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Introduction

We consider a flight mission to the geostationary transfer orbit (GTO) for an
Ariane 5 launcher, while maximizing the payload or, as a variant, minimizing
the fuel consumption. We first solve the complete flight sequence up to the final
orbit, assuming a maximal thrust for all propulsion systems. Then we focus on
the atmospheric ascent phase, which has been studied for instance in [1, 2, 3].
We are more specifically interested in optimal trajectories with singular arcs
(flight phases with a non maximal thrust) for the boosters. Due to the presence
of tabulated data in the physical model, the exact expression of the singular
control cannot be obtained from the time derivatives of the switching function.
An alternate way to compute the singular control is provided, and numerical
experiments are carried out for for several launcher variants.

1 Problem statement

State and control variables

The state variables include the position and speed of the launcher, in dimension
3, as well as the masses of the three fuel-consuming parts of the launcher: m1
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for the two boosters (treated as one propulsion system), m2 for the first stage,
and m3 for the second stage (m denoting the total mass). This allows us to
treat the separations more easily, avoiding the discontinuities on the state vari-
ables. Such discontinuities can be treated properly when applying Pontryagin’s
Minimum Principle (see for instance [4]), but in view of the disappointing nu-
merical results, we got rid of discontinuities by splitting the total mass. The
original problem being with free final time, we use the standard transformation
to obtain a formulation with a fixed final time.

The control variables include the throttle α ∈ [0, 1] for the boosters (we
assume a maximal thrust for the propulsion systems of the stages), and the
flight angles θ and ψ (heading and azimuth) giving the thrust direction. The
control vector is then

u = (α, θ, ψ) ∈ [0, 1] × [−π, π]2. (1)

Flight dynamics

The dynamics for the masses correspond to the fuel consumption, which depends
on the flight phase. The flight dynamics are







ṙ = v

v̇ = 1
m

(T (r, u) − D(r, v)) + g(r)
ṁi = −α β (for each fuel-consuming part)

(2)

with
• T (r, u) = α β Isp g0 − S Pz: rocket thrust.
β : mass flow rate; Isp : specific impulse
S : area at rocket exit; Pz : atmospheric pressure (table)
• D(r, v) = q Sr Cx(M): drag due to earth atmosphere.
q : dynamic pressure; Sr: reference area
Cx: drag coefficient (table); M : speed in Machs

• g(r) = − µ
‖r‖3 (r + J2

R2
T

‖r‖2 MJ2
r): gravity with J2 corrector term.

Note: the lift term in the aerodynamic forces is here omitted.

Applying Pontryagin’s Minimum Principle shows a decoupling for the con-
trol variables. Minimizing the Hamiltonian leads to the thrust direction being
opposite to the speed costate, while the throttle follows a bang-bang law, with
possible switchings or singular arcs.

Complete flight at full thrust

We start by solving the complete flight with stage separations, by setting a full
thrust for the boosters. We want here to maximize the payload, and assume
all fuel is burnt. As we consider the mass of each component instead of the
global mass, the state variables remain continuous at the separations times.
Therefore the separation times t1 and t2 for the boosters and first stage only
need to satisfy the continuity of the Hamiltonian. We introduce as additional
shooting unknowns the value of the state and costate at the separation times,
namely, (x1, p1) and (x2, p2), for a better numerical behaviour. We have the
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corresponding matching conditions that enforce the continuity of x and p at the
separation times.

Numerical results

Solving the complete flight problem directly with the shooting method is diffi-
cult, due to the lack of a suitable initial guess. We first solve the flight restricted
to the first phase (until separation of the boosters) then add the second and
third phase. We obtain a solution with a payload of 14623kg and a final time
of 1232.75 seconds. Boosters separation occurs after 119 seconds, and 533.375
seconds for the first stage, which is consistent with the constraints set on the
final masses (consumption of all fuel).

Remark: The thrust is actually completely fixed during the first 10 seconds
of the flight, vertical and maximal.

The first two graphs in Fig.1 represent the optimal control with the thrust
level for the boosters and two stages, here set to 1, and the heading and azimuth
angles for the thrust direction; and the masses of the different parts of the
launcher. The separations correspond to the discontinuities observed on the
total mass.
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Fig.1 Complete flight with full thrust - Controls and masses

Fig.2 shows the evolution of the altitude and speed of the launcher during the
flight. The change of the propulsion system at the beginning of the second and
third phases is clearly visible on the speed graph. These graphs are consistent
with the typical GTO flight described, for instance, in the Ariane 5 User’s
Manual from Arianespace.
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Fig.2 Complete flight with full thrust - Altitude and speed

Remark: It should be kept in mind that we have allowed a free direction for
the thrust, which is not the case in the real flight where the thrust direction is
strongly constrained by the dynamic pressure limit. However, the trajectory we
obtained is close to the reference one.

2 Study of singular arcs for the boosters

We focus now on the study of singular arcs for the boosters, whose throttle is
now free in [0, 1], while keeping a maximal thrust for the two stages. We also
restrict the flight to the first atmospheric climbing phase until the separation
of the boosters. We reformulate the payload maximization criterion into a fuel
consumption minimization, which is more suitable for the study of singular arcs.
As we are only considering a variable throttle for the boosters (EAP), we set as
the new criterion

Min

∫ tf

0

α βEAP . (3)

The payload is now fixed and is no longer part of the state variables, and
the final masses m1,m2,m3 are free. We also replace the final condition on
the orbit by new final conditions on the position and speed. We take the values
corresponding to the boosters’ separation on the trajectory previously computed
for the complete flight with full thrust.

2.1 An alternate expression for the singular control

A singular arc is characterized by the fact that the switching function ψ (the
derivative of the Hamiltonian with respect to the control) vanishes over a whole
time interval. The expression of the singular control is usually obtained by
differentiating the equation ψ(x, p) = 0 with respect to time until the control
appears explicitely (the required order of differentation being always even, see
for instance [5]). However, due to the presence of tabulated data in the thrust
and drag terms, the analytic expression of ψ̈ is already not available. We only
have the first derivative ψ̇ that depends on ẋ and ṗ. As the idea behind the
formal expression of the singular control is that the switching function and its
successive time derivatives vanish over a singular arc, we try to enforce this
constraint with the terms at our disposal.
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Therefore, for the singular control we choose at each time step the value
α̃sing that minimizes ψ and ψ̇ at the next integration step, i.e.,

α̃sing = ArgMin[0,1] ‖(ψ(yi+1), ψ̇(yi+1))
t‖2 = ψ2(yi+1) + ψ̇2(yi+1), (4)

where yi+1 denotes the state-costate pair (x, p) obtained after one integration
step from the current time. This minimization is currently performed by a
BFGS method [6], starting from an initial value α = 0.5. The numerical ex-
periments showed that taking 0.1 or 0.9 as initial values gives similar results,
which is of course reassuring. Furthermore, using the singular control continuity
to initialize this minimization step (after the arc entry) seems to give slighltly
better results than using a constant initialization.

We tested this formulation on the three dimensional Goddard problem (cf
[7]) and found control values quite close to the exact value α∗

sing obtained from

the equation ψ̈(x, p) = 0, see Fig.3. The difference between the exact singular
control and the alternate formulation is about 10−3, but the computational
cost is significantly increased. However, the minimization procedure was not
optimized and so might be further improved.
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Fig.3 3D Goddard problem - Approximate and exact singular control

2.2 Continuation approach for singular arcs

In order to solve a problem with singular arcs, besides the expression of the
singular control, we also need some information about the control structure,
namely the number and position of the singular arcs. To obtain such informa-
tion, we approach the original problem by a sequence of regularized problems
with strictly convex Hamiltonians (with respect to the throttle), such as in [8, 7],
for instance. This is done by adding a quadratic term to the criterion, which
becomes, for given λ ∈ [0, 1]:

Min

∫ tf

0

[

α βEAP + (1 − λ) α2βEAP

]

dt. (5)
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This regularization adds a new term (1 − λ) α2βEAP to the Hamiltonian,
which gives the modified command law for λ < 1:







If ψ(x, p) > 0 then α = 0
If ψ(x, p) < −2(1 − λ)βEAP then α = 1

If −2(1 − λ)βEAP < ψ(x, p) < 0 then α = −ψ(x,p)
2(1−λ)βEAP

.

(6)

The optimal control is now continuous, without singular arcs or switchings.

We perform a discrete continuation on this problem family, and solve an
automated sequence of problems (P )λ starting from λ = 0. We use a very basic
algorithm to generate the sequence of problems:
• Solve (P0)
• Iterate: set λk+1 = λk +h and solve (Pλk+1

) using (Pλk
) as initialization, with

a linear prediction (h = 1 initially, and is decreased in case of failure)
• Stop when reaching λ = 1, or maximum number of iterations / minimal step-
size for h.

Notice that we do not actually need to reach λ = 1, but we still need to ob-
tain sufficient information regarding the control structure, as well as a suitable
initialization for the shooting method adapted to the singular structure.

However, even the strongly regularized problem (P0) is not easy to solve
directly, so we add a second layer of continuation over atmospheric forces, grad-
ually introducing the atmospheric drag for the problem (P0). Numerical experi-
ments indicate that it is usually easy to solve the regularized problem in vacuum
and complete the continuation on the drag, which gives a solution for the regu-
larized problem (P0). We can then begin the regularization homotopy in order to
determine the control structure. The results of this method are described below,
first for the original Ariane 5 launcher, and then for a slightly modified launcher.

Note: All numerical simulations were run on a standard desktop computer
(Pentium IV 2.4GHz), using the gfortran compiler. Using a fixed-step RK4
integration (100 steps) and the HYBRD solver (see [9]) for the shooting method,
the total cpu time for the atmosphere and regularization continuations and the
final shooting is about 10 minutes.

2.3 Study of the original launcher

We first apply the approach described above to the original launcher problem,
with a fixed payload mCU = 12610kg. The regularized problem in vacuum can
be solved from a very simple starting point: (tf = 100, pr(0) = (−0.1,−0.1, 0.1),
pv(0) = (−103,−103,−103) and pi(0) = −0.1, i = 1 . . . 3). The preliminary
continuation is performed without any difficulties and gives a solution of (P0).
During the main continuation, we observe (see Fig.4) that the interval with
a non-maximal thrust becomes smaller when the regularization decreases as λ

tends to 1. At λ = 0.999, we have a solution with a full thrust throughout the
flight except for the last few seconds, but with no sign of a singular arc.
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Fig.4 Regularization homotopy: thrust level for λ = 0, 0.5, 0.9, 0.999

We make some simple experiments with a direct method: piecewise constant
control with 100 steps, RK4 integration for the state, IPOPT (see [10]) solver
for the resulting optimization problem. We find a similar solution, with a full
thrust and a switching to null thrust just before the end of the flight. Thus
both methods suggest that the optimal solution to this problem does not present
singular arcs.

2.4 Study of a modified launcher

Now we modify the launcher parameters in order to increase the drag effect: we
increase the reference area Sr and the specific impulse IspEAP . For Sr × 2 and
IspEAP × 1.25, we find an optimal trajectory with a singular arc.

As before, the regularized problem with no drag is easily solved, and the
first continuation to introduce the drag poses no difficulties. Then we perform
the regularization continuation until λ = 0.95, which shows strong hints of a
singular arc. The graphs in Fig.5 show the thrust level and switching function
at the solutions for λ = 0, 0.5, 0.9 and 0.95. Contrary to the previous case, we
observe a small time interval (around t = 30s) where the thrust level remains in
]0, 1[. Moreover, we see that the switching function ψ comes closer to 0 at the
same time interval. These two facts together strongly suggest the presence of a
singular arc. What happens at the end of the flight is less clear, as the thrust
level again takes values in ]0, 1[, and decreases near tf . This could indicate
a second singular arc, maybe followed by an arc with a null thrust, or just a
switching to a null thrust arc.
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The shooting method fails to converge for structures with two singular arcs,
but the formulation with one arc actually gives a solution with a singular arc
and a switching at the end. We detail below the shooting formulation for a
control structure assuming one interior singular arc. In addition to the usual
shooting unknowns (final time and initial costate), we have the entry and exit
times for the singular arc. The corresponding additional conditions ensure that
we enter the switching surface tangentially at tentry, i.e. ψ(x(tentry), p(tentry) =

ψ̇(x(tentry), p(tentry)) = 0, see for instance [4]. Notice that the switching at the
end is handled automatically by a switching detection algorithm checking the
sign of the switching function during the integration (see for instance [11], pages
195-200).

Shooting formulation for one interior singular arc

• Shooting function unknown z ∈ R12:

z = (tf , pr(0), pv(0), pm(0), tentry, texit).

We use the solution from the end of the regularization continuation (λ =
0.986 after 100 iterations) to initialize z.
• Shooting function value S(z) ∈ R12:































r(tf ) − rf Final position

v(tf ) − vf Final speed

ptf
(tf ) Final time TC

pmi
(tf ) , i = 1..3 Final masses TC

ψ(x(tentry), p(tentry)) Switching conditions

ψ̇(x(tentry), p(tentry)) at entry time

(7)

Once again, we test a basic direct method, and find a similar solution. The
graph on Fig.6 shows these results, with the small singular arc (about 2 seconds)
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clearly visible on both solutions from the indirect and direct methods, around
t = 30s. Both solutions also confirm that we have a simple switching near the
end of the flight, and not a second singular arc.
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Fig.6 Solution with singular arc for λ = 1

As expected, the switching function ψ and its first derivative ψ̇ are both close
to 0 on the singular arc, around 10−3 and 10−4 respectively. Thus the approach
of computing the singular control that minimizes ψ2 + ψ̇2 worked rather well on
this problem.

The criterion value (i.e., final mass of the EAP) is quite close for both solu-
tions, with m1(tf ) = 165163kg for the shooting method and m1(tf ) = 164990kg

for the direct method. Solving the same problem with the direct method with
a fixed bang(1)-bang(0) control structure gives a close solution (without the
singular arc of course), with a criterion of m1(tf ) = 164442kg. It is comforting
to observe that the solution with the singular arc is indeed slightly better than
the forced bang-bang one, even if the difference is quite small.

It seems reasonable to assume that for a different set of parameters that
would give a solution with a longer singular arc, the gain compared to the bang-
bang solution would be more significant. Indeed, we can perform a continuation
directly on the solution with a singular arc and further increase the value of the
parameter Sr. We observe that the solutions exhibit longer singular arcs when
Sr increases, with a more significant gain with respect to the corresponding
solution (Fig.7).

Sr × 2 Sr × 2.5 Sr × 3
m1(tf ) (singular arc) 165163 kg 160199 kg 155986 kg
m1(tf ) (bang-bang) 164442 kg 159172 kg 154202 kg
Arc duration 2.1 sec 9.4 sec 15.3 sec
Mass gain 721 kg 1027 kg 1784 kg
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Conclusion

This study indicates that while the original problem for an Ariane 5 launcher
seems to admit a simple bang-bang optimal solution, slightly modifying some
parameters such as the reference area and specific impulse of the launcher gives
an optimal solution with a singular arc. We also introduced a new way of com-
puting the singular control when its analytic expression from the time derivatives
of the switching function is not available (here due to the presence of tabulated
data in the physical model). We plan to extend this work to the study of a
winged launcher while taking into account the lift force and dynamic pressure
constraint.
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