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Abstract

We investigate variants of Goddard’s problems for nonvertical tra-

jectories. The control is the thrust force, and the objective is to max-

imize a certain final cost, typically, the final mass. In this article,

performing an analysis based on the Pontryagin Maximum Principle,

we prove that optimal trajectories may involve singular arcs (along

which the norm of the thrust is neither zero nor maximal), that are

computed and characterized. Numerical simulations are carried out,

both with direct and indirect methods, demonstrating the relevance of

taking into account singular arcs in the control strategy. The indirect

method we use is based on our previous theoretical analysis and con-

sists in combining a shooting method with an homotopic method. The
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homotopic approach leads to a quadratic regularization of the prob-

lem and is a way to tackle with the problem of nonsmoothness of the

optimal control.

Keywords: Optimal control, Goddard’s problem, singular trajectories,

shooting method, homotopy, direct methods.

1 Introduction

The classical Goddard’s problem (see [1, 2, 3, 4, 5]) consists in maximizing

the final altitude of a rocket with vertical trajectory, the controls being

the norm and direction of the thrust force. Due to nonlinear effects of

aerodynamic forces, the optimal strategy may involve subarcs along which

the thrust is neither zero nor equal to its maximal value, namely, since the

control variable enters linearly in the dynamics and the cost function is over

the final cost, singular arcs. A natural extension of this model for nonvertical

trajectories is the control system

ṙ = v,

v̇ = −
D(r, v)

m

v

‖v‖
− g(r) + C

u

m
,

ṁ = −b‖u‖,

(1)

where the state variables are r(t) ∈ IR3 (position of the spacecraft), v(t) ∈

IR3 (velocity vector) and m(t) (mass of the engine). Also, D(r, v) > 0 is the

drag component, g(r) ∈ IR3 is the usual gravity force, and b is a positive real

number depending on the engine. The thrust force is Cu(t), where C > 0
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is the maximal thrust, and the control is the normalized thrust u(t) ∈ IR3,

submitted to the constraint

‖u(t)‖ ≤ 1. (2)

The real number b > 0 is such that the speed of ejection is C/b. Here, and

throughout the paper, ‖ ‖ denotes the usual Euclidean norm in IR3.

We consider the optimal control problem of steering the system from a

given initial point

r(0) = r0, v(0) = v0, m(0) = m0, (3)

to a certain target M1 ⊂ IR7, in time tf that may be fixed or not, while

maximizing a final cost. For the moment, there is no need to be more

specific with final conditions and the cost. In real applications, the problem

is typically to reach a given orbit, either in minimal time with a constraint

on the final mass, or by maximizing the final mass, or a compromise between

the final mass and time to reach the orbit. In our numerical experiments

we will study the problem of maximizing the final mass (i.e., minimizing

the fuel consumption) subject to a fixed final position r(tf ) = rf , the final

velocity vector and final time being free.

Depending on the features of the problem (initial and final conditions,

mass/thrust ratio, etc), it is known that control strategies that consist in

choosing the control so that ‖u(t)‖ is piecewise constant all along the flight,
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either equal to 0 or to the maximal authorized value 1, may not be optimal,

as a consequence of the high values of the drag for high speed. Optimal

trajectories may indeed involve singular arcs, and it is precisely the aim to

this article to perform such an analysis and prove that the use of singular

arcs is relevant in the problem of launchers.

The article is structured as follows. In Section 2, we recall the Pontrya-

gin Maximum Principle, and the concept of singular trajectories. A precise

analysis of the optimal control problem is performed in Section 3, where

extremals are derived, and singular trajectories are computed. Theorem 1

makes precise the structure of the optimal trajectories. Section 4 is devoted

to numerical simulations. The problem is first implemented with indirect

methods, based on our theoretical analysis with the maximum principle,

and, numerically, our method uses a shooting method combined with an

homotopic approach. The homotopic method, leading to a quadratic reg-

ularization, permits to tackle with the problem of nonsmoothness of the

optimal control. Experiments are also made using direct methods, i.e., by

discretizing control variables and solving the resulting nonlinear optimiza-

tion problem. Less precise than the indirect one, this method permits how-

ever to validate our approach by checking that results are consistent with

the previously computed solution.

Our results show, as expected, that taking into account singular arcs in

the control strategy permits to improve slightly the optimization criterion.

The numerical simulations presented in this paper, using a simplified and

more academic model and set of parameters, constitute the first step in the
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study of a realistic launcher problem.

2 Preliminaries

In this section we recall a general version of the Pontryagin Maximum Princi-

ple (see [6], and for instance [7] for its practical application), and a definition

and characterizations of singular arcs.

Consider the autonomous control system in IRn

ẋ(t) = f(x(t), u(t)), (4)

where f : IR × IRn × IRm −→ IRn is of class C1, and where the controls are

measurable and bounded functions defined on a subinterval [0, te(u)[ of IR+

with values in Ω ⊂ IRm. Let M0 and M1 be subsets of IRn. Denote by U the

set of admissible controls u, whose associated trajectories are well defined

and join an initial point in M0 to a final point in M1, in time t(u) < te(u).

Define the cost of a control u on [0, t] by

C(t, u) =

∫ t

0
f0(x(s), u(s))ds + g0(t, x(t)),

where f0 : IRn × IRm −→ IR and g0 : IR × IRn → IR are of class C1, and x(·)

is the trajectory solution of (1) associated to the control u.

Consider the optimal control problem of finding a trajectory joining M0

to M1 and minimizing the cost. The final time may be free or not.
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2.1 Pontryagin Maximum Principle

According to the Pontryagin Maximum Principle (see [6]), if the control

u ∈ U associated to the trajectory x(·) is optimal on [0, T ], then there exists

an absolutely continuous mapping p(·) : [0, T ] −→ IRn called adjoint vector,

and a real number p0 ≤ 0, such that the couple (p(·), p0) is nontrivial, and

such that, for almost every t ∈ [0, T ],

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)),

ṗ(t) = −
∂H

∂x
(x(t), p(t), p0, u(t)),

(5)

where H(x, p, p0, u) = 〈p, f(x, u)〉 + p0f0(x, u) is the Hamiltonian of the

optimal control problem. Moreover, the function

t 7−→ max
v∈Ω

H(x(t), p(t), p0, v)

is constant on [0, T ], and the maximization condition

H(x(t), p(t), p0, u(t)) = max
v∈Ω

H(x(t), p(t), p0, v) (6)

holds almost everywhere on [0, T ].

Moreover, if the final time T to join the target set M1 is free, then

max
v∈Ω

H(x(t), p(t), p0, v) = −p0 ∂g0

∂t
(T, x(T )). (7)

for every t ∈ [0, T ].

Furthermore, if M0 and M1 (or just one of them) are submanifolds of
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IRn having tangent spaces in x(0) ∈ M0 and x(T ) ∈ M1, then the adjoint

vector can be chosen so as to satisfy the transversality conditions at both

extremities (or just one of them)

p(0) ⊥ Tx(0)M0 (8)

and

p(T ) − p0 ∂g0

∂x
(T, x(T )) ⊥ Tx(T )M1. (9)

An extremal of the optimal control problem is a fourth-tuple (x(·), p(·), p0, u(·))

solution of (5) and (6). If p0 = 0, then the extremal is said to be abnormal ,

and if p0 6= 0 then the extremal is said to be normal .

2.2 Singular arcs

Given x0 ∈ IRn and two real numbers t0, t1, with t0 < t1, denote by Ux0,t0,t1

the set of controls u ∈ L∞([t0, t1],Ω1), with Ω1 an open subset of Ω, such

that the trajectory t 7→ x(t, x0, t0, u), solution of (1), associated with the

control u on [t0, t1], and such that x(t0) = x0, is well defined on [t0, t1].

Define the end-point mapping Ex0,t0,t1 by Ex0,t0,t1(u) := x(t1, x0, t0, u), for

every u ∈ Ux0,t0,t1 . It is classical that Ex0,t0,t1 : Ux0,t0,t1 → IRn is a smooth

map.

A control u ∈ Ux0,t0,t1 is said to be singular if u is a critical point of

the end-point mapping Ex0,t0,t1 , i.e., its differential dEx0,t0,t1(u) at u is not

surjective. In this case, the trajectory x(·, x0, t0, u) is said to be singular on

[t0, t1].
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Recall the two following standard characterizations of singular controls

(see [8, 6]). A control u ∈ Ux0,t0,t1 is singular if and only if the linearized

system along the trajectory x(·, x0, t0, u) on [t0, t1] is not controllable. This

is also equivalent to the existence of an absolutely continuous mapping p1 :

[t0, t1] −→ IRn \ {0} such that, for almost every t ∈ [t0, t1],

ẋ(t) =
∂H1

∂p
(x(t), p1(t), u(t)), ṗ(t) = −

∂H1

∂x
(t, x(t), p1(t), u(t)),

∂H1

∂u
(x(t), p1(t), u(t)) = 0,

where H1(x, p1, u) = 〈p1, f(x, u)〉 is the Hamiltonian of the system.

Note that singular trajectories coincide with projections of abnormal

extremals for which the maximization condition (6) reduces to ∂H
∂u

= 0.

For a given trajectory x(·) of the system (1) on [0, T ], associated to a

control u ∈ Ux(0),0,T , we say that x(·) involves a singular arc, defined on

the subinterval [t0, t1] ⊂ [0, T ], whenever the control u|[t0,t1] for the control

system restricted to [t0, t1] is singular.

In the case when the dynamics f and the instantaneous cost f0 are lin-

ear in the control u, a singular arc corresponds to an arc along which one

is unable to compute the control directly from the maximization condition

of the Pontryagin maximum principle (at the contrary of the bang-bang sit-

uation). Indeed, in this case, the above condition ∂H1

∂u
= 0 along the arc

means that some function (called switching function) vanishes identically

along the arc. Then, it is well known that, in order to derive an expression

of the control along such an arc, one has to differentiate this relation until
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the control appears explicitly. It is also well known that such singular arcs,

whenever they occur, may be optimal. Their optimal status may be proved

using generalized Legendre-Clebsch type conditions or the theory of conju-

gate points (see [9, 10], or see [11, 12] for a complete second-order optimality

theory of singular arcs).

3 Analysis of the optimal control problem

With respect to the notations used in the previous section, we set

x =













r

v

m













∈ IR3 × IR3 × IR, f(x, u) =













v

−D(r,v)
m

v
‖v‖ − g(r) + C u

m

−b‖u‖













,

and f0 = 0. Here, the set Ω of constraints on the control is the closed unit

ball of IR3, centered at 0.

Consider the optimal control problem of minimizing some final cost

g0(tf , x(tf )), for the control system (1), with initial conditions (3) and final

conditions x(tf ) ∈ M1 in time tf which may be free or not.

We make the following assumption.

Assumption (H). The function g0 is such that:

• either the final mass m(tf ) is free, and ∂g0

∂m
6= 0,

• or the final time tf is free, and ∂g0

∂t
6= 0.

In the first situation, the target set M1 ⊂ IR7 can be written as M1 =

N1 × IR, where N1 is a subset of IR6. A typical example is the problem of
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maximizing the final mass, for which g0(t, x) = −m. If the final condition

is r(tf ) = r1 and ‖v(tf )‖ = a, then M1 = {r1} × S(0, a) × IR, where S(0, a)

is the sphere of IR3, centered at 0, with radius a.

In the second situation, a typical example is the minimal time problem

to reach some target. In this case, g0(t, x) = t.

3.1 Computation of extremals

According to Section 2.1, the Hamiltonian of the optimal control problem

under consideration is

H = 〈pr, v〉 +

〈

pv,−
D(r, v)

m

v

‖v‖
− g(r) + C

u

m

〉

− pmb‖u‖, (10)

where 〈 , 〉 denotes the usual scalar product in IR3. Here, the adjoint vector

is denoted by

p(t) =













pr(t)

pv(t)

pm(t)













∈ IR3 × IR3 × IR.

In what follows, we assume the mappings D and g to be of class C1. Ap-

plying Pontryagin’s Maximum Principle leads to the adjoint equations

ṗr =
1

m

〈pv, v〉

‖v‖

∂D

∂r
+

〈

pv,
∂g

∂r

〉

,

ṗv = −pr +
1

m

〈pv, v〉

‖v‖

∂D

∂v
+

D

m

pv

‖v‖
−

D

m
〈pv, v〉

v

‖v‖3
,

ṗm =
1

m

〈

pv,−
D(r, v)

m

v

‖v‖
+ C

u

m

〉

.

(11)
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Moreover, if u is an optimal control on [0, tf ], then, for almost every t ∈

[0, tf ], u(t) maximizes the function

Φt(w) :=
C

m(t)
〈pv(t), w〉 − bpm(t)‖w‖,

among all possible w ∈ IR3 such that ‖w‖ ≤ 1.

The next technical lemma is the first step in the analysis of extremals.

Lemma 3.1. If there exists t0 ∈ [0, tf ] such that pr(t0) = pv(t0) = 0, then

pr(t) = pv(t) = 0, and pm(t) = pm(tf ), for every t ∈ [0, tf ]. Moreover,

pm(tf ) 6= 0, and if pm(tf ) > 0 then u(t) = 0 on [0, tf ], otherwise ‖u(t)‖ = 1

on [0, tf ].

Proof. The first statement follows immediately from a uniqueness argument

applied to the system (11). It follows from the expression of the Hamiltonian

function that, if pm(t) > 0, then u(t) = 0, and if pm(t) < 0, then ‖u(t)‖ = 1.

In the first case of Assumption (H), the transversality condition (9) yields

in particular

pm(tf ) = p0 ∂g0

∂m
(tf , x(tf )).

Therefore, pm(t) cannot be equal to zero (otherwise the adjoint vector (p, p0)

would be zero, contradicting the maximum principle). In the second case of

Assumption (H), it follows from (7) and (10) that

pm(t)b‖u(t)‖ = p0 ∂g0

∂t
(tf , x(tf )).

Therefore, similarly, pm(t) cannot be equal to zero. The conclusion follows.
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An extremal satisfying the conditions of Lemma 3.1 (ie pr(t) = pv(t) = 0

for every t ∈ [0, tf ]) is called degenerate. For such extremals, the control is

either identically equal to zero, or of maximal norm, along the whole tra-

jectory. Such kind of trajectories can be excluded for practical applications

and are thus discarded in the sequel.

Lemma 3.2. Consider a nondegenerate extremal. Then:

1. The set T := {t ∈ [0, tf ] | pv(t) = 0} has a finite cardinal.

2. There exists a measurable function α on [0, tf ], with values in [0, 1],

such that

u(t) = α(t)
pv(t)

‖pv(t)‖
, a.e. on [0, tf ]. (12)

3. Set Ψ(t) := C
m(t)‖pv(t)‖ − bpm(t). Then,

α(t) =











0 if Ψ(t) < 0,

1 if Ψ(t) > 0.

Proof. If t ∈ T , then by the costate equation (11), ṗv(t) = −pr(t) is not

zero (since the extremal is not degenerate). Therefore T has only isolated

points, and hence, has a finite cardinal.

Writing w = αd, with α = ‖w‖ and d of unit norm, we get Φt(w) =

α
(

C
m(t)〈pv(t), d〉 − bpm(t)

)

. Since pv(t) 6= 0 a.e., points 2 and 3 of the lemma

follow immediately from the maximization condition.

The continuous function Ψ defined in Lemma 3.2 is called switching

function. In the conditions of the lemma, the extremal control is either equal

12



to 0, or saturating the constraint and of direction pv(t). The remaining case,

not treated in this lemma and analyzed next, is the case where the function

Ψ vanishes on a (closed) subset I ⊂ [0, tf ] of positive measure.

Remark 3.1. Let [t0, t1] be a subinterval of I on which α(t) > 0. Then, the

control u|[t0,t1] is singular.

Indeed, it suffices to notice that, using (12),

∂Φt

∂w
(u(t)) =

(

C

m(t)
‖pv(t)‖ − bpm(t)

)

pv(t)

‖pv(t)‖
= Ψ(t)

pv(t)

‖pv(t)‖
,

and to use the Hamiltonian characterization of singular controls recalled in

Section 2.2.

Singular arcs may thus occur in our problem whenever Ψ vanishes, and

we next provide an analysis of that case, and show how to derive an expres-

sion of such singular controls.

3.2 Analysis of singular arcs

Throughout this section, we assume that

Ψ(t) =
C

m(t)
‖pv(t)‖ − bpm(t) = 0 (13)

for every t ∈ I, where I is a (closed) measurable subset of [0, tf ] of positive

Lebesgue measure.

Usually, singular controls are computed by derivating this relation with

respect to t, until u appears explicitly. The following result is required (see

[13, Lemma p. 177]).
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Lemma 3.3. Let a, b be real numbers such that a < b, and f : [a, b] → IR be

an absolutely continuous function. Let J be a subset of {t ∈ [a, b] | f(t) = 0}

of positive Lebesgue measure. Then f ′(t) = 0 a.e. on J .

Using this lemma, and extremal equations (11), one gets, for a.e. t ∈ I,

Ψ̇(t) =
bC

m(t)2
(‖pv(t)‖‖u(t)‖ − 〈pv(t), u(t)〉) + Ξ(r(t), v(t),m(t), p(t)) = 0,

(14)

where the function

Ξ(r, v,m, p) =
Db

m2‖v‖
〈pv, v〉 +

C

m‖pv‖

(

〈pv, pr〉 +
〈pv, v〉

m‖v‖

〈

∂D

∂v
, pv

〉

+
∂D

∂m

‖pv‖
2

m‖v‖
−

D

m

〈pv, v〉
2

‖v‖3

)

does not depend on u. From Lemma 3.2, the relation (12) holds almost

everywhere, and hence the first term of (14) vanishes. Therefore,

Ψ̇(t) = Ξ(r(t), v(t),m(t), p(t)) = 0, (15)

for almost every t ∈ I (actually over every subinterval of positive measure,

since the above expression is continuous).

Relations (13) and (14) are two constraint equations, necessary for the

existence of a singular arc. Derivating once more, using Lemma 3.3, leads

to

Ψ̈(t) = 0, a.e. on I. (16)

The control u is expected to appear explicitly in this latter relation. How-

ever, since calculations are too lengthy to be reported here, we next explain
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how (16) permits to derive an expression for α(t), and hence, from (12), an

expression for u(t). When derivating (15), the terms where the control u

appears are the terms containing v̇, ṗm, and ṁ. Recall that ṁ = −b‖u‖,

that ṗm = 1
m
〈pv,−

D(r,v)
m

v
‖v‖ + C u

m
〉, and that v̇ is affine in u. Hence, since

α(t) ≥ 0, it is not difficult to see that this derivation leads to an equation

of the form

A(r, v, m, pr, pv, pm)α = B(r, v, m, pr, pv, pm), (17)

almost everywhere on I. This relation should be ”generically” nontrivial,

that is, the coefficient A should not be equal to zero. This fact proves to hold

true on numerical simulations. We explain below rigorously why this is true

generically at least in the case of a scalar control (recall that we deal here

with a three-dimensional control). For a scalar control, the control system

(1) is of the form

q̇ = f0(q) + uf1(q), (18)

where f0 and f1 are smooth vector fields, and q is the state. In this case, it

is well known (see e.g. [8]) that, if u is a singular control on I, then there

must exist an adjoint vector p such that

〈p, f1(q)〉 = 0 on I, (19)

〈p, [f0, f1(q)]〉 = 0 on I, (20)

〈p, [f0, [f0, f1(q)]〉 + u〈p, [f1, [f0, f1(q)]〉 = 0 a.e. on I. (21)

The situation encountered here for 3D Goddard’s problem is similar to that
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case: Equations (19), (20), (21), are respectively similar to Equations (13),

(15), (16); Equations (19), (20) (similarly, Equations (13), (15)) are con-

straint equations, and Equation (21) (similarly, Equation (16)) permits in

general to derive an expression for the control u. The term ”generic” em-

ployed above can now be made more precise: it is proved in [14] that there

exists an open and dense (in the sense of Whitney) subset G of the set of

couples of smooth vector fields such that, for every control system (18) with

(f0, f1) ∈ G, the set where 〈p, [f1, [f0, f1(q)]〉 vanishes has measure zero, and

hence Equation (21) always permits to derive u. Additionaly, we can notice

that the classical one-dimensional Goddard problem can be formulated as

a particular case of the general 3D problem described here. In this case, it

is well known that the second derivative of the switching function provides

the expression of the singular control, so we can safely assume that 17 is

nontrivial for the restriction to the 1D problem. Based on these arguments,

we should expect the coefficient A of Equation (17) to be non zero in gen-

eral. This is indeed the case in our numerical simulations presented next. Of

course, once α(t) has been determined, one has to check (numerically) that

0 ≤ α(t) ≤ 1, so that the constraint ‖u‖ ≤ 1 is indeed satisfied. Here also,

numerical simulations show the existence and admissibility of such singular

arcs (see Section 4).

3.3 Conclusion

We sum up the previous results in the following theorem.

Theorem 1. Consider the optimal control problem of maximizing a fi-
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nal cost g0(tf , x(tf )), for the control system (1), with initial conditions

(3) and final conditions x(tf ) ∈ M1. We assume that Assumption (H)

holds. Let u be an optimal control defined on [0, tf ], associated to the tra-

jectory (r(·), v(·),m(·)). Then, there exist absolutely continuous mappings

pr(·) : [0, tf ] → IR3, pv(·) : [0, tf ] → IR3, pm(·) : [0, tf ] → IR, and a real

number p0 ≤ 0, such that (px(·), pv(·), pm(·), p0) is nontrivial, and such that

Equations (11) hold a.e. on [0, tf ]. Define the switching function Ψ on [0, tf ]

by

Ψ(t) =
C

m(t)
‖pv(t)‖ − bpm(t).

Then,

• if Ψ(t) < 0 then u(t) = 0;

• if Ψ(t) > 0 then u(t) = pv(t)
‖pv(t)‖ ;

• if Ψ(t) = 0 on a subset I ⊂ [0, tf ] of positive Lebesgue measure, then

Equation (15) must hold on I, and

u(t) = α(t)
pv(t)

‖pv(t)‖
a.e. on I,

where α(t) ∈ [0, 1] is determined by (17).

Remark 3.2. The optimal control is piecewise either equal to zero, or satu-

rating the constraint with the direction of pv(t), or is singular. Notice that,

in all cases, it is collinear to pv(t), with the same direction.

Remark 3.3 (Optimality status). The maximum principle is a necessary con-

dition for optimality. Second-order sufficient conditions are usually charac-
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terized in terms of conjugate points (see e.g. [11, 12]. Unfortunately stan-

dard theories do not apply here for two reasons: first, the equation in m(t)

involves the term ‖u(t)‖ which is not smooth; second, the structure of tra-

jectories stated in the theorem involves both bang arcs and singular arcs,

and up to now a theory of conjugate points that would treat this kind of

trajectory.

We mention however below a trick, specific to the form of our system,

which permits to apply the standard theory of conjugate points on every

subinterval J of [0, tf ] on which u is singular and 0 < ‖u(t)‖ < 1. Let

J be such a subinterval. Then, ṁ 6= 0 a.e. on J , and the system can be

reparametrized by −m(t). Then, denoting q = (r, v), system (1) yields

dq

dm
=

1

‖u‖
f(m, q) +

u1

‖u‖
g1(m, q) +

u2

‖u‖
g2(m, q) +

u3

‖u‖
g3(m, q).

Now, set

v =
1

‖u‖
, and

u1

‖u‖
= cos θ1 cos θ2,

u2

‖u‖
= cos θ1 sin θ2,

u3

‖u‖
= sin θ2,

and consider as new control the control ũ = (v, θ1, θ2). Notice that the con-

trols θ1 and θ2 are unconstrained, and that v must satisfy the constraint

v ≥ 1. However, along the interval J it is assumed that 0 < ‖u(t)‖ < 1,

and thus v does not saturate the constraint. Hence, the standard theory

of conjugate points applies and the local optimality status of the trajectory

between its extremities on J can be numerically checked, for instance us-

ing the code COTCOT (Conditions of Order Two and COnjugate times),
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available on the web1, developed in [12]. This reference provides algorithms

to compute the first conjugate time (where the trajectory ceases to be op-

timal) along a smooth extremal curve, based on theoretical developments

of geometric optimal control using second order optimality conditions. The

computations are related to a test of positivity of the intrinsic second order

derivative or a test of singularity of the extremal flow.

It can be checked as well that every smooth sub-arc of the trajectory is

locally optimal between its extremities. However, the problem of proving

that the whole trajectory (i.e., a succession of bang and singular arcs) is

locally optimal is open. Up to now no conjugate point theory exists to

handle that type of problem. Of course, one could make vary the times

of switchings but this only permits to compare the trajectory with other

trajectories having exactly the same structure. A sensitivity analysis is

actually required to treat trajectories involving singular subarcs.

4 Numerical experiments

In this section, we provide numerical simulations showing the relevance of

singular arcs in the complete Goddard’s Problem. For given boundary condi-

tions, the optimal trajectory is first computed using indirect methods (shoot-

ing algorithm) combined with an homotopic approach. Then we use a direct

method (based on the discretization of the problem) to check the obtained

solution. All numerical experiments were led on a standard computer (Pen-

tium 4, 2.6 GHz).

1http://www.n7.fr/apo/cotcot

19



4.1 Numerical values of the parameters of the model

We implement the optimal control problem of maximizing m(tf ) for the

system (1), with the constraint (2). The equations of motion can be made

dimension free by scaling the equations and choosing the model parameters

in terms of r(0), m(0), and g0. We follow [15] and set the following param-

eters.

- g0 = r0 = m0 = 1.

- C = 3.5, b = 7.

- Drag D(r, v) = KD‖v‖2e−500(‖r‖−1) with KD = 310.

- Initial and final conditions

r0 = (0.999949994, 0.0001, 0.01), v0 = (0, 0, 0), m0 = 1,

rf = (1.01, 0, 0), vf is free, mf is free.

tf is free.

With the scaled equations, r = 1 corresponds to a distance of 6378km

(Earth radius), v = 1 to a speed of 7910m.s−1 and t = 1 to a time of 806s.

The prescribed final position is therefore at an altitude of 63.78km, and r2(0)

being small, the trajectory will be nearly planar (this is consistent with the

case of a real launch from a nearly equatorial base to a geostationary transfer

orbit).

4.2 Numerical simulations with indirect methods

In our simulations presented hereafter, we prefer to express the objective of

the optimal control problem in the following form.
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Maximizing m(tf ) is equivalent to minimizing the cost

∫ tf

0
‖u(t)‖dt,

and we assume that there are no minimizing abnormal extremals, therefore

the adjoint vector can be normalized so that p0 = −1. The results of the

simulations are consistent with this assumption.

According to Section 2.1, the Hamiltonian of the optimal control problem

under consideration is

H = 〈pr, v〉 +

〈

pv,−
D(r, v)

m

v

‖v‖
− g(r) + C

u

m

〉

− (1 + bpm)‖u‖,

The only difference with the Hamiltonian in 2.1 for the Max m(tf ) objective

is the additional “−1” in the ‖u‖ term, which leads to the switching function

ψ(t) = C
m(t)‖pv(t)‖ − (1 + bpm(t)),

• if ψ(t) < 0 then u(t) = 0;

• if ψ(t) > 0 then u(t) = pv(t)
‖pv(t)‖ ;

• if ψ(t) = 0 on I ⊂ [0, tf ], then Equation (15) must hold on I, the

control u is singular, and

u(t) = α(t)
pv(t)

‖pv(t)‖
a.e. on I,

where α(t) ∈ [0, 1] is determined by (17). We check numerically that

0 ≤ α(t) ≤ 1.
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Furthermore, on a singular subarc, derivating the switching function

twice yields the expression of α via a relation of the form A(x, p)α = B(x, p),

see (17). The computations are actually quite tedious to do by hand, and

we used the symbolic calculus tool Maple. The expressions of A and B are

quite complicated and are not reported here.

The free final time problem is formulated as a fixed final time one via

the usual time transformation t = tf s, with s ∈ [0, 1] and tf an additional

component of the state vector, such that ṫf = 0 and tf (0), tf (1) are free,

with the associated costate satisfying ˙ptf = −H. All the graphs in the fol-

lowing will use this normalized time interval [0, 1].

Transversality conditions on the adjoint vector yield pv(1) = (0 0 0),

pm(1) = 0, and ptf (0) = ptf (1) = 0. The unknown of the shooting function

S is therefore

z = (tf , pr(0), pv(0), pm(0)) ∈ R8 .

4.2.1 Homotopic approach

In the indirect approach, it is necessary to get some information on the

structure of the solutions, namely, to know a priori the number and ap-

proximate location of singular arcs. To this aim, we perform a continuation

(or homotopic) approach, and regularize the original problem by adding a

quadratic (‖u‖2) term to the objective, as done for instance in [16, 17]. The

general meaning of continuation is to solve a difficult problem by starting

from the known solution of a somewhat related, but easier problem. Here,
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we regularize the cost function by considering an homotopic connection with

an energy,
∫ tf

0
(‖u(t)‖ + (1 − λ)‖u(t)‖2) dt, (22)

where the parameter of the homotopy is λ ∈ [0, 1]. The resulting perturbed

problem (Pλ) has a strongly convex Hamiltonian (with respect to u), with

a continuous optimal control, and is much easier to solve than (P ) = (P1).

Assuming we have found a solution of (P0), we want to obtain a solution of

(P ) for λ = 1 (or at least sufficient information).

The continuation can be conducted manually, by solving iteratively a

suitable sequence of problems P(λk) from λ = 0 to λ = 1. However, finding

such a sequence can be quite difficult in practice, which is why we chose

here to perform a full path-following continuation. Extensive documenta-

tion about path following methods can be found in [18], and we use here a

simplicial method, which basically builds a piecewise linear approximation

of the homotopy path over a triangulation of the research space. The reason

behind the choice of this method over a more classical predictor-corrector

continuation is that we expect the problem to be ill-conditioned, due to the

presence of singular arcs, which is indeed the case in the numerical experi-

ments.

4.2.2 Preliminary continuation on the atmosphere density

In our case, even solving the regularized problem (P0) is not obvious, due to

the aerodynamic forces (drag). For this reason, we introduce a preliminary
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continuation on the atmosphere density, starting from a problem without at-

mosphere. Technically, this is done by using an homotopy with the modified

parameter

Kθ
D = θKD, θ ∈ [0, 1],

where KD appears in the model of the drag. The shooting method for the

problem without atmosphere at θ = 0 converges immediately with the triv-

ial initialization pr(0) = (0.1, 0.1, 0.1), pv(0) = (0., 1, 0.1, 0.1), pm(0) = 0.1

and tf = 0.1. We would like to emphasize the fact that we have here no

difficulties to find a starting point for the shooting method.

We then perform the first continuation from θ = 0 to θ = 1, gradually

introducing aerodynamic forces. The solution we obtain is sufficient to ini-

tialize the shooting method at the beginning of the main homotopy.

Notice that a direct continuation on the atmosphere with the original

non regularized problem (P ) fails. During the continuation, the process

abruptly diverges at a certain value for θ, certainly due to the appearance

of the singular arc.

4.2.3 Main continuation on the quadratic regularization

We now perform the main continuation on the cost (22). Figure 1 represents

the solutions for λ = 0, 0.5 and 0.8. The shape on the switching function and

of the control norm graphs are particularly interesting concerning suspicion

of singular arcs. Indeed, we observe that, on a certain time interval (roughly
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[0.1, 0.4]), the switching function comes closer to zero as λ increases, while

the control norm keeps values in (0, 1). These facts strongly suggest the

appearance of a singular arc.
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Figure 1: Main homotopy - ‖u‖ and ψ for λ = 0, 0.5 and 0.8.

Trying to go further with the continuation as λ → 1 becomes extremely

difficult since we lose the singular structure and encounter trajectories with

incorrect bang-bang structures. However the knowledge of the solution for

λ = 0.8 happens to be sufficient to solve the problem: it provides a good

starting point for which the shooting method applied to the original problem

(P ) converges.

4.2.4 Shooting method applied to the original problem (P )

When implementing a shooting method (see for instance [19, 20, 21, 22]),

the structure of the trajectory has to be known a priori. The structure of

the control must be prescribed here by assigning a fixed number of interior

switching times that correspond to junctions between nonsingular and sin-
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gular arcs. These times (ti)i=1..nswitch
are part of the shooting unknowns and

must satisfy some switching conditions. Each arc is integrated separately,

and matching conditions must be verified at the switching times, as drawn

on the diagram below.

Unknown: z

IVP unknown at t0 (x1, p1) ... (xs, ps) t1 ... ts

Value: SSing(z)

Switchcond(t1) Matchcond(t1) ... Switchcond(ts) Matchcond(ts) TC(tf )

Here, matching conditions reduce to imposing state and costate conti-

nuity at the switching times.

A switching condition indicates a change of structure, which corresponds

here to an extremity of a singular arc. Along such a singular arc, it is

required that ψ = ψ̇ = 0. The control is computed using the relation ψ̈ = 0.

Therefore, using this expression of the control, switching conditions consist

in imposing either ψ = 0 at the extremities of the singular arc, or ψ = ψ̇ = 0

at the beginning of the arc. In our simulations, we choose the latter solution

which happens to provide better and more stable results.

The previous results, obtained with an homotopic approach, provide an

indication on the expected structure of the optimal trajectory for the origi-

nal problem (P ). Inspection of Figure 1 suggests to seek a solution involving

a singular arc on an interval [t1, t2], with t0 < t1 < t2 < tf . As a starting

point of the shooting method, we use the solution previously obtained with
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the homotopy on the cost at λ = 0.8.

The IVP integration is performed with the radau5 code (see [23]),

with absolute and relative tolerances of, respectively, 10−6 and 10−6. The

shooting method converges in 17 seconds, with a shooting function of norm

5 10−4. In particular, the switching conditions at t1 are well satisfied, with

(ψ, ψ̇) = (2.00 10−5, 3.67 10−7). The condition number for the shooting func-

tion is quite high (about 1012), which was expected. The overall execution

time of the whole approach (preliminary atmosphere homotopy, regulariza-

tion homotopy, final shooting) is about 400 seconds.

The solution obtained has the following times

t1
tf

= 1.054679 10−1,
t2
tf

= 3.641707 10−1, and tf = 2.187344 10−1

with the initial costate value

pr(0) = (−6.9905, 6.4242 10−3, 6.4248 10−1)

pv(0) = (−0.2625, 4.2086 10−4, 4.2086 10−2)

pm(0) = 4.7515 10−2

The evolution of altitude, speed and mass during the flight are repre-

sented on Figure 2. The prescribed altitude at 63.78km is reached after 176s,

including a singular arc of about 45s. The final speed is about 550m.s−1,

and the final mass is 60% of the initial mass m0 (objective value is 0.3994).

We show on Figure 3 the control (cartesian coordinates and norm) and
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Figure 2: Solution with singular arc: altitude, speed and mass.

switching function. The singular arc is clearly visible on the control norm

graph.
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Figure 3: Solution with singular arc: control and switching function.

4.3 Numerical simulations with direct methods

In order to validate the solution obtained previously with the shooting al-

gorithm, we next implement a direct method. Although direct methods can

be very sophisticated (see for instance [19, 24]), we here use a very rough

formulation, since our aim is just to check if the results are consistent with
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our solution. We discretize the control using piecewise constant functions,

and the state is integrated on [0, tf ] with a basic fixed step Runge-Kutta

fourth order formula. The values of the control at the discretization nodes,

as well as the final time tf , thus become the unknowns of a nonlinear con-

strained optimization problem, the constraints being the final conditions for

the state. To solve the optimization problem, we use the ipopt solver, which

implements an interior point algorithm with a filter line-search method (see

[24] for a complete description).

We chose spherical coordinates ui = (r, θ, ψ), i = 1 . . . N for the 3D

control instead of cartesian coordinates, as this makes the norm constraint

‖u‖ ≤ 1 a simple bound constraint. With N = 100 integration steps, the

unknown size is 901 (discretized 3D control + free final time), and we take

as initialization











ui = (0.5,−0.1, 0), i = 1 . . . N

tf = 0.2

We use as main options (see IPOPT manual) an error tolerance of 10−5,

SR1 update to approximate reduced Hessian, and augmented Lagrangian

for the line search. The algorithm converges after 173 iterations (and 185

seconds) to a solution with a final time of 0.2188 and a criterion value of

0.3999. This solution is clearly consistent with the results of the shooting

method, as shown on Figure 4, which represents the norm of the control for

the shooting method solution and the direct method solution, as well as a
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bang-bang solution (see below).
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Figure 4: Control norm for the shooting and direct method.

Comparison with a bang-bang solution

Recall that the usual launch strategy consists in implementing piecewise

controls either saturating the constraint or equal to zero. To prove the rele-

vance of the use of singular controls in the control strategy, we next modify

slightly the formulation above in order to find a bang-bang solution. Our

aim is to demonstrate that taking into account singular arcs in the control

strategy actually improves (as expected) the optimization criterion.

We set a “on-off” structure, with only one switching time toff. The con-

trol is chosen so as to satisfy ‖u(t)‖ = 1 for t0 < t < toff, and u(t) = 0 for

toff < t < tf . Here, the unknowns of the optimization problem are tf , toff

and the direction of the control at the discretization nodes before toff.
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For the initialization, we keep the same values as before for the control

direction and final time, and set toff = 0.05. We obtain a solution with

tf = 0.2105, toff = 0.0580, and the value of the criterion is 0.4061, which

represents a loss of about 1.6% compared to the solution with a singular

arc. On this academic example, the gain of the optimal strategy, involving a

singular arc, over a pure bang-bang strategy, is quite small. This simplified

problem is a first step in the study of a realistic launcher problem, and

permits to illustrate the method.

4.4 Extension to more realistic physical models

The target application for this study is the computation of optimal trajecto-

ries for multi-stage heavy launchers (such as Ariane). In such problems, the

angle of attack is set to zero during the whole flight except for a small time

period. Thus, lift force is neglected, and only the drag term appears in the

equations. Adding a lift term to the model is possible, but would require a

new analysis of the problem. Adaptation of the numerical method, however,

should be straightforward.

Another significant difficulty of using a more realistic model for aerody-

namic forces is the use of tabulated physical data, such as atmospherical

pressure, sound speed and aerodynamic coefficient (Cx). These tables make

it impossible to obtain the analytical expression of ψ̈, therefore we need an

alternate way of finding the value of the singular control.
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As we want to ensure that ψ = 0 over a singular arc, we can try to

chose the control that minimizes ψ2 + ψ̇2. We obtain convergence for the

shooting method and find a similar solution, with the same singular arc.

We observe on Figure 5 that the approximate singular control values are

actually quite close to the exact singular control (difference is about 10−3).

The drawbacks of this alternate formulation are a heavy increase in the

numerical cost (about one order of magnitude), and some loss of accuracy

(the norm of the shooting function is here only about 10−2 compared to 10−4

before). However, this approach should be applicable to more complicated

and realistic physical models.
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Figure 5: Control norm and switching function for the alternate formulation.

Conclusions

In this paper we give an analysis of optimal trajectories with singular subarcs

for a nonvertical variant of Goddard’s problem. The numerical simulations

confirm the existence of an optimal trajectory with a singular arc, and show

the relevance of using a continuation approach in order to determine the op-

timal control structure and obtain a suitable estimate of the initial adjoint

32



variables. The simple experiments we made with direct methods are consis-

tent with these results. We also give an alternate method for the singular

control, that should be applicable to more complicated and realistic physical

models.
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