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Abstract

The purpose of this article is to expose a new sufficient condition to reject the hypothesis saying
that a process is a regenerative process. This condition is based on ®-divergence and on the fact
that its associated renewal process follows a parametric model.
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Introduction

We consider (X;),er a random process - where T = R or T = N - and we suppose that (X;)ser
is a regenerative process. In this paper, our goal will be to write a test which verifies, in real time,
if this hypothesis is acceptable through ®-divergences.

Let us then consider the renewal process associated with (X;);er that we will name (7,,),en. This
process is a random walk on R*. We will consequently suppose here that the law of (r,, — 7,,_1)
belongs to the stochastic model M = {P,; A € A} - where A is an open of R. Let A be the true
parameter.

In a first part, we provide an estimator A, of 1y and we prove the uniform convergence of Sy, to
1, where, more generally, f; is the density of the probability P, € M. In a second part, we carry
out a test on Ay and conclude our theory. Finally, we perform a simulation.

All reminders and proofs can be found in annex.

1. Convergences

Based on works [1] and [2], we derive estimators of dy. Then, after introducing certain
notations, we will produce almost sure uniform convergences of these expressions.

1.1 Writing the estimators

We consider an identifiable parametric model {P,; A € A} defined on some measurable space
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(X, B) and A is an open of R. We assume for all 2 in A, P, has a density f; with respect to some
dominating o—finite measure. From an i.i.d. sample T, T5,...,T,, with distribution P,,, we aim
at estimating Ao, the true value of the parameter.

Now, let us introduce the concept of ®—divergence. Let ¢ be a strictly convex function defined
by ¢ : R* — R*, and such that ¢(1) = 0. We define a ®—divergence of P from Q - where P
and Q are two probability distributions over a space  such that Q is absolutely continuous with
respect to P - by ®(Q, P) = f go(%)dP. Moreover, let ¢* be a function defined by, V¢ € R,

©*(t) =t~ (£) — o(¢'~ (1)), where ¢’ is the derivate function of ¢, ¢’~! the reciprocal function
of ¢’ and let ¥ be the class of function defined by ¥ = {x 90'('%); A € R*}, then [1] and [2]
show that the estimator of ®(P,, P,,) - that we will call ®(a, Ap)- 1s :

(@, ) = sup f o2y ap, - f o (1)) ap,),
2 fa fa

where P, is the empirical measure of (7,) and thus the minimum ®-divergence estimate of A is

A, = arg irel/t; (i)n(a', A).

1.2 Convergence studies

Let us consider A, = (A€ A| [ (,0*((,0'(%’)) dP,, < oo},
M@ a.x) = [ ¢ (F)dPa = @" (¢ (§)). PaM(1,0) = [ ¢/ (3)dPo = [ ¢ (¢ (3))dP.
PM(,0) = [¢'(})dPy — [¢"(¢'(1))dP, é,(a) = argsupc, PuM(A, ),
Cul@) = argsup,cp, PnM(A, @), ¥, = arginfaep sup,cp PnM(4, @) and
Yu = arginfaep sup,en, PuM(A, ).
We remark that A, is a M-estimator for 1o and its rate of convergence is consequently in Op(m™~ 172y,

However, Van der Vaart, in chapter V of his work [8], thoroughly studies M-estimators and for-
mulates hypotheses that we will use here in our context and for all set Ay:

(H1) /fqu |P,M(A, @) — PM(A, @) — 0 a.s. (respectively in probability)
ael; e,
(H2) : Foralle>0, thereisn >0, such that forall 1 € A, verifying |1 — || > &,
we have PM(A, @) —n > PM(Ay, @), with a € A.
(H3) : 3dZ <0, ng > 0 such that (n > ny = sup sup P,M(1y,a) <Z)
@€ A€(A, )
(H4) : Thereis aneighbourhood of Ay, V, and a positive function H, such that,
forall A € V we have |M(A, Ay, x)| < H(x) (P — p.s.) with PH < oo,
(HS) : Thereis aneighbourhood V of Ay, such that for all g, there is a n such that for

allA € Vand a € A, verifying |l — Agl| > &, we have PM(A, 1g) < PM(A, @) — 1.
According to Broniatowski, we can thus say that:

Proposition 1. : Assuming conditions (H1) to (H5) hold, we have
(1) sup,ep lIEn(@) — Al| tends to 0 a.s. (respectively in probability)
(2) 9, tends to 1) a.s. (respectively in probability).

Finally, if n is the number of vectors of the sample, we then have
2



Theorem 1. : We have almost everywhere and even uniformly almost everywhere, the fol-
lowing convergence: f; — fi,, when n — oco.

2. Test

Taking note of section 1, let us consider T,;I’ the function defined by T,‘LD (a, ) = w,%—f’l)én(a, Ao),

where ®,,(a, ) = supaeA{f tp’(%) dpP, — f go*(%) dP,}. The articles [7] and [9] show that this
function converges towards a )(2 random variable if @ = 4y. Hence, since ¢ is a positive function,
we can write a rupture detection test for any (7),) parameter, i.e. HO: A = Ay versus H1 : 1 # Ay,
through the function T%(a, 1), i.e. by the critical region R® = {%ﬁ)n(ao, Ao) > q1-¢}, where
q1-¢ 1s the quantile, of level 1 — &, of a X2 distribution and where, under (H0), ay is the unique
element such that ®(ay, 19) = 0 according to proposition 2 (see page 5).

Finally, if (HO) is not acceptable, the hypothesis stating that (X;) is a regenerative process is
also not acceptable, since the independance of variables (Z;) - which is defined page 4 within the
definition of a regenerative process - no longer holds.

3. Simulation

In this section, we take a real point process (see definition page 4) as the renewal process associ-
ated with (X)ser.

First, we simulate a point process such that its parameter A, is equal to 1 and we will estimate
Ao. Second, we will randomly change the parameter and we will observe when the rupture can
be detected. We obtain

theoritical value : 1

Estimate of the A estimate : 0.980055
P-Value : 0.719
theoritical value : 20
When the parameter changes - det.ection : after 88 random variables generated
estimate : 19.7074
P-Value : 0.9

Critics of the simulation :

We note that as the approximations accumulate and according to the power of the calculators
used, we might obtain results above or below the value of the thresholds of the different tests.
Moreover, in the case where Ay is unknown, we will never be sure to have reached the minimum
of the d-divergence: we have indeed used the simulated annealing method to solve our optimisa-
tion problem, and therefore it is only when the number of random jumps tends in theory towards
infinity that the probability to get the minimum tends to 1. We note finally that no theory on the
optimal number of jumps to implement does exist, as this number depends on the specificities of
each particular problem.

Conclusion :

The present article demonstrates that our ®-divergence method constitutes a good suffi-
cient condition to reject the hypothesis according to a process is a regenerative process.
Indeed, the convergence results and simulations we carried out, convincingly fulfilled our
expectations.



Annex A - Reminders
In this section, we briefly recall the concepts that we need in this article :

A.1. Regenerative Process, Associated Renewal Process And Point Process :

Let T be the set equal to R or N. Let (X;),er be a random process such that X; € E, where E
is a topological set, and such that the applications t — X, are right-continuous. We have

Definition 1. The process (X;)er is said to be generative, if there exists an increasing sequence
(To)nen of random variables such that T, € T and for any measurable function f : E — R™, the
random variables

Z, = fXdsif T =R, 2, =317 f(X) if T =N,

Tn

are independent and identically-distributed.

We remark that if we take f = 1, we can say that the random variables (7,,; — 7,), are positive,
independent and identically-distributed. Hence, the sequence (7,), is a random walk on R*. We
will call (t,,),, the renewal process associated with its regenerative process (X;)ser-

Moreover, we have

Definition 2. We define a point process on R* as the sequence of random variable (T;) such that
0<Ty <Th<..,T;eRtand T, — > a.s..

and finally

Theorem 2. Let (T;) be a point process. Thus, the random variables T, Ty —T1,T3 — T», .... are
mutually independent and have the same exponential distribution.

A.2. ®-Divergences

Let ¢ be a strictly convex function defined by ¢ : R* — R+, and such that ¢(1) = 0.
Definition 3. We define ®—divergence of P from Q - where P and Q are two probability distri-

butions over a space Q such that Q is absolutely continuous with respect to P - by

d
®(Q.P) = f o2ra.

It will be noted that this expression also holds if P and Q are both dominated by the same
probability.

The most used distances (Kullback, Hellinger or y?) belong to the Cressie-Read family
(see [4], [3] and the book [6]). They are defined by a specific ¢. Indeed,

- with the relative entropy, we associate ¢(x) = xln(x) — x + 1

- with the Hellinger distance, we associate ¢(x) = 2(y/x — 1)°

- with the )(2 distance, we associate ¢(x) = %(x -1

- more generally, with power divergences, we associate ¢(x) = %, where y € R\ (0, 1)

- and, finally, with the L' norm, which is also a divergence, we associate ¢(x) = |x — 1].
Finally, we have
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Proposition 2. A fundamental property of ®—divergences is the fact that there is a unique case
of nullity. We have ®(P,Q) =0 P = Q.

Annex B - PROOFS

Proof of proposition 1 :
Given that X, — X (a.s.) if Ve > 0, P(lim sup{|X,, — X| > €}) = 0, we prove proposition 1:
Proof : Since ¢, (@) = argsup,e,, P.M(4, ), we have P,M(Cy(a), @) > P,M(dp,@). And
through condition (H1), we get P,M(¢ (@), @) = P,M(Ay, @) = PM (Ao, @) —op, (1), where op, (1)
does not depend on «@. Thus, we get:

PM(Ay, @) — P,M(Cy(a), @) < P,M(Cn(@), @) — PM(Cn(@), @) + op,(1)

< SUPyen: e, 1PnM(A, @) = PM(A, )| — 0 as. (%).

Let £ > 0 be such that sup,, [IC.(@) — Aoll > €. We notice that if such & had failed to exist, the
result would be obvious. Therefore, for this &, there is a, € A such that ||¢,(a,) — Aol| > &, which
implies thanks to (H2) that there exists a  such that PM(¢,(a,), a,) — PM(Ay, a,) > n. Thus, we
can write :

P(supcge ICa(@) — Aoll > &) < P(PM(&,(ay), ay) — PM (A, a,) > 1) — 0 by (¥).
Moreover, (H1) and (H3) imply that ¢,(a) = &,(@) for all @ € A and for n big enough. This
results in sup,c, [[C,(@) — Aol = 0 a.s., which concludes our demonstration of the first part of
the proposition.
For the second part, we remark that (H1) and (H3) also imply that ¥, = ¥, for all @ € A. This
explains why it is sufficient to demonstrate the result for ¥, only.
Based on the first part of the demonstration and on condition (H4), we can write:

PyM(Cn(¥n), ¥n) = PnM(Cn(A0), Ao) = PM(Cn(¥2), Ao) — op, (1),
which implies:

PM(gn(’?n)a /10) - PM(En(jN/n), ’?n) < PnM(En(i/n)’ )N/n) - PM(En(jN/n), ;)7n) + OP,,(I)

< SUPLep; pen, PnM (A, @) = PM(A, @) — 0 a.s. (xx).

Based on the first part of this demonstration and on (H5), we infer the existence of 7 such that :
P(lyn — Aoll 2 &) < P(PM(Z,(¥n), A0) = PM(Cn(¥n), ¥n)) — 0 a.s. by (),
which concludes our demonstration. O

Proof of theorem 1 : Let F,; be the cumulative distribution function of a probability which
belongs to our parametric model M and let i, be a complex function defined by ¥ ,(u,v) =
Fi(Re(u + iv)) + iF ;(Re(v + iu)), for all u and v in R.

First, according to proposal (9.1) page 216 of the book [5], "Any defined and continuously
differentiable, in an open set D C C, complex function is analytical in D" we can therefore say
that ¢, (u, v) is an analytic function, because x — fj(x) is a continuous function.

Given the corollary of Dini’s second theorem - according to which "A sequence of cumulative
distribution functions which simply converges on R towards a continuous cumulative distribution
Sfunction F on R, uniformly converges towards F on R" - we deduct that, for all sequence (1,)
converging towards 4, y,, uniformly converges toward .

Finally, the Weierstrass theorem, (see proposal (10.1) page 220 of [5]), states that "Let (f,,)
be a sequence of analytic function in an open set D C C, and let us suppose that for every closed
disc A included in D, the sequence (f,(z)) uniformly converges in A toward a limit f(z). Hence
f is an analytic function in D, and for all k > 1, the sequence of derivative functions ( f,fk)(z))
uniformly converges in A towards (f*(z))." Applying the above reasoning to v/, we derive for
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k = 1, that all sequence ¢/, , uniformly converge towards ¢/}, for all 4, tending to 1. We can
therefore conclude.
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