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Abstract

In the framework of quantum optics, we study the problem of goodness-of-

fit testing in a severely ill-posed inverse problem. A novel testing procedure is

introduced and its rates of convergence are investigated under various smooth-

ness assumptions. The procedure is derived from a projection-type estimator,

where the projection is done in L2 distance on some suitably chosen pattern

functions. The proposed methodology is illustrated with simulated data sets.
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1 Introduction

In quantum optics, the results of the measurement of a quantum state ρ are random.

Mathematically, a quantum state ρ is entirely characterized by an operator ρ on a

complex Hilbert space H such that ρ is

1. self-adjoint (or Hermitian): ρ = ρ∗, where ρ∗ is the adjoint of ρ,

2. positive: ρ ≥ 0, or equivalently 〈ψ, ρψ〉 ≥ 0 for all ψ ∈ H,

3. trace one: Tr(ρ) = 1.

In this paper, the studied quantum system is a monochromatic light in a cavity,

whose state is described by infinite density matrices ρ on the separable Hilbert,

hereafter, denoted by L2(R), the space of square integrable complex valued functions

on the real line. In this setting, a convenient representation of a quantum state can

be obtained by the projection onto the orthonormal basis (ψj)j∈N
, called Fock basis

and defined by

ψj(x) :=
1√√
π2jj!

Hj(x)e
−x2/2. (1)

Here, Hj(x) := (−1)jex
2 dj

dxj e
−x2

denotes the j-th Hermite polynomial. Furthermore,

to each state ρ corresponds a Wigner function Wρ, which gives an identical rep-

resentation of the quantum state ρ. The Wigner function is a mapping from R
2 to

R such that
∫∫

Wρ(q, p)dqdp = 1. For this reason, Wρ is regarded as a generalized

joint probability density of the two random variables Q and P that we would get if

we could measure simultaneously the two observables Q and P, which are respec-

tively the electric and the magnetic fields. The Wigner function Wρ can be defined

rigorously by its Fourier transform F2[Wρ] with respect to both variables

W̃ρ(u, v) := F2[Wρ](u, v) = Tr (ρ exp(iuQ + ivP)) .

In quantum optics, physicists produce quantum state of light and via measurement,

they gather independent identically distributed random variables containing infor-

mation on the unknown, underlying quantum state ρ. The measurements are done
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by a technique called quantum homodyne tomography (QHT), which has been put

in practice for the first time in [29]. We refer the interested reader to the book [18]

or the paper [16] for further details on QHT. Our goal is to check whether the pro-

duced light pulse is in the known quantum state τ , or not. This can be done via

goodness-of-fit testing. We measure the distance between the unknown state ρ and

the presumed state τ by the squared-L2-distance:

‖ρ− τ‖2
2 =

∑

j,k≥0

|ρj,k − τj,k|2 . (2)

In an ideal framework, the results of measurement would be (Xℓ,Φℓ)ℓ=1,...,n, indepen-

dent identically distributed random variables with values in R × [0, π]. Let pρ(x, φ)

be the probability density function w.r.t. the measure 1
π
λ of (X1,Φ1), where λ stands

for the Lebesgue measure on R × [0, π]. It is well-known that

pρ(x|φ) = R[Wρ](x, φ). (3)

Here, R denotes the Radon transform, taking functions Wρ(q, p) on R
2 into functions

R[Wρ](x, φ) on R×[0, π] formed by integration along lines of direction φ and distance

x from the origin, expressed as

R[Wρ](x, φ) =

∫ ∞

−∞
Wρ(x cosφ− t sinφ, x sinφ+ t cosφ)dt.

In this paper we consider a more realistic model in presence of an additional in-

dependent Gaussian noise. More precisely, we observe (Yℓ,Φℓ)ℓ=1,...,n independent

identically distributed random variables, given by

Yℓ :=
√
ηXℓ +

√
(1 − η)/2 ξℓ, (4)

where ξℓ is a sequence of independent identically distributed standard Gaussians,

independent of all (Xℓ,Φℓ). The detection efficiency parameter η, 0 < η ≤ 1, is a

known parameter and 1− η represents the proportion of lost photons due to various

losses in the measurement process.
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The problem of reconstructing the quantum state of a light beam has been exten-

sively studied in quantum statistic and physic literature. Methods for reconstructing

a quantum state have been proposed based either on density matrix or on Wigner

function estimation. The estimation of the density matrix from averages of data has

been considered in the framework of ideal detection [13, 12, 20, 3] as well as in the

more general case of an efficiency parameter η belonging to the interval ]1/2, 1] (cf.

[10, 14, 11, 27]). The case η ∈]0, 1] has been recently treated in [4]. The latter paper

provides also rates of convergence in L2 loss for an estimator of the Wigner function.

The problem of pointwise estimation of the Wigner function has been previously

studied in [9] for noisy data and in [16] for ideal data. It should be noted that the

results of [16] and most part of the results in [9] are asymptotically minimax not only

in the rate, but also in the constant.

In the present work, the goodness-of-fit problem in quantum statistic is considered.

There is a large literature on nonparametric testing procedures for the goodness-of-fit

of probability distributions. First of all, let us mention the family of test procedures

built on certain distances between empirical cumulative distribution functions (c.d.f.),

such as the Kolmogorov-Smirnov and the Cramer-Von Mises test statistics, for which

extensive results in terms of asymptotic efficiency were established [23]. In order to

be more sensitive to low-frequency components or narrow bumps for powerful dis-

crimination, test procedures based on distances between densities were proposed,

such as the Bickel-Rosenblatt test [6, 2] for the L2-distance and the test of [1] for

the L1-distance. Theoretical results on such test statistics naturally stems from their

nonparametric function estimation counterparts.

In order to compare nonparametric testing procedures, many approaches were pro-

posed, as reviewed in [23, 17]. A common approach is to analyze the power against

sequences of local alternatives {fn}n≥1 of the form fn = f0 + ϕng where g is the

direction defining the sequence of local alternatives, and where ϕn → 0 as n tends

to infinity. Typically, while nonparametric test statistics achieve nontrivial power

(i.e. the power of the test is strictly larger than the first type error) against direc-
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tional alternatives fn = f0 + ϕng when ϕn = Cn−1/2, they achieve nontrivial power

against nondirectional alternatives fn = f0 + ϕngn only for ϕn slower than n−1/2. In

other words, achieving nontrivial power uniformly against a large class of alternatives

comes at the price of a slower rate than for parametric testing. The minimax dis-

tinguishability framework described in a non-asymptotic setting in [5, 15] and in an

asymptotic setting in [17], allows to give precise statements about this phenomenon

by characterizing the discrimination rate ϕn depending on a smoothness index of the

class of alternatives one wish to discriminate for the null hypothesis. Sharp minimax

results with pointwise and sup-norm distances have been established in [21] for the

regression model and in [26] for the Gaussian white noise model for supersmooth

functions. In [8], goodness-of-fit testing in the convolution model have been consid-

ered and minimax rates for testing in L2-norm from indirect observations have been

established. The first testing procedure adaptive to smoothness of the alternative

function was proposed by [30].

In quantum statistic framework, for the problem of discriminating between two dif-

ferent and fixed states we mention [24] among others. They have establish lower

bound for the Bayesian error probability.

The remainder of the article is organized as follows. In Section 2, we introduce the

notation and define the nonparametric class containing the density matrices we are

dealing with. The testing procedure and the theorical results assessing its asymptotic

behavior are presented in Section 3. Section 4 contains an illustration of the proposed

methodology on simulated data sets while the proof are postponed to Section 5.

2 Preliminaries

For any functions f , g : R → R, denote by f ∗ g the convolution product

f ∗ g(y) =

∫
f(y − t)g(t)dt.

Since Yℓ :=
√
ηXℓ +

√
(1 − η)/2 ξℓ, the density pηρ of (Yℓ,Φℓ) is given by the con-

volution of the density pρ(·/
√
η, φ)/

√
η with Nη the centered Gaussian density of
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variance (1 − η)/2. In other terms

pηρ(y, φ) =

(
1√
η
pρ

( ·√
η
, φ

)
∗Nη

)
(y), ∀y ∈ R, φ ∈ [0, π].

In the Fourier domain, this relation becomes

F1[p
η
ρ(·, φ)](t) = F1[pρ(·, φ)](t

√
η)Ñη(t), (5)

where F1[p
η
ρ(·, φ)] denotes the Fourier transform with respect to the first variable and

Ñη the Fourier transform of the Gaussian density Nη.

We suppose that the unknown state belongs to the class R(B, r, L) for B > 0 and

r ∈]0, 2] defined by

R(B, r, L) := {ρ quantum state : |ρj,k| ≤ L exp(−B(j + k)r/2)}. (6)

This decay condition on the coefficients of the density matrix characterizes both

smoothness and the asymptotic behavior of the associated Wigner function. Indeed,

it has been translated on the corresponding Wigner function in Proposition 1 and 2

in [4]. Namely, for all j ≥ k, if ρ ∈ R(B, r, L) with r ∈]0, 2[, then for all β < B,

there exists z0 (depending explicitly on r, B, β) such that for all (q, p) satisfying
√
q2 + p2 ≥ z0 we have

|Wρ(q, p)| ≤ Crz
4−re−βz

r

, (7)
∣∣∣W̃ρ(q, p)

∣∣∣ ≤ crz
4−re−β(z/2)r

, (8)

where z =
√
q2 + p2. In case where r = 2, equations (7) and (8) remain valid for

β := B
(1+

√
B)2

.

Let us consider the problem of nonparametric goodness-of fit testing from the data

(Yℓ,Φℓ) for ℓ = 1, . . . , n. Given τ ∈ R(B, r, L), the physical interpretation of such a

test is to check whether the produced light pulse is in a known quantum state τ , or

not. This can be done via the density matrix as follows:




H0 : ρ = τ ,

H1(C, ϕn) : ρ ∈ R(B, r, L) such that ‖ρ− τ‖2 ≥ C · ϕn,

where ϕn is a sequence, which tends to 0 when n→ ∞.

6



Definition 1. For a given 0 < λ < 1, a test procedure Ωn satisfies the upper bound

(9) for the testing rate ϕn over the smoothness class R(B, r, L) if there exists a

constant C∗ > 0 such that for all C > C∗:

lim sup
n→∞

{
Pτ [Ωn = 1] + sup

ρ∈H1(C,ϕn)

Pρ[Ωn = 0]

}
≤ λ, (9)

where Pτ denote the probability under ρ = τ defined in H0.

We present in Table 1 examples of pure quantum states, which can be created

at this moment in laboratory and belong to the class R(B, r, L) with r = 2. A state

is called pure if it cannot be represented as a mixture (convex combination) of other

states, i.e., if it is an extreme point of the convex set of states. This is equivalent

to the density matrix being a one dimensional projector, i.e., of the form ρ = Pψ

for some unit vector ψ. In this case the formula for the expectation value of an

operator A in the state simplifies as tr(Aρ) = Eρ[A]. Equivalently, a state ρ is pure

if Tr(ρ2) = 1. All other states are called mixed states.

Let us discuss these few examples of quantum states. Among the pure states we

consider the single photon state and the vacuum state, which is the pure state of

zero photons. Note that the vacuum state would provide a random variable of Gaus-

sian probability density pρ(x|φ) via the ideal measurement of quantum homodyne

tomography.. We consider also the coherent-q0 state, which characterizes the laser

pulse with the number of photons Poisson distributed with an average of M pho-

tons. The Squeezed states (see e.g. [7]) have Gaussian Wigner functions whose

variances in the two directions have a fixed product. The parameters M and ξ are

such that M ≥ sinh2(ξ), C(M, ξ) is a normalization constant, α = (M−sinh2(ξ))1/2

cosh(ξ)−sinh(ξ)
,

and δ =
(

α
sinh(2ξ)

)1/2

. The well-known Schrödinger cat state is described by a linear

superposition of two coherent vectors (see e.g. [25]). Table 1 gives some explicit

density matrix coefficients ρj,k and probability densities pρ(x|φ).

7



Table 1: Examples of quantum states

Vacuum state

• ρ0,0 = 1 rest zero,

• pρ(x|φ) = e−x
2
/
√
π.

Single photon state

• ρ1,1 = 1 rest zero,

• pρ(x|φ) = 2x2e−x
2
/
√
π.

Coherent-q0 state q0 ∈ R

• ρj,k = e−|q0|2qj+k0 /
√
j!k!,

• pρ(x|φ) = exp(−(x− q0 cos(φ))2)/
√
π.

Squeezed state M ∈ R+, ξ ∈ R

• ρj,k = C(M, ξ)(1
2
tanh(ξ))k+jHj(δ)Hk(δ)/

√
j!k!,

• pρ(x|φ) = exp
[(

sin2(φ)(xe−2ξ cos(φ) − (x cos(φ) − α)e2ξ)2
)
/
(
e2ξ sin2(φ) + e−2ξ cos2(φ)

)

× −e−2ξ(x cos(φ) − α)2 − e2ξx2 sin2(φ)
]
/
√
π(e2ξ sin2(φ) + e−2ξ cos2(φ)).

Thermal state β > 0

• ρj,k = δjk(1 − e−β)e−βk,

• pρ(x|φ) =
√

tanh(β/2)/π exp(−x2 tanh(β/2)).

Schrödinger cat q0 > 0

• ρj,k = 2(q0/
√

2)j+k/
(√

j!k!(exp(q2
0/2) + exp(−q2

0/2))
)
, for j and k even, rest zero,

• pρ(x|φ) = (exp(−(x− q0 cos(φ))2) + exp(−(x+ q0 cos(φ))2)

+2 cos(2q0x sin(φ)) exp(−x2 − q2
0 cos2(φ))) / (2

√
π(1 + exp(−q2

0))) .
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3 Testing Procedure and results

In the setting described in previous sections, we provide in this part our test from a

projection method on pattern functions and we establish our main theorical results.

Let us first define the pattern functions and derive some useful properties.

3.1 Pattern functions

First introduced in [20], the pattern functions fj,k for j ≥ k are functions well known

in physic defined in [19] as the first derivatives of products of the functions ψk and

ϕk,

fj,k(x) =
∂

∂x
(ψj(x)ϕk(x)) .

The functions ψk and ϕk are the two fundamental solutions of the Schrödinger equa-

tion [
−1

2

∂2

∂x2
+
x2

2

]
ψ = wψ, w ∈ R,

for a given frequency wk. The function ψk is the normalized function as
∫
ψ2
k = 1

for an eigenvalues wk. The function ψk is called the regular wave function, while the

function ϕk is called the irregular one as it cannot be normalizable as ψk is.

The matrix elements ρj,k of the state ρ in the Fock basis can be expressed as

expected values of the functions Fj,k(Xℓ,Φℓ) = fj,k(Xℓ)e
−i(k−j)Φℓ , where fj,k = fk,j

are bounded real pattern functions [18],.i.e. for all j, k ∈ N,

ρj,k =

∫∫ π

0

pρ(x, φ)fj,k(x)e
−i(k−j)φdφdx.

In others words

ρj,k = Eρ [Fj,k(Xℓ,Φℓ)] . (10)

Equation (10) expresses the idea that one can reconstruct any density matrix element

ρj,k from the knowledge of the pattern functions.
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A concrete expression for their Fourier transform using generalized Laguerre

polynomials can be found in [28], [4]. For j ≥ k

f̃j,k(t) = π(−i)j−k
√

2k−jk!

j!
|t|tj−ke− t2

4 Lj−kk (
t2

2
), (11)

where f̃j,k denotes the Fourier transform of the Pattern function fj,k and Lαk (x)

denotes the generalized Laguerre polynomial.

We can note that the pattern functions fj,k(x) are even functions for even differ-

ences j − k and odd functions for odd ones

fj,k(−x) = (−1)j−kfj,k(x).

To take into account the detection losses described by the overall efficiency η, it is

necessary to adapt the pattern functions. When η ∈]1/2, 1], we denote by f ηj,k the

function introduced in [4] and defined by their Fourier transform as follows:

f̃ ηj,k(t) := f̃j,k(t)e
1−η
4η

t2 . (12)

In this paper we develop a procedure for η ∈]1/2, 1], but it is possible to get quite

similar results with the same procedure for 0 < η ≤ 1
2

by using modified pattern

functions, those introduced in [4]. We restrict our study to the more interesting case

η ∈]1/2, 1] as in practice η is around 0.9. The following lemma provides useful upper

bounds on the L2-norm of the fj,k and the L∞-norm of the f ηj,k. From now on, we

denote γ := 1−η
4η

.

Lemma 1 (Aubry et al. [4]). There exists a constant C2 such that for N large

enough

N∑

j,k=0

‖fj,k‖2
2 ≤ C2N

17
6 .

For η ∈]1/2, 1[ and γ = 1−η
4η

, there exists constant Cη∞ such that for N large enough

N∑

j,k=0

∥∥f ηj,k
∥∥2

∞ ≤ Cη∞N− 2
3e16γN .

For the L∞-norm of the f ηj,k, this lemma is slightly different from Lemmata 4 and

5 in [4] where the sum is over j + k = 0, . . . , N . The proof remains similar.

10



3.2 Testing procedure

In this section we derive an estimator of ‖ρ− τ‖2
2 based on indirect observations

(Yi,Φi)i=1,...,n and study its properties. We provide our test procedure for η ∈]1/2, 1].

For η ∈]1/2, 1], N := N(n) → ∞ and δ := δ(n) → 0, let us define an estimator

Mn of ‖ρ− τ‖2
2 as an U-statistic of order 2 by

Mn :=
1

n(n− 1)

N−1∑

j,k=0

n∑

ℓ 6=m=1

[
F η
j,k

(
Yℓ√
η
,Φℓ

)
− τj,k

] [
F η
j,k

(
Ym√
η
,Φm

)
− τj,k

]
, (13)

where

F η
j,k(x, φ) := f ηj,k(x)e

−i(k−j)φ1l{0≤j,k≤N−1}

uses the pattern functions defined in (12) and a denote the complex conjugate of a.

For the test statistic Mn defined in (13), a constant C > 0 and some threshold

tn > 0, we define the test procedure as

Ωn = 1l(|Mn| > C · t2n). (14)

We first remark that each element of the density matrix is estimated with no

bias. Moreover, the estimator Mn is unbiased under ρ = τ defined in H0 (Remark 1).

Remark 2 relates useful tools for the proof of the upper bounds in the sense of

Definition 1. From now on, we denote by Eρ the expected value under ρ satisfying

H1(C, ϕn) and Eτ under ρ = τ defined in H0.

Remark 1. Note that for 0 ≤ k ≤ j ≤ N − 1 and η ∈]1/2, 1]

Eρ

[
F η
j,k

(
Y√
η
,Φ
)]

= ρj,k and Eτ

[
F η
j,k

(
Y√
η
,Φ
)]

= τj,k.
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Indeed, from Plancherel formula

Eρ

[
F η
j,k

(
Y√
η
,Φ

)]
=

∫∫ π

0

∫
f ηj,k(

y√
η
)e−i(k−j)φpηρ(y, φ)dφdy

=

∫∫ π

0

f ηj,k(y)e
−i(k−j)φ√ηpηρ(

√
ηy, φ)dφdy

=

∫∫ π

0

e−i(k−j)φ
1

2π
f̃j,k(t)e

1−η
4η

t2F1[
√
ηpηρ(·

√
η, φ)](t)dφdt.

From equation (5), and from Plancherel formula

Eρ

[
F η
j,k

(
Y√
η
,Φ

)]
=

∫∫ π

0

e−i(k−j)φ

2π
f̃j,k(t)e

1−η
4η

t2F1[pρ(·, φ)](t)Ñη(t/
√
η)dφdt

=

∫∫ π

0

e−i(k−j)φfj,k(x)pρ(x, φ)dφdx = ρj,k.

Thus,

Eρ [Mn] =
∑N−1

j,k=0 (ρj,k − τj,k)
2 and Eτ [Mn] = 0.

Remark 2. For N large enough and ρ belonging to the class R(B, r, L)

N−1∑

j,k=0

Eρ

[∣∣∣∣F
η
j,k

(
Y√
η
,Φ

)∣∣∣∣
2
]
≤





Cη∞N−2/3e16γN η ∈]1/2, 1[,

C · C2N
17/6 η = 1,

where Cη∞ and C2 are constants defined in Lemma 1 and C is a positive constant.

Proof. Since Eρ

[∣∣∣F η
j,k

(
Y√
η
,Φ
)∣∣∣

2
]

= Eρ

[∣∣∣f ηj,k
(
Y√
η
,Φ
)∣∣∣

2
]

For η ∈]1/2, 1]

N−1∑

j,k=0

Eρ

[∣∣∣∣F
η
j,k

(
Y√
η
,Φ

)∣∣∣∣
2
]
≤





∑N−1
j,k=0

∥∥f ηj,k
∥∥2

∞ η ∈]1/2, 1[,

C
∑N−1

j,k=0

∥∥f ηj,k
∥∥2

2
η = 1.

For η = 1, we first apply Lemma 6 in [4] where it has been established that

sup
x∈R

∫ π

0

pρ(x, φ)dφ ≤ C,

where C is a positive constant. Hence, the result is a direct consequence of Lemma 1.
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In order to choose optimal the bandwidth N , we do the classical bias/variance

trade-off. Hence, the following Propositions evaluate under ρ = τ defined in H0 and

under ρ satisfying H1(C, ϕn) , the bias term Bτ (Mn) := |Eτ [Mn]| and Bρ(Mn) :=

|Eρ [Mn] − ‖ρ− τ‖2
2| (Proposition 1) and the variance term Vτ := Eτ

[
|Mn − Eτ [Mn]|2

]

and Vρ := Eρ
[
|Mn −Eρ[Mn]|2

]
(Proposition 2).

Proposition 1. For r ∈]0, 2], and η ∈]1/2, 1] we have

• under ρ = τ defined in H0, Bτ (Mn) = 0,

• under ρ satisfying H1(C, ϕn), for N large enough

Bρ(Mn) ≤ CBN
2−r/2e−2BNr/2

,

where CB is a positive constant depending only on B, r and L.

Proposition 2. For r ∈]0, 2] and γ = 1−η
4η

we have for N large enough

• under ρ satisfying H1(C, ϕn), η = 1 and for N s.t. N17/6

n
→ 0 as n→ ∞,

Vρ(Mn) ≤
8C · C2

n
N17/6,

• under ρ satisfying H1(C, ϕn), η ∈]1/2, 1[ and for N s.t. N−2/3

n
e16γN → 0 as

n→ ∞

Vρ(Mn) ≤
8Cη∞N−2/3

n
e16γN ,

• and under ρ = τ defined in H0, η = 1 and for N s.t. N17/6

n
→ 0 as n→ ∞,

Vτ (Mn) ≤
(C · C2)

2

n2
N17/3,

• and under ρ = τ defined in H0, η ∈]1/2, 1[ and for N s.t. N−2/3

n
e16γN → 0 as

n→ ∞.

Vτ (Mn) ≤
(Cη∞)2N−4/3

n2
e32γN ,

The constants Cη∞ and C2 are defined in Lemma 1 and C is positive constant.
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3.3 Main results

In the following Theorem, we establish upper bounds in the sense of Definition 1

where ρ is the unknown density matrix supposed to belong to the class R(B, r, L)

defined in (6). Theorem 1-(1) deals with the ideal detection case while Theorem 1-(2)

and Theorem 2 take into account the Gaussian noise.

Theorem 1. The test procedure Ωn defined in (14) for the bandwidth N(n), the

threshold tn and the constant C∗ satisfies the upper bound (9) for the rate ϕn such

that

1. for r ∈]0, 2], η = 1, the bandwidth N(n) := N1 is equal to

N1 :=

(
logn

4B
+

(log log n)2

4B

)2/r

, (15)

and the rate

ϕ2
n = t2n = n−1/2(logn)

17
6r , (16)

2. for r = 2, η ∈]1/2, 1[ and γ := 1−η
4η

, the bandwidth N(n) := N2 is equal to

N2 :=
log(n)

4(4γ +B)

(
1 +

8

3

log(log n)

log(n)

)
, (17)

and the rate

ϕ2
n = t2n = log(n)

12γ−B
3(4γ+B)n− B

2(4γ+B) . (18)

Theorem 2. For r ∈]0, 2[, η ∈]1/2, 1[ and γ = 1−η
4η

, the test procedure Ωn defined in

(14) for the bandwidth N := N3 solution of the equation

16γN3 + 4BN
r/2
3 = logn, (19)

the threshold tn and the constant C∗ satisfies the upper bound (9) for the rate ϕn

ϕ2
n = t2n = N

2−r/2
3 e−2BN

r/2
3 . (20)
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We can remark that

lim sup
n→∞

{
Pτ [Ωn = 1] + sup

ρ∈H1(C,ϕn)

Pρ[Ωn = 0]

}
= 0.

Theorem 1 and 2 provide upper bounds for our testing procedure defined in

equation (14) for the testing rates ϕn. We first remark that our procedure gives

nearly parametric rate up to a logarithmic factor since we are in the framework of

ideal detection (no noise) and supersmooth corresponding Wigner functions for all

r ∈]0, 2]. In the setting of Theorem 1-(2) and Theorem 2, there are good reasons to

believe that our testing procedure achieves optimal rates. This remark follows from a

recent work of Butucea ([8]), where the author establishes minimax rates for testing

in L2-norm from indirect observations. However, we do not attempt to go that far

in this paper.

The point of this paper is the study in a nonparametric setup of the properties

of goodness-of-fit testing by a procedure based on a projection estimator on pattern

functions. In order to compare our procedure in the framework of quantum statistic,

one can investigate a new approach based on kernel type estimation. Such a testing

procedure can been directly derived from the kernel estimator in [22] of the quadratic

functional
∫∫

W 2
ρ , where Wρ is the Wigner function associated to the quantum state

ρ. Our test problem is equivalent to the following:




H0 : Wρ = Wρ0 ,

H1 : supρ∈R(B,r,L) ‖Wρ −Wρ0‖2 ≥ C · ϕn
where ϕn is a sequence which tends to 0 when n → ∞. We conjecture that its

performances are comparable to those found in this paper and we will leave this

analysis for a separate work.

4 Simulations

From now on, we set r = 2. The purpose of this Section 4 is to implement our testing

procedure and to investigate its numerical performances. Our motivation is, given a

15



density matrix τ ∈ R(B, r), to decide whether H0 or H1 is accepted





H0 : ρ = τ ,

H1(C, ϕn) : ρ ∈ R(B, r, L) s.t. ‖ρ− τ‖2 ≥ C · ϕn,

where ϕn is a sequence, which tends to 0 when n → ∞. We propose to simulate

two different situations. In the first one, case A, we consider quantum states easily

distinguishable, while in the second one, case B, we deal with quantum states, which

are quite similar and it is difficult to differentiate between them. For τ defined in

H0, we sample our procedure from different density matrices ρ satisfying H1(C, ϕn)
such that in

• the case A: τ is the vacuum state, while

– a) ρ is the vacuum state (ρ = τ),

– b) ρ is the single photon state,

– c) ρ is the Schrödinger cat state,

• the case B: τ is the coherent-3 state, while

– a) ρ is the coherent-3 state (ρ = τ),

– b) ρ is the coherent-
√

6 state,

– c) ρ is the Schrödinger cat state.

The latter case is a more complicated situation for two main reasons. The Schrödinger

cat state corresponds to a linear superposition of two coherent states (±q0). More-

over, the probability density of a coherent-q0 state is Gaussian with a mean propor-

tional to q0 (see Table 1). Figures 1 to 3 represent the density matrices of the states

we consider in our simulations.

In each situation (cases A and B), we shall consider the case η = 1, which

corresponds to the ideal detection and the case η = 0.9 i.e. when noise is present.

The latter case is the practical one in laboratory. From now on, we set that:

16



• for η = 1, N = 15 in both situations,

• for η = 0.9 and in both situations we consider two different values for N

– N = 14

– N = 13.

We can notice that, when we are in presence of noise (η = 0.9), we have to take N

smaller than the one we choose in the ideal setting. It can be explained by the fact

that the variance term of our estimator increase exponentially with N in the case

η = 0.9 (see Proposition 2).

In every experiments, each trial is designed as follows. We sample n = 50000 i.i.d.

data from each of the three probability densities pρ defined in Table 1 for ρ chosen as

above. The Gaussian noise component ξ is simulated independently with a variance

equals to
√

(1 − η)/2. We run several iterations and denote by ne the number of

iterations.

Figure 1: Density matrices of the states considered in the case A
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(b) The single photon state
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Figure 2: Density matrices of the states considered in the case B
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Figure 3: Density matrices of the states considered in both cases A and B
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q0 = 3
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To implement our procedure, we compute our modified pattern function f ηj,k(x) in

Section 4.1. We implement in Section 4.2 the estimatorMn defined in (13) and finally,

we study the performance of our test procedure Ωn defined in (14) in Section 4.3.

4.1 Pattern functions f η
j,k

To illustrate our procedure, we need the modified pattern function f ηj,k(x) defined in

(12) for all j ≥ k. For this purpose, we compute here the inverse Fourier Transform

f ηj,k(x) of the f̃ ηj,k(t) given esplicitly by (12) and the generalized Laguerre polynomials.

Previous authors have used different method to implement the pattern function in

[19, 3] via a following recurrence relations defined in [18]:

fj,k(x) = 2xψk(x)ϕj(x) −
√

2(k + 1)ψk+1(x)ϕj(x) −
√

2(j + 1)ψk(x)ϕj+1(x),

for j ≥ k, otherwise fj,k(x) = fk,j(x). We display in Figure 4 the corresponding

graphical representations of the pattern functions up to a constant π as in physic

literature π−1fj,k instead of fj,k are often called pattern functions. Figure 5 represents

some modified pattern functions π−1f ηj,k for η = 0.9.

For some of fj,k we expressed below their explicit form.

f0,0(x) = 2 − 2e−x
2

x
√
πErfi(x),

f2,1(x) = e−x
2
[
−2ex

2

x(−3 + 2x2) +
√
π(1 − 8x2 + 4x4)Erfi(x)

]
,

f4,2(x) =
e−x

2

2
√

3

[
2ex

2 (−4 + 27x2 − 24x4 + 4x6
)

+
√
πx
(
21 − 74x2 + 52x4 − 8x6

)
Erfi(x)

]
,

f5,5(x) =
e−x

2

30

[
2ex

2 (−30 + 435x2 − 865x4 + 526x6 − 116x8 + 8x10
)

+
√
πx
(
225 − 1425x2 + 2160x4 − 1160x6 + 240x8 − 16x10

)
Erfi(x)

]
.
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Figure 4: Examples of pattern functions fj,k = f ηj,k for η = 1
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4.2 Implementation of Mn

The purpose of this Section 4.2 is to investigate the performance of the estimator

Mn. We recall that Mn is defined as follows:

Mn =
1

n(n− 1)

N−1∑

j,k=0

n∑

ℓ 6=m=1

[
F η
j,k

(
Yℓ√
η
,Φℓ

)
− τj,k

] [
F η
j,k

(
Ym√
η
,Φm

)
− τj,k

]
,

where F η
j,k(x, φ) = f ηj,k(x)e

−i(k−j)φ1l{0≤k≤j≤N−1} and τ is defined in H0. From now

on, every values of Mn shall be based on n = 50000 i.i.d noisy data (Yℓ,Φℓ). The

procedure Mn is an estimator of the L2 distance ‖ρ−τ‖2
2 =

∑N−1
j,k=0(ρj,k−τj,k)2 and in

our case we project onto the space of matrices of dimension N = N(n) with respect

to the basis {ψk}∞k=0. We are interested in the true values of ‖ρ− τ‖2
2 in the different

cases, Table 2 and 3 give the values of ‖ρ− τ‖2
2. We recall that the choice of N = 15

corresponds to the setting of ideal detection with η = 1, while N = 14 and N = 13

deal with the noisy detection with η = 0.9. Note that for ρ = τ we expect Mn to be

close to 0 while for ρ satisfying H1(C, ϕn) we expect Mn to be close to ‖ρ− τ‖2
2.

Table 2: The values of ‖ρ− τ‖2
2) for case A: τ the vacuum state

ρ a) vacuum b) single photon c) Schrödinger cat

0 2 1.9556

Table 3: The values of ‖ρ− τ‖2
2 for case B: τ the coherent-3 state

ρ a) coherent-3 b) coherent-
√

6 c) Schrödinger cat

0 0.2812 0.9999

We run ne = 1000 iterations of Mn in each situation in framework A and in

framework B. Table 4 and 5 summarize the median values. We see in these experi-

ments that our estimator Mn :
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• in the setting A: Mn is almost ‖ρ − τ‖2
2 = 0 when ρ = τ and is close to the

true value ‖ρ− τ‖2
2 otherwise either for η = 1 or η = 0.9,

• in the setting B: when ρ = τ , the procedure Mn shows excellent results since

Mn is close to ‖ρ − τ‖2
2 = 0 either when η = 1 or η = 0.9. In the ideal case

and when ρ is the coherent-
√

6 state, the procedure Mn gives a good result

since the median of the boxplot of Mn is equal to 0.2688 and the true value

‖ρ− τ‖2
2 = 0.2812. Otherwise, the procedure Mn under evaluates the distance

‖ρ− τ‖2
2.

Table 4: The medians for case A: τ the vacuum state

ρ a) vacuum b) single photon c) Schrödinger cat

N = 15, η = 1 0.0043 1.9972 1.9417

N = 14, η = 0.9 0.0256 1.9936 1.9360

N = 13, η = 0.9 0.0144 1.9943 1.9378

Table 5: The medians for case B: τ the coherent-3 state

ρ a) coherent-3 b) coherent-
√

6 c) Schrödinger cat

N = 15, η = 1 −6.8721 · 10−4 0.2688 0.8962

N = 14, η = 0.9 -0.0466 0.1704 0.7735

N = 13, η = 0.9 -0.0376 0.1847 0.7840
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Figure 6 to 11 show boxplot of ne = 1000 values of the estimator Mn in each

experiment.
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Figure 6: Case A τ is the vacuum state: a) ρ the vacuum state, b) ρ the single

photon state and c) ρ the Schrödinger cat state for η = 1, N = 15
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In order to evaluate the quality of our procedure Mn we compute the mean square

error MSE = Eρ[|Mn−‖ρ−τ‖2
2|2] as the average over ne = 1000 independent runs of

|Mn − ‖ρ− τ‖2
2|

2
, with ‖ρ− τ‖2

2 given by Tables 2 and 3. Table 6 and 7 summarize

the results. As we have already noticed the procedure Mn gives excellent results

in every cases but it has a larger MSE when we evaluate the distance between the

coherent-3 state and the Schrödinger cat state: MSE is equal to 0.0531 and 0.0484.

Table 6: The values of MSE for case A: τ the vacuum state

ρ a) vacuum b) single photon c) Schrödinger cat

N = 15, η = 1 2.3988 · 10−5 1.3175 · 10−4 4.7877 · 10−4

N = 14, η = 0.9 0.0181 0.0056 0.0071

N = 13, η = 0.9 0.0069 0.0025 0.0051

Table 7: The values of MSE for case B: τ the coherent-3 state

ρ a) coherent-3 b) coherent-
√

6 c) Schrödinger cat

N = 15, η = 1 1.4303 · 10−6 1.9473 · 10−4 0.0110

N = 14, η = 0.9 0.0044 0.0132 0.0531

N = 13, η = 0.9 0.0019 0.0093 0.0484

4.3 Studies of the performance of our test procedure Ωn

In this part, we would like to confirm the performance of our testing procedure Ωn.

In order to appreciate it, we recall that the power of the test is the probability to

correctly reject the false null hypothesis. We denote πn the power of the test and

defined it as follows:

πn = Pρ[Ωn = 1] = Pρ [|Mn| > C∗t2n] under ρ satisfying H1(C, ϕn).

26



Independently of the future runs, we first compute the estimator Mn as described

in previous sections and we would like to compare it with a threshold tn. We decide

as follows. If |Mn| > tn(α) we accept H1, otherwise we accept H0. In the statistical

literature, the parameter tn = tn(α) is also called the critical value associated to α,

which is the probability error of first type and defined as follows:

Pτ [Ωn = 1] = Pτ
[
|Mn| > C∗t2n

]
= α.

In our framework, we set α = 1% and α = 5%.

As we don’t know the density probability of Mn under ρ = τ defined in H0, we

shall evaluate empirically the threshold tn at the testing level α for our particular

choices of τ , n = 50000, α and η. In this purpose, we run ne = 1000 iterations of

Mn, each independently computed as described in the beginning of Section 4. We

summarize our results in Table 8. We report that the obtained values tn are larger

when η = 0.9 than when η = 1. It is due to the noise effect.

Table 8: Values of tn

Case A : τ the vacuum Case B : τ the coherent-3

N = 15, η = 1 tn(1%) = 0.0096 tn(1%) = 0.0028

tn(5%) = 0.0079 tn(5%) = 0.0022

N = 14, η = 0.9 tn(1%) = 0.4605 tn(1%) = 0.1453

tn(5%) = 0.2739 tn(5%) = 0.1100

N = 13, η = 0.9 tn(1%) = 0.2692 tn(1%) = 0.0798

tn(5%) = 0.1666 tn(5%) = 0.0713

From now on, we fix the value of tn as in Table 8. With the same protocol as

above, we run independently of the previous runs nr = 1000 independent replications

of Mn, each independently computed as described previously. Hence, we evaluate the

empirical power of our testing procedure and the empirical first type error. Tables 9

and 10 provide the empirical results obtained by our test procedure in the experiments
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we deal with. We see that our testing procedure provides very good results even in

the framework B, we obtain powers πn equal to 1 since N = 13 when we are in

presence of noise. Otherwise, for N = 14 and η = 0.9 the powers of our testing

procedure is a little bit degraded since πn = 0.7160 for α = 1% and πn = 0.9440 for

α = 5% in the framework B when ρ is the coherent-
√

6 state, the optimal N when

we are in presence of noise is N = 13 with powers of test equal to 1.

Table 9: Case A- τ vacuum: empirical values of the first type error α and the power

of the test πn over 1000 runs for tn given in Table 8

ρ a)vacuum b) single ph. c) Schrödinger C.

α πn πn

N = 15, η = 1, tn(1%) 0.0150 1.0000 1.0000

N = 15, η = 1, tn(5%) 0.0570 1.0000 1.0000

N = 14, η = 0.9, tn(1%) 0.0070 1.0000 1.0000

N = 14, η = 0.9, tn(5%) 0.0550 1.0000 1.0000

N = 13, η = 0.9, tn(1%) 0.0130 1.0000 1.0000

N = 13, η = 0.9, tn(5%) 0.0680 1.0000 1.0000
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Table 10: Case B- τ coherent-3: empirical values of the first type error α and the

power of the test πn over 1000 runs for tn given in Table 8

ρ a) coherent-3 b) coherent-
√

6 c) Schrödinger C.

α πn πn

N = 15, η = 1, tn(1%) 0.0090 1.0000 1.0000

N = 15, η = 1, tn(5%) 0.0530 1.0000 1.0000

N = 14, η = 0.9, tn(1%) 0.0120 0.7160 1.0000

N = 14, η = 0.9, tn(5%) 0.0680 0.9440 1.0000

N = 13, η = 0.9, tn(1%) 0.0230 1.0000 1.0000

N = 13, η = 0.9, tn(5%) 0.0620 1.0000 1.0000

5 Proof

In this last section, we give the proofs of the Theorem 1 and Theorem 2 derived in

Section 3.3 and the proofs of the Proposition 1 and 2 established in Section 3.2.

5.1 Proof of the Theorems

In the paragraphs below, we establish the results of the Theorem 1 and 2 derived in

Section 3.3. We begin by Theorem 1-(1).

Proof of Theorem 1-(1). Take r ∈]0, 2], η = 1, the bandwidth N1 defined in the

equation (15) and ϕ2
n defined in (16), we have by Proposition 2-2 and Proposition 2-1

Vτ (Mn) ≤
(C · C2)

2

n2
N

17/3
1 ≤ CVτϕ

8
n, (21)

Vρ(Mn) ≤
8C · C2

n
N

17/6
1 ≤ CV ϕ

4
n, (22)

where CV and CVτ are positive constants depending only on B, r and L.

Under ρ = τ defined in H0, from Proposition 1, equations (21) and (16), we
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bound from above the first type error as follows:

Pτ [Ωn = 1] = Pτ
[
|Mn| ≥ C∗t2n

]
≤ Eτ [|Mn|2]

C∗2t4n
=
Vτ [Mn]

C∗2t4n
≤ CVτϕ

4
n

C∗2 → 0,

as n→ ∞.

On the other hand, under ρ satisfying H1(C, ϕn), we have the second type error

bounded as follows:

Pρ[Ωn = 0] = Pρ
[
|Mn| < C∗t2n

]

≤ Pρ
[
|Mn − Eρ[Mn]| ≥ ‖ρ− τ‖2 − C∗t2n −Bρ[Mn]

]
.

Moreover, under ρ satisfying H1(C, ϕn), let C = C∗(1 + δ), δ ∈]0, 1[, Proposition 1,

equations (26) and (20) imply that Bρ ≤ δ
2
C∗ϕ2

n for n large enough and then

Pρ[Ωn = 0] ≤ Pρ

[
|Mn − Eρ[Mn]|√

Vρ(Mn)
≥ ‖ρ− τ‖2 − C∗t2n −Bρ[Mn]

CV ϕ2
n

]

≤ Pρ

[
|Mn − Eρ[Mn]|√

Vρ(Mn)
≥ δC∗/2√

CV

]

≤ 4CV
(δC∗)2

≤ λ

2
,

for C∗ large enough.

Proof of Theorem 1-(2). For r = 2, η ∈]1/2, 1[, the bandwidth N2 defined in the

equation (17) and ϕ2
n defined in (20), we know by Proposition 2-2 and Proposition 2-1

that

Vτ (Mn) ≤
(Cη∞)2

n2
N

−4/3
2 e32γN2 ≤ C ′

Vτ
ϕ8
n, (23)

Vρ(Mn) ≤
8Cη∞
n

N
−2/3
2 e16γN2 ≤ C ′

V ϕ
4
n, (24)

where C ′
V and C ′

Vτ
are positive constants depending only on B, r, L and η.
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On one hand, under ρ = τ defined in H0, by Proposition 1, equations (23) and

(18), we have the first type error bounded as follows:

Pτ [Ωn = 1] = Pτ
[
|Mn| ≥ C∗t2n

]
≤ Eτ [|Mn|2]

C∗2t4n

=
Vτ [Mn]

C∗2t4n
≤ C ′

Vτ
ϕ4
n

C∗2 → 0,

as n→ ∞.

On the other hand, under ρ satisfying H1(C, ϕn), the second type error is bounded

as follows:

Pρ[Ωn = 0] = Pρ
[
|Mn| < C∗t2n

]

≤ Pρ
[
|Mn − Eρ[Mn]| ≥ ‖ρ− τ‖2 − C∗t2n −Bρ[Mn]

]
.

From Proposition 1, equations (24) and (18), since we are under ρ satisfying

H1(C, ϕn), we get

Pρ[Ωn = 0] ≤ Pρ

[
|Mn − Eρ[Mn]|√

Vρ(Mn)
≥ ‖ρ− τ‖2 − C∗t2n −Bρ[Mn]

C ′
V ϕ

2
n

]

≤ Pρ

[
|Mn − Eρ[Mn]|√

Vρ(Mn)
≥ C − C∗ − CB√

C ′
V

]

≤ C
′

V

(C − C∗ − CB)2
≤ λ

2
,

for C > C∗ and C∗ large enough.

Proof of Theorem 2. In the case r ∈]0, 2[ and η ∈]1/2, 1[, for the bandwidth

N3 solution of the equation (19) and for ϕ2
n defined in (20), Proposition 2-2 and

Proposition 2-1 give that

Vτ (Mn) ≤
(Cη∞)2

n2
N

−4/3
3 e32γN3 ≤ C

′′

Vτ
ϕ8
n ·N

2(3r−14)
3

3 ≤ C
′′

Vτ
ϕ8
n (25)

Vρ(Mn) ≤
8Cη∞
n

N
−2/3
3 e16γN3 ≤ C

′′

Vϕ
4
n ·N

3r−14
3

3 (26)

where C
′′

V and C
′′

Vτ
are positive constants depending only on B, r, L and η.
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Under ρ = τ defined in H0, from Proposition 1, equations (25) and (20), it follows

that the first type error satisfies

Pτ [Ωn = 1] = Pτ
[
|Mn| ≥ C∗t2n

]
≤ Eτ [|Mn|2]

C∗2t4n
=
Vτ [Mn]

C∗2t4n
≤ C

′′

Vτ
ϕ4
n

C∗2 → 0,

as n→ ∞.

Furthermore, under ρ satisfying H1(C, ϕn), the second type error is such that

Pρ[Ωn = 0] = Pρ
[
|Mn| < C∗t2n

]

≤ Pρ
[
|Mn − Eρ[Mn]| ≥ ‖ρ− τ‖2 − C∗t2n −Bρ[Mn]

]
.

From Proposition 1, equations (26) and (20), since we are under ρ satisfying

H1(C, ϕn), we deduce that

Pρ[Ωn = 0] ≤ Pρ

[
|Mn −Eρ[Mn]|√

Vρ(Mn)
≥ C − C∗ − CB
√
C

′′

VN
3r−14

6
3

]
≤ C

′′

VN
3r−14

3
3

(C − C∗ − CB)2
→ 0,

as n→ ∞, for C > C∗ and C∗ large enough.

5.2 Proof of the Propositions

In the following paragraphs, we give the proofs of the Proposition 1 and 2 established

in Section 3.2.

Proof of Proposition 1. By Remark 1, for r ∈]0, 2]

Bρ(Mn) =
∣∣Eρ [Mn] − ‖ρ− τ‖2

2

∣∣ =

∣∣∣∣∣Eρ [Mn] −
∑

j,k≥0

|ρj,k − τj,k|2
∣∣∣∣∣ .

It is easy to see that under ρ = τ defined in H0, we have Bτ (Mn) = 0. Under ρ

satisfying H1(C, ϕn),
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Bρ(Mn) =

∣∣∣∣∣

N−1∑

j,k=0

|ρj,k − τj,k|2 −
∑

j,k≥0

|ρj,k − τj,k|2
∣∣∣∣∣

= 2

∞∑

j=N

j−1∑

k=0

|ρj,k − τj,k|2 +

∞∑

j=N

|ρj,j − τj,j|2

≤ 4

∞∑

j=N

j−1∑

k=0

(
|ρj,k|2 + |τj,k|2

)
+ 2

∞∑

j=N

(
|ρj,j|2 + |τj,j|2

)

Since τ and ρ belong to the class R(B, r, L) defined in (6), it implies

Bρ(Mn) ≤ 8L2

∞∑

j=N

j−1∑

k=0

e−2B(j+k)r/2

+ 4L2

∞∑

j=N

e−2B(j+j)r/2

≤ 8L2

∫ ∞

N

(j − 1)e−2Bur/2

du+ 4L2

∫ ∞

N

e−2B(2u)r/2

du

≤ CBN
2−r/2e−2BNr/2

+ C ′
BN

1−r/2e−2B(2N)r/2

,

where CB and C ′
B denote positive constants depending only on B, r and L. As

2r/2 > 1 for all r > 0,

Bρ(Mn) ≤ CBN
2−r/2e−2BNr/2

(1 + o(1)),

as N → ∞.

Proof of Proposition 2. By centering variables, we have Mn−Eρ [Mn] := F1 +F2

where

F1 :=
1

n(n− 1)

N−1∑

j,k=0

n∑

ℓ 6=m=1

(
F η
j,k

(
Yℓ√
η
,Φℓ

)
−Eρ

[
F η
j,k

(
Y√
η
,Φ

)])

×
(
F η
j,k

(
Ym√
η
,Φm

)
−Eρ

[
F η
j,k

(
Y√
η
,Φ

)])

F2 :=
2

n

N−1∑

j,k=0

n∑

ℓ=1

Re

((
F η
j,k

(
Yℓ√
η
,Φℓ

)
− Eρ

[
F η
j,k

(
Y√
η
,Φ

)])

× Eρ

[
F η
j,k

(
Y√
η
,Φ

)
− τj,k

])
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where Re(z) stands for the real part of the complex number z.

Then, Vρ(Mn) := Eρ
[
|Mn −Eρ [|Mn|]|2

]
= Eρ

[
|F1|2

]
+ Eρ

[
|F2|2

]
. First deal

with the first term of the previous sum Eρ
[
|F1|2

]

Eρ
[
|F1|2

]
=

1

n(n− 1)
Eρ

[∣∣∣∣∣

N−1∑

j,k=0

(
F η
j,k

(
Y1√
η
,Φ1

)
− Eρ

[
F η
j,k

(
Y√
η
,Φ

)])

(
F η
j,k

(
Y2√
η
,Φ2

)
− Eρ

[
F η
j,k

(
Y√
η
,Φ

)])∣∣∣∣
2
]
.

By the Cauchy-Schwarz inequality on the sum and as E[|X −E[X]|2] ≤ E[|X|2]:

Eρ
[
|F1|2

]
≤ 1

n2

(
N−1∑

j,k=0

Eρ

[∣∣∣∣F
η
j,k

(
Y√
η
,Φ

)∣∣∣∣
2
])2

.

A direct consequence of Remark 2 is

Eρ
[
|F1|2

]
≤





(Cη
∞)2

n2 N−4/3e32γN for η ∈]1/2, 1[,
(C·C2)2

n2 N17/3 for η = 1.

By noticing |Re(z)| ≤ |z|, the second term of the sum Eρ [F 2
2 ] is such that

Eρ
[
|F2|2

]
≤ 4

n
Eρ

[∣∣∣∣∣

N−1∑

j,k=0

(
F η
j,k

(
Y1√
η
,Φ1

)
− Eρ

[
F η
j,k

(
Y√
η
,Φ

)])

× Eρ

[
F η
j,k

(
Y√
η
,Φ

)
− τj,k

]∣∣∣∣
2
]

By the Cauchy-Schwarz inequality on the sum and as E[|X −E[X]|2] ≤ E[|X|2]:

Eρ
[
|F2|2

]
≤ 4

n

(
N−1∑

j,k=0

Eρ

[∣∣∣∣F
η
j,k

(
Y√
η
,Φ

)∣∣∣∣
2
])

×
(
N−1∑

j,k=0

∣∣∣∣Eρ
[
F η
j,k

(
Y√
η
,Φ

)]
− τj,k

∣∣∣∣
2
)

≤ 4

n
‖ρ− τ‖2

2

(
N−1∑

j,k=0

Eρ

[∣∣∣∣F
η
j,k

(
Y√
η
,Φ

)∣∣∣∣
2
])
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By Remark 2 and as ‖ρ‖2
2 , ‖τ‖

2
2 ≤ 1 we obtain under ρ satisfying H1(C, ϕn)

Eρ
[
|F2|2

]
≤





8Cη
∞

n
N−2/3e16γN for η ∈]1/2, 1[,

8C·C2

n
N17/6 for η = 1.

If, N is such that the upper bound of Eρ
[
|F2|2

]
tends to 0 with n, then this is the

dominant term in the upper bound of Vρ(Mn). In addition, notice that under ρ = τ

defined in H0, we have Eτ
[
|F2|2

]
= 0.

References

[1] D. L. Allen. Hypothesis testing using an L1-distance bootstrap. The American

Statistician, 51(2):145–150, 1997.

[2] N. H. Anderson, P. Hall, and D. M. Titterington. Two-sample test statistics for

measuring discrepancies between two multivariate probability density functions

using kernel-based density estimates. Journal of Multivariate Analysis, 50(1):41–

54, 1994.
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