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The Unified Enterprise Modelling Language -Overview and Further Work

The Unified Enterprise Modelling Language (UEML) aims to support integrated use of enterprise and IS models expressed in a variety of languages. The achieve this aim, UEML provides a hub through which different languages can be connected, thereby paving the way for connecting the models expressed in those languages. UEML offers a structured approach to describing enterprise and IS modelling constructs, a common ontology to interrelate construct descriptions at the semantic level, a correspondence analysis approach to estimate semantic construct similarity, a quality framework to aid selection of languages, a meta-meta model to organise the UEML and a set of tools to aid its use. This paper presents an overview of UEML and points to paths for further work. 

INTRODUCTION

Emerging information and communication technologies are increasingly model-driven. Unfortunately, they are often driven by models that cannot easily be interrelated because they are expressed using languages that are not interoperable. In consequence, the models can become inconsistent. Instead of producing more adaptable and integrated ICT solutions, model-driven technologies therefore run the risk of reinforcing existing interoperability problems as different information systems evolve driven by models expressed in incommensurable languages. The situation has created a need for theories, technologies and tools that allow information systems be adapted and evolve each driven by the most suitable languages, while allowing the systems and their models to be used in an integrated manner.

The Unified Enterprise Modelling Language (UEML) refers to an on-going attempt to develop theories, technologies and tools for integrated use of enterprise and IS models expressed using different languages. By this we mean keeping the existing models as they are and, in addition, establishing correspondences between them in an explicit and usable way. Useful services are consistency checking, automatic update reflection, model-to-model translation and others across modelling language boundaries. UEML would thereby act as a hub connecting different languages along with the different models expressed in those languages. UEML comprises:  a structured approach to describe enterprise and IS modelling constructs,  an evolving common ontology to describe the semantics of modelling constructs,  a correspondence analysis approach that uses the common ontology to determine semantic correspondences between constructs,  a quality framework to define and evaluate the quality of enterprise modelling languages to aid language selection for specific purposes,  a modular meta-meta model to organise the overall UEML approach and  a set of tools to aid its evolution and use.

The purpose of this paper is to present an overview of UEML and discuss paths for further work. The paper is organised as follows: Section 2 presents UEML's background and its vision. Section 3 explains how languages and constructs are described in UEML, and Section 4 shows how descriptions of constructs are tied together by a common ontology. Section 5 discusses how correspondences between languages and constructs can be established and used to support model-tomodel translation across languages. Section 6 shows how enterprise modelling languages are classified and selected in UEML according to specific goals. Section 7 presents the Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise Modelling Language -Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11, Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08 meta-meta models that holds the UEML approach together, and Section 8 reviews the various prototype tools supporting its evolution and use. Section 9 discusses UEML in itspresent state, before Section 10 concludes the paper.

BACKGROUND

The idea of a Unified Enterprise Modelling Language first emerged during the ICEIMT'97 conference [START_REF] Goossenaerts | Formal Semantics of Enterprise Models[END_REF], with the aim of providing an underlying formal theory for enterprise modelling languages. A major motivation was the "Tower of Babel" situation that was assumed to hinder proliferation of enterprise modelling in industry [START_REF] Vernadat | UEML: Towards a Unified Enterprise Modelling Language[END_REF]. The first development version of a unified enterprise modelling was done by the UEML Thematic Network (UEML TN) (2002)(2003), funded by the EU's FP5 [START_REF] Jochem | Common representation through UEMLrequirement and approach[END_REF][START_REF] Panetto | A Unified Enterprise Modelling Language for enhanced interoperability of Enterprise Models[END_REF][START_REF] Mertins | User oriented Enterprise Modeling for Interoperability with UEML[END_REF], Berio, Anaya & Ortiz 2004). UEML development has since continued within the Interop-NoE Network of Excellence (2003Excellence ( -2007)) As UEML becomes more stable, it may be possible to extract a core set of modelling construct to use as the starting point for a new enterprise/IS modelling language, a UEML core language composed of those constructs that have proven most useful for practical, integrated model use. However, the core language scenario, should be understood as a longer term objective, beyond the scope of this paper.  Facilitating a web of languages and of models.

Whereas much research and development effort has gone into techniques and tools for integrated management of structured data (e.g., relational database theory) and of semi-structered data (e.g., XML and other web technologies), there is a lack of theory and tehcnology for integrating information resources in the form of diagrammatic models. UEML could also contribute to growing a web of languages and of models in a way that resembles the touted semantic web of semi-structured data (Berners-Lee, Hendler, Lassila 2001).

LANGUAGE AND CONSTRUCT DESCRIPTION

UEML facilitates integrated model use by making semantic correspondences between the modelling constructs of different languages clear.

Making the languages interoperable is seen as a first step towards also making the models expressed in those languages interoperable. A central part of UEML is therefore a standard, integrative and evolvable approach to describing enterprise and IS modelling constructs. By standard we mean that the approach provides a structured path to describing modelling languages, diagram types and constructs. By integrative we mean that as soon as the languages, diagram types and constructs have been described according to the approach, they have become prepared for assessment of semantic correspondences, possibly across languages. And by evolvable we mean that UEML will be able to grow and adapt by incorporation and modification of additional modelling languages and constructs without becoming overly complex and thus unmanageable.

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise Modelling Language -Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11, Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08 The descriptions of individual modelling constructs are particularly important, because it is this level that connects different modelling languages. Hence construct descriptions are more complex than descriptions of languages and diagram types. Specifically, in UEML, two distinct descriptions need to be made for each construct:

 Presentation (or concrete syntax), which deals with the presentation of the modelling construct as part of model diagrams or in serialised form, e.g., in an XML file.  Representation (or semantics), which accounts for which enterprise phenomena the construct is intended to represent (in particular covering reference, a central aspect of semantics). Whereas a construct can have many presentations, it can have only one representation. This paper will focus on the representation part, which has so far been most developed [START_REF] Opdahl | The UEML Approach to Modelling Construct Description[END_REF].

In UEML, semantics is described by a representation mapping of each modelling construct into a common ontology, based on earlier work by [START_REF] Opdahl | A Template for Defining Enterprise Modelling Constructs[END_REF][START_REF] Krogstie | Evaluating UML Using a Generic Quality Framework[END_REF]. The UEML approach uses separation of reference to break individual modelling constructs into their ontologically relevant atomic parts along the following six axes:

1. Which class(es) of things is the construct intended to represent? Most modelling constructs somehow represent one or more classes of things. Even when the primary purpose of a construct is to represent certain properties, states or transformations, the construct implicitly also represents a property of, state of or transformation in, one or more classes of things. (A transformation may be either an atomic even or a complex process.)

2. Which properties is the construct intended to represent? Most modelling constructs somehow represent one or more types of properties, which may either be intrinsic properties (belonging to only one thing) or relationships (properties that are mutual to several things). Some intrincis properties are laws that restrict other propertis. Even if the primary purpose of a construct is to represent classes, states or transformations, it represents classes, states or transformations that involve one or more types of property.

Which states is the construct intended to represent?

Some modelling constructs are intended to represent a more or less restricted state in one or more classes of things. The state law that restricts the state can be described in terms of the properties of those classes. Whereas most modelling constructs represent one or more properties and, at least, one or more classes, not all constructs are intended to represent a state. 4. Which transformations is the construct intended to represent? Some constructs are intended to represent a simple or complex transformation of one or more classes of things from one state to another.

The transformation law that effects the transformation can be described in terms of the states of those classes. Again, not all constructs are intended to represent a transformation. Although some constructs are apparently not intended to represent behaviour at all, other constructs represent particular states or transformations or chains of alternating states and transformations, i.e., processes.

Which instantiation levels is the construct intended

to represent? A modelling construct represents classes, properties, states and transformations at either the instance or type level or both. Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise Modelling Language -Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11, Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08 6. Which modality (or mode) is the construct intended to represent? We usually think of enterprise models as assertions of facts about a domain, e.g., assertions that something is the case or is not the case in the enterprise. But some model elements may instead state that someone wants something to be the case, or that someone is not permitted to do something, or that someone knows something is the case¸ or that something will be the case some time in the future.

We call such statements modal (as opposed to regular) assertions, i.e., we use the term "modal" pretty much in the modal logic sense. Hence, whereas the two first axes deal with structure, the next two deal with behaviour. Together, these four axes describe the semantics of a modelling construct by describing a state of affairs, or a scene, played by several classes, properties and, perhaps, states and transformations together. The final two axes supplement the scene with information about the construct's intended use, i.e., its instantiation level and modality/mode.

The UML class diagram in Figure 1 shows the key concepts used to describe modelling languages and constructs in UEML. The upper part of the diagrams depicts modelling languages, along with their diagram types and modelling constructs. The lower part shows how each individual construct is described by a scene of interrelated classes, properties, states and transformations that the construct is intended to represent. (Construct presentation is not shown in Figure 1.)

THE COMMON ONTOLOGY

To tie modelling-construct descriptions together, UEML uses a common ontology into which the represented classes, properties, states and transformations of each construct are mapped. The common ontology thereby comes to interrelate the construct descriptions at the semantic level.

The UEML ontology is organised into four taxonomies: The classes in the ontology are organised in a conventional generalisation hierarchy. Properties, on the other hand, have their places in a precedence hierarchy, in which a property precedes another if every thing that possesses the second property must also possess the first. (For example, associated-with precedes having-content, because everything that is having-content is also associated-with that content.) There are also generalisation hierarchies of states and of transformations.

Classes, properties, states and transformations -including the state and transformation laws -all have attributes. For example, they all have unique names and there are cardinality constraints and role names on the associations between classes and properties.

The four taxonomies are interrelated. Classes are related to the properties that characterise them. Properties are related to the states they define. States are in turn entered and exited by transformations. Certain types of properties are laws that restrict other properties. State laws restrict states, whereas transformation laws effect transformations. The resulting organisation of the UEML ontology as four distinct, but interrelated taxonomies makes it possible to evolve the ontology over time without increasing complexity more than necessary. New classes, properties, states and transformations will always have a clearly identifiable location where they can be added to the appropriate taxonomy.

The UML class diagram in Figure 2 shows the key concepts of the common ontology, also based on the earlier work of [START_REF] Opdahl | A Template for Defining Enterprise Modelling Constructs[END_REF][START_REF] Krogstie | Evaluating UML Using a Generic Quality Framework[END_REF]. For every construct incorporated into UEML, each represented class, property, state and transformation is mapped into an ontology concept in the ontology. Figure 2 therefore structurally resembles the lower part of Figure 1.

The UEML ontology was first populated with a set of initial classes, properties, states and transformations derived directly from Bunge's ontological model [START_REF] Bunge | Ontology I: The Furniture of the World[END_REF][START_REF] Bunge | Ontology II: A World of Systems[END_REF] and the Bunge-Wand-Weber representation model of information systems, the so-called BWW model (Wand & Weber 1988[START_REF] Wand | On the ontological expressiveness of information systems analysis and design grammars[END_REF][START_REF] Wand | On the deep structure of information systems[END_REF]. Since then, it has evolved and grown as new constructs have been added. Currently, UEML incorporates a selection of academic and industrial modelling languages, such as ARIS, BMM, BPMN, coloured Petri nets, GRL, IDEF3, ISO/DIS 19440, KAOS, UEML 1.0 and selected diagram types from UML 2.0. In consequence, the most general concepts in the common ontology are ontologically committed, in the sense that they have grown out of Bunge's ontology and the BWW model, whereas the more specific ones have emerged through language and construct analyses.

LANGUAGE AND CONSTRUCT CORRESPONDENCES

Correspondences between any pair of constructs can be examined by comparing their mappings into the common ontology. All the modelling constructs in UEML thereby become interrelated at the most detailed level possible via the common ontology. If two modelling constructs are identical, they will map into the exact same ontology concepts. If two modelling constructs do not overlap at all, they will map into completely distinct concepts, i.e., ones that are not even closely related in their respective taxonomies. The third case is likely to be most common, where two modelling constructs map into some identical ontology concepts, some ontology concepts that are closely related and some ontology concepts that are not.

To support integrated use of models, UEML must offer ways to exploit the representation mappings to identify and manage correspondences among language constructs and among model elements. Construct correspondence refers to whether constructs refer to distinct (in several ways) or identical states of affairs in the problem domain. Three kinds of correspondences have been identified. Each of them can be precisely formulated in terms of the ontology classes, properties, states and transformations into which the constructs in the correspondence have been mapped. Of course these simple kinds of correspondences are not independent. Equal constructs will trivially contain and generalise one another. There are also complex correspondences, such as when one construct represents a state of affairs that generalises a part of the state of affairs represented by another, thus combining containment and generalisation. There are also overlapping constructs, each of which contains part, but not all, of the other. However, a complete typology of correspondences and how they combine stills needs to be worked out.

Correspondences are also characterised by different degrees of precision. For example, it is possible to only take into account how each construct is mapped into ontology concepts, ignoring how the concepts are related within the construct description. More precise correspondences can be identified by taking into account both ontology concepts and the relations between them, but ignoring the roles that the concepts may play in the relations. Finally, both the ontology concepts, the relations between them and the roles they play can be taken into account. Using different degrees of precision may be useful in order to to master complex correspondences and when dealing incomplete representation mappings and/or ontology.The work is in progress on deriving measures of correspondence between pairs of modelling constructs, providing evidence of kinds of correspondence with various degrees of precision. The measures are inspired by measures used to compare objects in the areas of classification theory and knowledge engineering [START_REF] Lin | An information-theoretic definition of similarity[END_REF][START_REF] Rodrýguez | Determining semantic similarity among entity classes from different ontologies[END_REF][START_REF] Blanchard | A treebased similarity for evaluating concept proximities in an ontology[END_REF].

Correspondence measures are also useful for validating the representation mappings and the common ontology. Correspondence measures derived automatically from the common ontology can be compared to expert estimates of the same correspondences. Deviations indicate either that the representation mapping is wrong for a construct or that the common ontology is not optimally organised. The two can also occur together, when the representation mapping is wrong because there are concepts missing from the common ontology. Another ontology problem that can be detected is missing taxonomical relations between ontology concepts, e.g., a missing generalisation relation from a sub-to a superclass. If left undetected, missing relations can lead to redundancies in the common ontology when the subclass is added again as a specialisation of the superclass. In this way, correspondence measures can also aid eliminating redundancy in the common ontology.

Correspondence measures as representative of correspondences are useful as high-level guides for model-tomodel translation and similar cross-language services. The representation mappings and common ontology provide the details for how to translate between modelling constructs belonging to different languages, as soon as the pair of modelling constructs to translate between have been decided. But it offers less help with selecting which constructs in one language to translate into which other constructs in the other one in the first place. The correspondence measures potentially aid this language-level issue by indicating, for each construct in a language, which constructs in the other language are most suitable as targets for, e.g., translation, leaving the final choice to the model manager. When the language-level construct-to-construct correspondences have been established in this way, the representation mapping and common ontology will support the detailed construct-level mappings.

LANGUAGE QUALITY FRAMEWORK

Together, the representation mappings, common ontology and correspondence measures contribute towards integrated use of models expressed in different languages. But there is also a need to select suitable languages to include in the UEML first place. For example, to quickly enrich the common ontology, it may be better to incorporate soon an almost complete and used language than a very narrow language used by specific communities. Later, when using UEML, there is a need to select suitable languages for particular purposes among the many available. For these purposes, UEML includes a language quality framework [START_REF] Anaya | Evaluating Quality of Enterprise Modelling Languages: The UEML Solution[END_REF], which aids language selection by  defining the concept of quality of a modelling language;  supporting methodical, goal-dependent evaluation of the quality of enterprise modelling languages. The current quality framework has adapted and extended SEQUAL quality framework [START_REF] Krogstie | Using a Semiotic Framework to Evaluate UML for the Development for Models of High Quality[END_REF][START_REF] Krogstie | Evaluating UML Using a Generic Quality Framework[END_REF], which provides a model of the quality of models, later extended to also account for the quality of languages. SEQUAL identifies 8 quality types for characterising what quality is: physical quality, empirical quality, syntactic quality, semantic quality, perceived semantic quality, pragmatic quality, social and organisational quality. For example, semantic quality is the correspondence between the model and the domain. SEQUAL also identifies several types of appropriateness, each indicating a language aspect that must be considered when assessing whether a language is appropriate for a particular purpose [START_REF] Krogstie | Using a Semiotic Framework to Evaluate UML for the Development for Models of High Quality[END_REF][START_REF] Krogstie | Evaluating UML Using a Generic Quality Framework[END_REF]. For example, comprehensibility appropriateness reflects the ease with which the language its model can be understood by a certain audience. In SEQUAL, each quality type is related to one or more appropriateness types and vice versa. For Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise Modelling Language -Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11, Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08 example, domain appropriateness is used to assess physical and semantic qualities. Therefore, the different types of appropriateness provide the context to evaluate the related quality types. In addition to SEQUAL, the UEML quality framework has been inspired by two additional quality frameworks: Moody's framework ( 2003) and ISO/IEC 9126 international standard for assessing software product quality (ISO/IEC 2001). These additional frameworks have been adapted and aligned with SEQUAL's appropriateness types through a generalisation hierarchy [START_REF] Berio | Deliverable DEM2[END_REF].

The resulting appropriateness types in the UEML quality framework remain too general to allow concrete evaluations [START_REF] Anaya | Evaluating Quality of Enterprise Modelling Languages: The UEML Solution[END_REF]. Therefore, the framework also covers requirements and criteria. Requirements are collected from users (actors or experts), asking them how enterprise modelling should contribute towards enterprise integration and interoperability, based on a requirements base established in the previous UEML Thematic Network (UEML-TN 2003). are the operational, or measurable, counterparts of requirements. Each criterion can in turn be related to one or more appropriateness types, making it precise to which quality types that criterion contributes. The framework provides two complementary ways of collecting data for evaluating criteria. The language template is used to gather general and factual information about a language, such as its notations and meta models, whereas the language-evaluation questionnaire comprises both questions derived from current criteria and an associated glossary.

The framework also introduces language descriptions, covering, e.g., a language's owner and version; goal, an aggregation of criteria providing the purpose for evaluating language quality; metrics-for-goal, selected metrics relevant to a specific goal (metrics are needed to perform criteria assessment); metric evaluation, specific evaluation (for instance, a value) of a single metrics on a specific language; combined metrics evaluation, combined evaluation of several metrics evaluations for a given language and a given goal (an explicit combined metrics evaluation makes explicit how several single metrics are combined -for instance, with a weighted formula -to evaluate quality of a language wrt a given goal; additionally, it is useful because the same metrics evaluation can, if needed, be used several time).

The UML class diagram in Figure 3 shows the key concepts used to evaluate the quality of modelling languages in UEML. The associated quality evaluation method gives a clear picture of how to evaluate and select one or more enterprise modelling languages for a specific purpose. The first task is to define the goal as aggregation of criteria and then select suitable metrics for each criterion. A list of languages to be evaluated is set. The language template is used to collect factual information about each language, whereas the language-evaluation questionnaire is used to collect subjective opinions. Hence, whereas only a single filled-in language template is needed for each language, multiple filled-in questionnaires are usually needed. Once the selected criteria are assessed by using selected metrics and storing these assessments as metrics evaluations, combined metrics evaluations are calculated and stored. Finally, languages must be suitably selected based on the results stored as combined metrics evaluations. Before its use, one specific enterprise may undertake a customisation of the quality framework: This simply means to define additional requirements, appropriateness types, criteria and metrics.

META-META MODELS

The UML class diagrams of the language and construct description approach (Section 3), of the common ontology (Section 4) and of the quality framework (Section 6) are all Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise Modelling Language -Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11, Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08 meta-meta models. They are meta-meta models because models of modelling languages are meta models and because Figure 1-3 are models of how to model modelling languages (or of how to model meta models). The UML diagrams are intended as illustrations only. For example, Figures 12do not show attributes and omit several association classes and abstract classes.

Whereas the representation mappings connect Figures 1 and2, the meta-meta model of the quality framework in Figure 3 is currently connected to Figure 1 only through the language description. The Conclusion will point out that the idea is to create a single combined, yet still modular, meta-meta model that covers all constituents of the UEML approach, the overall UEML meta-meta model.

TOOLS

UEML is supported by a set of prototype tools realised using a selection of existing technologies. There are currently five tools in the set:

 UEMLBase Repository is a Protege-OWL realisation of the representation and ontology meta-meta models of Figures 12, translated into OWL.  UEMLBase Editor is an emerging set of Eclipse GMF-based editors for browsing and updating the contents of the UEMLBase repository.  UEMLBase Manager is a Java-plugin for Protege-OWL that provides merging, reporting and other housekeeping functions for the repository.  UEMLBase Verifier is a set of Prolog rules and a Prolog rule checker that support formal verification of the concents in the UEMLBase repository, for example to check cardinality constraints and ensure that construct descriptions are concrete.  UEMLBase Correspondence Analyser uses the repository to compute similarity measures between UEMLBase constructs, paving the way for consistency checking, automatic update reflection, model-to-model translation across languages, as well as other integrated model uses. Each tool strives to be consistent with the meta-meta models presented in Section 7, although they all use more specific implementation models, such as OWL, Eclipse EMF, Java classes and Prolog facts. Hence, the meta-meta models is used to support interoperability within the UEML tool set.

DISCUSSION

The paper has presented the main constituents of the UEML approach and explained how they are related. Languages, possibly selected with the aid of the quality framework, are described using separation of reference according to the structured approach of Section 3. The descriptions of the states of affairs are then mapped into the common ontology of Section 4. It thereby becomes possible to establish correspondences between different constructs in terms of their mappings into the common ontology as in Section 5. The selection of modelling languages is guided by the quality framework of Section 6. In the long term, the most used and useful concepts in the common ontology can be used to form a core UEML language for enterprise and IS modelling. In the long tern, UEML could also contribute towards developing a web of languages and of models in a way that resembles the touted semantic web of semi-structured data (Berners-Lee, Hendler, Lassila 2001).

From an initial set of around 25 concepts taken more or less directly out of Bunge's ontology and the BWW model, the common UEML ontology has grown to comprise 110 concepts. Most of them have resulted from analyses of individual modelling constructs using separation of reference. (A few initial higher-level remain to organise and structure the four taxonomies.) As part of the Interop-NoE work, 130 constructs from the following 10 languages have been mapped into this ontology ((add references here!!!)): ARIS, BMM, BPMN, GRL, IDEF3, ISO/DIS 19440, KAOS, coloured Petri nets, UEML 1.0 and selected diagram types from UML 2.0. However, they are not all described in equal detail and none of them are yet fully validated. The languages, constructs, mappings and ontology have all been stored in the UEMLBase Repository, supported by the Editor, Manager, Verifier and Correspondence Analyser tools.

The standardised approach to language and construct description has turned out to have several advantages, in particular at the modelling construct level. The structured descriptions become complete, consistent, cohesive and, thus, more learnable and understandable. It therefore becomes easier to compare them to one another. The structured approach also offers systematic and detailed advice on how to proceed when analysing individual language constructs. It encourages highly-detailed construct description, which leads to languages that are integrated at a fine level of detail. It supports ontological analysis in terms of particular classes, properties, states and events, and not just in terms of the concepts in general.

The UEML approach has positive network externality, in the sense that incorporating an additional construct or language becomes:  more valuable the more constructs and languages that have already been incorporated, because the additional language becomes interoperable with a lrger number of other languages;

 less costly because reusing an enriched common ontology and existing representation mappings provide good reference examples and because the cost of maintaining tools and infrastructure can be shared by more UEML users.

Similar positiv network externality effects can be expected at the model level beside the langauge level discussed here.

Early experience with the construct description approach indicated that it was difficult to use because it was based on a novel, unconventional way of thinking about the semantics of modelling constructs. It was sometimes hard to find the appropriate classes, properties, states and events in the common ontology to use when describing a construct. Also, Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008) it was sometimes hard to determine exactly which part of a language that constitutes a modelling construct. As part of the Interop-NoE, tools and tutorials were developed that have seemingly resolved many of these problems. Also, early drafts of the common ontology have become available along with exemplary representation mappings. As a result, the first draft of several of the most recent language incorporations could be made by students with little direct supervision.

The framework for selecting and evaluating the quality of modelling languages according to specific goals also provides high benefits for users that need to decide which languages to use for practical puposes. First, it gets the voice of the customer through the consideration of the requirements of the users making them to appear in the front end of the framework. Then, these requirements are related to criteria that make them operational and applicable to the language evaluation.

CONCLUSION AND FURTHER WORK

UEML is an ambitious, long-term effort that will require several years of cooperation between academia and industry. The overall challenge for further work is to extend the theory and tools developed by the Interop-NoE network to support practical integrated use of models and languages. Although several limited paper-and-pencil trials have demonstrated the feasibility of the approach [START_REF] Berio | Deliverable DEM2[END_REF]Matulevicius, Heymans, Opdahl, 2007;Harzallah, Berio, Opdahl, 2007), detailed methods for integrated model use still need to be developed and implemented.

For UEML-supported integrated model use to be tested in large-scale, realistic settings, the common ontology and representation mappings must be verified, validated and improved. The current ontology and mappings have been contributed by several Interop-NoE research teams working in a distributed manner. The most immediate challenge is to improve the ontology and mappings in two directions. Firstly, the Editor and Verifier tools are being extended and improved. Secondly, the Correspondence Analyser tool is used to compare correspondences calculated from the common ontology and the representation mappings with correspondence estimates provided by human experts. The comparisons are used to identify weaknesses in the representation mappings. For example, when two constructs are considered similar by human experts, but not by the Correspondence Analyser, the reason might be that one or more ontology concepts have been duplicated. Accordingly, when the Analyser, but not the human experts, deem two constructs similar, the reason may be weaknesses in the generalisation hierarchies in the ontology. In this way, verification not only supports improving the representation mappings but also controls the quality of the common ontology.

As for the overall UEML approach, an obvious path for further work is to connect the meta-meta models for language and construct description and for the common ontology with the one for the quality framework. Also, the combined metameta model must be extended to account for the presentation part of language and construct description and for construct correspondences. In addition to tying together the overall approach, this work can be expected to reveal further possibilities, such as deriving quality and appropriateness metrics for languages, not only at the language level, but also at the construct level from the detailed UEML ontology and mappings.

These and other possible future developments have been organised in a UEML roadmap comprising several research directions, each detailed by specific actions (Opdahl & Berio 2006): 1. Language breadth -include more languages; 2. Ontological depth -refine the common ontology; 3. Ontological clarity -elaborate the common ontology language; 4. Presentation -extend the support for presentation issues; 5. Mathematical formality -define UEML semantics formally; 6. Tool support -develop prototype tool with GUI and validation support; 7. Model management -provide support for model management in addition to language management; 8. Validation -structural and behavioural language and model validation; 9. Dissemination -make UEML known in industry and academia and as a standard; 10. Community -establish and maintain a committed and cohesive community for managing and evolving UEML and its approach. Additional directions that deal specifically with the language quality framework are: 1. Continuing the development of the quality framework by introducing new criteria and extending the questionnaire accordingly; 2. Continuing the accommodation of existing quality frameworks by specialising appropriateness; 3. Gradually developing supporting tools based on the metameta model, starting from the current simple support for filling-in the questionnaire to complete functionality to define and evaluate metrics; 4. Launching use of the quality framework and especially by performing evaluations of languages for developing a core language. For example, more specific quality frameworks can be used to systematically introduce new appropriateness measures and to specialise existing ones. The roadmap still needs to be extended to account better for correspondence analysis.

The UEML approach may even be useful outside enterprise and IS modelling, e.g., for software modelling. Significantly, only the language quality framework is specific to enterprise modelling. The other major UEML parts might be used for a wider set of modelling domains.
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 3 Figure 3: The common UEML ontology, into which all the construct descriptions are mapped.
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 1 Figure 1: The main classes in the UEML representation meta-meta model.
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 3 Figure 3: The UEML language quality framework.
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 Equality occurs when two or more constructs represent the exact same state of affairs, as explained in Section 2. If two constructs are equal,
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