can be made by using function β(Y ∪
{yp+1}). Nevertheless, this requires an effective redraw of the
digraph to add effectively an output vertex yp+1 and an edge

(xi,yp+1) (resp. (uj,yp+1)). For a sake of simplicity, we have
chosen to work on an unique digraph. Thus, we do not add any
vertex or edge in the digraph, but we consider vertex xi (resp.

uj) as an output. Thus, β(V) = β1(V)+µ
[
U0(V),So(V)

]
−

ρ
[
U0(V),So(V)

]
+ card

(
V \ Y

)
, for V = Y ∪ {xi} (resp.

V = Y ∪ {uj}), represents the generic dimension of the
strongly observable subspace in the extended state and input

subspace (xT , uT )T for the new system obtained by the addi-
tion of yp+1 and an edge (xi,yp+1) (resp. (uj,yp+1)). We
take the strong observability of xi (resp. uj) into account by

adding term card
(
V \ Y

)
in the computation of β(V).

We can state now the following lemma concerning the strong
observability of state or input component of structured linear
systems :

Lemma 6. Consider structured system (ΣΛ) represented by di-

graph G(ΣΛ). Let Ω
def
= {v ∈ X ∪ U, β(Y ∪ {v}) = β(Y)}.

A state component xi (respectively an input component uj) is
strongly observable iff xi ∈ Ω (resp. uj ∈ Ω)

Proof. Obviously, a state component xi (resp. input component
uj) is strongly observable iff an additional measure of this
state component does not change the generic dimension of the
strongly observable subspace. Using notations of Definition 4,
this implies that state component xi (resp. input component
uj) is strongly observable iff β(Y) = β(Y ∪ {xi}) (resp.

β(Y) = β(Y ∪ {uj})) and the proposition follows. △

Applying now this result to a Networked Control System, we
have:

Proposition 7. Consider structured system (ΣΛ) represented

by digraph G(ΣΛ) and constituted by subsystems (ΣR
i ), i =

1, . . . , N . For subsystem i, state component xi,k (resp. input
component ui,j) is strongly observable in
- a distributed decentralized observation scheme iff
β
(
Yi ∪ Ỹi ∪ {xi,k}

)
= β

(
Yi ∪ Ỹi

)
(resp. β

(
Yi ∪ Ỹi ∪

{ui,j}
)

= β
(
Yi ∪ Ỹi

)
).

- a distributed autonomous observation scheme iff
β
(
Yi ∪ {xi,k}

)
= β

(
Yi

)
(resp. β

(
Yi ∪ {ui,j}

)
= β

(
Yi

)
).

When we study the state strong observability or the state

and input observability of subsystem (ΣR
i ), we can apply the

following corollary:

Corollary 8. Consider structured system (ΣΛ) represented by

digraph G(ΣΛ) and constituted by subsystems (ΣR
i ), i =

1, . . . , N . Subsystem i is generically input and state observable
in
- a distributed decentralized observation scheme iff

β
(
Ui ∪ Xi ∪ Yi ∪ Ỹi

)
= β

(
Yi ∪ Ỹi

)

- a distributed autonomous observation scheme iff

β
(
Ui ∪ Xi ∪ Yi

)
= β

(
Yi

)

Subsystem i is generically strongly observable in
- a distributed decentralized observation scheme iff

β
(
Xi ∪ Yi ∪ Ỹi

)
= β

(
Yi ∪ Ỹi

)

- a distributed autonomous observation scheme iff

β
(
Xi ∪ Yi

)
= β

(
Yi

)

Let us illustrate the previous results on the simple system pre-
sented in Example 3. Consider first the case of decentralized

autonomous observation scheme. For Subsystem 1, β
(
Y1

)
=

3 = β
(
Y1 ∪ {x1,2}

)
while β

(
Y1 ∪ {u1,1}

)
= 6 and

β
(
Y1 ∪ {x1,1}

)
= β

(
Y1 ∪ {x1,3}

)
= 4. For Subsystem 2,

β
(
Y2

)
= 5 = β

(
Y2∪{x2,1}

)
= β

(
Y2∪{x2,2}

)
= β

(
Y2∪

{u2,1}
)

while β
(
Y2 ∪ {x2,3}

)
= 6. Finally, for Subsystem 3,

β
(
Y3

)
= 5 = β

(
Y2∪{x3,1}

)
= β

(
Y3∪{x3,2}

)
= β

(
Y3∪

{u3,1}
)
.

We can conclude that only Subsystem 3 is input and state ob-
servable in an autonomous observation scheme. For Subsystem
1, only state component x1,2 and for Subsystem only state
components x2,1, x2,2 and input component u2,1 are strongly
observable in a distributed autonomous observation scheme.
Note that to make all the state and input components of
Subsystem 1 strongly observable in a distributed decentral-
ized observation scheme, it is necessary and sufficient to have

{y2,1, y3,1} ⊆ Ỹ1. Similarly, to make all the state and input
components of Subsystem 2 strongly observable in a distributed
decentralized observation scheme, it is necessary and sufficient

to have y3,2 ∈ Ỹ2.

5. CONCLUSION

An important problem that must be considered when dealing
with control over network, is the validity of some properties as
the observability. For network distributed systems, an alterna-
tive to the centralized observation scheme, which can be quite
complicated to realize when we deal with a large scale system,
is to consider a decentralized distributed observation scheme or
a completely autonomous observation scheme. The first scheme
corresponds to the case when the subsystem is connected to
the network and receive some informations from the other sub-
systems. The second scheme is related to the case when the
subsystem have only its own measurements to reconstruct a
part of the state and input components as in a network cut for
example.
In this paper, we propose an analysis tool to study the generic
observability of any given part of the state and the unknown
input for network distributed structured linear systems in both
distributed decentralized and distributed autonomous schemes.
Using a graphic-theoretic approach, which is well adapted to
study structural properties, necessary and sufficient conditions
for the strong observability of a state and/or an input component
are provided and expressed in graphic terms. The proposed
conditions, which need few information about the system, are
very easy to check by means of well-known combinatorial
techniques and simply by hand for small systems. That makes
our approach particularly suited for large scale systems as it is
free from numerical difficulties.
Indeed, from a computational point of view, Lemma 6 requires
computations of function β. The latter needs first a system de-
composition as specified in Definition 4. This decomposition is
done using only computations of maximal linkings between two
vertex subsets. The computation of a maximal size linking has a
complexity order equal to O(W 2 ·M0.5) using a transformation



of a digraph into a flow graph (Martinez-Martinez et al. [2006]),
where M = (n + q)(n + q) + (n + q)p is the maximal number
of edges and W = n+p+ q is the number of vertices in the di-
graph. The computation of function µ is done using the primal-
dual algorithm (Hovelaque et al. [1996]). Next, the computation
of β1 is equivalent to the computation of a maximal matching
in a bipartite graph. By using the Bipmatch method (Micali and
Vazirani [1980]) we can do this computation with a complexity
order equal to O(M · W 0.5).
Finally, the overall complexity order to list all the strongly
observable state and input components is equal to O(W 4 · M).
Even, if they can still be optimized, the proposed algorithms
have not an exponential complexity. Hence, they are suited to
large scale systems.
Furthermore, starting from the presented results, we can easily
deal with the optimisation of the sensor location or of the
measurements distribution on the network to achieve the strong
observability of the system in different network configurations.
Finally, we can highlight another application of the results pro-
vided in this paper in the case of systems submitted to faults.
For such systems, it is interesting to see whether or not the state
is (or remains) observable when the system is faulty. In this
case, the failure is considered as unknown input component.
This result is quite simple to deduce from Lemma 6.
As it is briefly discussed, the present work can be a point of de-
parture of many studies concerning the generic observability or
other structural properties of Networked Controlled Systems.
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