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[1] Large earthquakes can be preceded by a period of accelerating seismic activity of
moderate-sized earthquakes. This phenomenon, usually termed accelerating moment
release, has yet to be clearly understood. A new mathematical formulation of accelerating
moment release is obtained from simple stress transfer considerations, following the
recently proposed stress accumulation model. This model, based on the concept of elastic
rebound, simulates accelerating seismicity from theoretical stress changes during an
idealized seismic cycle. In this view, accelerating moment release is simply the
consequence of the decrease, due to loading, of the size of a stress shadow due to a
previous earthquake. We show that a power law time-to-failure equation can be expressed
as a function of the loading rate on the fault that is going to rupture. We also show that
the m value, which is the power law exponent, can be defined as m = D/3, with D a
parameter that takes into account the geometrical shape of the stress lobes and the
distribution of active faults. In the stress accumulation model, the power law is not due to
critical processes.

Citation: Mignan, A., G. C. P. King, and D. Bowman (2007), A mathematical formulation of accelerating moment release based on

the stress accumulation model, J. Geophys. Res., 112, B07308, doi:10.1029/2006JB004671.

1. Introduction

[2] Accelerating moment release has been identified for a
substantial number of earthquakes and observed for years to
tens of years before a main shock over tens to hundreds of
kilometers from the future epicenter [e.g., Sykes and Jaumé,
1990; Bufe and Varnes, 1993; Knopoff et al., 1996; Bowman
et al., 1998; Brehm and Braile, 1998; Jaumé and Sykes,
1999; Robinson, 2000; Bowman and King, 2001; Zoller
et al., 2001; Papazachos et al., 2002; Bowman and Sammis,
2004]. Although accelerating moment release might be
fitted by any power law, it is typically modeled by a simple
power law time-to-failure equation, following Bufe and
Varnes [1993]. This is a relation of the form

� tð Þ ¼ Aþ B tf � t
� �m ð1Þ

where tf is the time of the large event, B is negative and m is
usually about 0.3. A is the value of �(t) when t = tf. For a
convenient data analysis, �(t) is chosen to be the cumulative
Benioff strain at time t and is defined as

� tð Þ ¼
XN tð Þ

i¼1

ffiffiffiffiffiffiffiffiffiffi
Ei tð Þ

p
ð2Þ

where Ei is the energy of the ith event and N(t) is the number
of events at time t. The cumulative Benioff strain is preferred
over the cumulative number of earthquakes because the
multitude of smaller earthquakes would dominate the data,
whereas the moderate to large events would dominate if the
cumulative seismic energy alone was used. Therefore the
choice of equation (2) has no physical meaning and is only
an observational tool. In this work, we keep the term
‘‘accelerating moment release’’ as it is referred in numerous
publications. Equation (1) is equivalent to the rate-dependent
failure equation of Voight [1989] as noted by Bufe and
Varnes [1993], but the physical relation of this expression to
accelerating moment release is not verified, and other power
laws based on different physical processes can fit the
preevent seismicity rate changes.
[3] Since accelerating seismic activity is a promising tool

for earthquake forecasting, it is important to determine the
origin of accelerating moment release. The majority of
studies consider that accelerating moment release is due to
critical processes (i.e., self-organized criticality or critical
point theory). Studies which give an explanation to the power
law behavior of accelerating moment release are based on
different critical concepts, such as the epidemic-type after-
shock sequencemodel [e.g., Sornette andHelmstetter, 2002],
the renormalization group theory for hierarchical systems
[e.g., Sornette and Sammis, 1995; Saleur et al., 1996], fiber-
bundle models [e.g.,Newman and Phoenix, 2001; Turcotte et
al., 2003], continuum damage mechanics [e.g., Ben-Zion and
Lyakhovsky, 2002] or percolation models [e.g., Sammis and
Sornette, 2002].
[4] The stress accumulation model recently proposed by

King and Bowman [2003] also explains accelerating
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moment release. In this model, accelerating moment release
is due to the decrease of the size of a stress shadow left from
one or more previous events. Consequently the main cause
of increasing seismicity is loading by creep at depth on the
fault that is going to fail. This view is not the same as other
explanations based on critical processes where the acceler-
ation is due to cascade triggering. Moreover, Mignan et al.
[2006b] showed that the spatial distribution of accelerating
moment release is in agreement with the predictions of the
Stress Accumulation but not with stress triggering. The
purpose of this work is to determine a mathematical
formulation in agreement with equation (1) based on the
principles of the stress accumulation model, which could
lead to a better understanding of how to use accelerating
moment release for forecasting.

2. Mathematical Formulation

[5] In the stress accumulation model [King and Bowman,
2003], events occur at a constant rate (background seismic-
ity) outside the stress shadow formed by the last main
shock. In the simplest form of the model, the stress is not
sufficient for failure in the stress shadow and corresponds to
a region of quiescence. The central point of the model is that
aseismic slip on the fault at depth loads the upper part of the

crust slowly removing the stress shadow prior to the next
major event (Figure 1). King and Bowman [2003] add a
stress noise to the stress associated to the seismic cycle to
simulate background seismicity. A new event occurs when
the stress s exceeds the failure stress sf.

2.1. Spatiotemporal Evolution of a Stress Shadow

[6] Let us consider the spatiotemporal evolution at the
surface of a stress shadow during the seismic cycle of a
theoretical fault (simplified to a point source at a given
depth).
[7] The time evolution of the stress s at r = 0 (epicenter)

is

s r ¼ 0; tð Þ ¼ s0 þ
dsl

dt
t ; s0 ¼ s r ¼ 0; t ¼ 0ð Þ ð3Þ

where s0 is the stress drop from the last main shock (<0,
value at the surface), dsl/dt is the loading rate and t is the
time from the last main shock. The loading rate is
considered constant (Figure 1) on a fault in a purely elastic
medium. This idealized fault is localized and extends
through both the crust and upper mantle, which are both
assumed to retain long-term strength. Over the timescale of
the seismic cycle, changes of the loading rate due to viscous

Figure 1. Schematic representation of the spatiotemporal evolution of regional seismicity, at the origin
of accelerating moment release, during the seismic cycle of a given fault. (top) The loading rate dsl/dt is
constant on the fault and main shocks are periodic with a constant stress drop. (bottom) A background
stress noise is added to simulate the background seismicity in space and time: (a) stress shadow after the
main shock; (b) decrease of the size of the stress shadow; and (c) stress shadow completely filled prior to
the next main shock. Large stars represent main shocks, and small black stars represent pre–main shock
seismicity. Preevents occur when the stress s exceeds the failure stress sf. Modified from King and
Bowman [2003].
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relaxation in the lower crust or mantle are not required by
either geological or recent geodetic data (see discussion by
King and Bowman [2003]). Other processes such as time-
dependent fault healing are not taken into account. Possible
changes of the loading rate following a major earthquake
are considered negligible since only precursory seismicity to
the next major earthquake is studied.
[8] The spatial evolution of the stress s from the epicenter

to r is given as

s rð Þ ¼ Bþ A

r2 þ h2ð Þ3=2
ð4Þ

where h is the depth of the point source and A and B are
defined using limit conditions. Equation (4) is obtained
from the simple relation

s Rð Þ / 1

R3
ð5Þ

where R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h2

p
. Although equation (5) is an

oversimplification, it permits a dimensional study of the
evolution of stresses in space and is in agreement with the
conceptual aspect of this demonstration which is based on a
simple point source. Note that our demonstration is done for
a tridimensional medium but because r � h in practice,
only stress evolutions on a horizontal plane will be shown.
[9] Let us consider the following conditions:

s r ! 1ð Þ ¼ sf

s r ¼ 0ð Þ ¼ s r ¼ 0; tð Þ

�
ð6Þ

which mean that the loading only affects the stress shadow
region through time whereas more distant stress is constant,

tending to the failure stress sf (i.e., background stress
region). Using the conditions from (6) in equations (3) and
(4), we find

s r; tð Þ ¼ h3

r2 þ h2ð Þ3=2
s0 � sf þ

dsl

dt
t

� �
þ sf ð7Þ

Equation (7) gives the evolution at the surface of the stress
shadow (s < 0) as a function of the distance from the source
point (i.e., epicenter) and of the time from the last main
shock (t0 = 0) to the next one (tf) and is shown in Figure 2.
Note that except close to the source, the evolution is the
same at any depth that is small compared to r.

2.2. Background Stress Noise

[10] We now consider the background stress noise Dsb as
follows:

Dsb ¼ sf � s* ð8Þ

where s* is approaching sf. The peaks of the background
stress noise (defined as each different value of s* in space)
are random uniform in space and amplitude. The back-
ground stress noise is considered random to determine the
only effects of the spatiotemporal evolution of the stress
shadow on accelerating moment release. The use of a more
complex but more realistic background stress field would
only obscure the result of this demonstration.
[11] Fluctuations of the background stress noise Dsb

must be such that the events that result from relaxing stress
peaks (s* ! sf) result in a set of events obeying the
Gutenberg-Richter frequency-magnitude relation (Figure 3).
The appropriate scaling law can be implemented in various

Figure 2. Evolution at the surface of the stress shadow (s < 0) as a function of the distance from
the source point (i.e., epicenter) for different times t to the final time tf: t = 0, t = 0.3 tf , t = 0.6 tf , and t =
0.9 tf . Far from the stress shadow, the background stress is constant and tends to the failure stress sf. Note
that except close to the source, the evolution is the same at any depth that is small compared to r.
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ways as explained by King and Bowman [2003], and the
easiest one is to adjust the size of the stress peaks and
earthquake magnitude for any irregular function. A simple
random stress distribution s* can be created by assigning
random numbers to each element of a matrix. All points of
the matrix that equal or exceed the failure stress sf are
associated with an earthquake. The areas A of these regions
are calculated to provide a measure of events size. These
areas are then scaled such that the resulting value is
equivalent to an earthquake of magnitude M (M = As, with
s a scaling parameter which depends of the range of areas A
and of the range of magnitudes M chosen). With the appro-
priate scaling coefficients, this provides a Gutenberg-Richter
relation with a b value of 1.
[12] We then define the region of background stress as the

region where the stress shadow has no influence, at r > r*.
Also, we define a constant background stress noise that
corresponds to the maximum amplitude sf � s*min. In the
following demonstration, we will consider the stress noise
Dsb constant.

2.3. Decrease of the Size of the Stress Shadow

[13] We define the following conditions:

s r*; tð Þ ¼ s*
s r ¼ 0; tf
� �

¼ sf

�
ð9Þ

The first condition from (9) means that the spatial limit of
the stress shadow is at r* when the stress s is
indistinguishable from the background stress s*.
[14] Then using conditions from (9) in equation (7), we

find

h3

r*
2
þh2

� �3=2 s0 � sf þ dsl

dt
t

� �
þ sf ¼ s*

s0 þ dsl

dt
tf ¼ sf

8<
: ð10Þ

By substitution of s0, we obtain

h3

r*2 þ h2
� �3=2 dsl

dt
tf � t
� �� �

¼ Dsb ð11Þ

which leads to

r* tð Þ ¼ h
dsl

dt

tf � t
� �
Dsb

� �2=3

�1

" #1=2
ð12Þ

[15] Equation (12) gives the decrease of the size of the
stress shadow as a function of time t from t = 0 to tf and is
represented in Figure 4. For a point at a distance from the
source point r < r*, it is located in the stress shadow (s(r, t) <
s*). For a point at a distance from the source point r� r*, it is
located outside the stress shadow, in the background stress
noise (s(r, t) = s*). It is important to note that the stress
shadow does not disappear at the time tf but at

tf 0 ¼ tf �Dt ; Dt ¼ Dsb

dsl=dt
ð13Þ

when the stress shadow is undistinguishable from the
background stress s* at r* = 0. Therefore the main shock
can occur between tf0 and tf due to the stress noise
perturbation (with tf0 < tf).

2.4. Time-to-Failure Power Law Equation

[16] We now use equation (12) to describe the evolution
of seismicity l as a function of time t. We first consider the
simple form

l tð Þ ¼ clA tð Þ ð14Þ

with A the area where events occur as a function of time t
and cl a constant that corresponds to the density of events
per unit area (i.e., background density).

Figure 3. Background stress noise Dsb. Stress fluctua-
tions s* are approaching the failure stress sf. The peaks of
the background stress noise (defined as each different value
of s* in space) are randomly uniform in space and
amplitude. The stress distribution is such that the events
that result from relaxing stress peaks (s* ! sf) result in a
set of events obeying the Gutenberg-Richter frequency-
magnitude relation, following King and Bowman [2003]
(see text for details). Note that r > r* corresponds to a
distance from the source point (main shock) where the
associated stress shadow has no influence on the back-
ground stress.

Figure 4. Decrease of the size of the stress shadow r* as a
function of time t from t = 0 to tf. For a point at a distance
from the source point r < r*, it is located in the stress
shadow (s(r, t) < s*). For a point at a distance from the
source point r � r*, it is located outside the stress shadow,
in the background stress noise (s(r, t) = s*). It is important
to note that the stress shadow does not disappear at the main
shock time tf but at tf � Dt (see text for details).
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[17] In the stress accumulation model [King and
Bowman, 2003], accelerating moment release corresponds
to events that occur where the stress shadow is filled by
loading at depth (dsl/dt). Thus we can define the evolution
of accelerating moment release lAMR through time t as

lAMR tð Þ ¼ cl Ash t0ð Þ � Ash tð Þ½ � ; t0 ¼ 0 ð15Þ

with Ash the surface of the stress shadow and Ash(t0) the
initial surface of the stress shadow (when r = r*max). We can
also define the evolution of the background seismicity lb
where the stress shadow has no influence (where r � r*) as

lb tð Þ ¼ clAbdbt ð16Þ

with Ab a predefined surface (minus the stress shadow
surface Ash(t0)) and db the background seismicity rate per
unit area, assuming that the background seismicity is
constant through time.
[18] We now introduce equation (12) in

Ash tð Þ ¼ kAr*
D tð Þ ð17Þ

with kA a constant that is linked to the geometrical shape of
the surface Ash and D the dimension of the geometrical
shape. In a simple case where the stress shadow is circular
and seismicity uniformly distributed in space, parameters of
Equation 17 would be kA = p and D = 2. However, the
geometrical shape of stress lobes cannot be simply

Figure 5. Variability of the parameter D for different geometrical shapes of the stress shadow and for
different distributions of active faults. These two criteria must be taken into account to determine the
spatial distribution of the theoretical precursory seismicity. (a) Geometrical shape. D = 1 for a straight
line, D = 2 for a circle, and 1 � D � 2 for a stress lobe. This can be explained by the fact that a change of
the surface of a stress lobe is not homogeneous in all directions of space. Gray arrows show the directions
of extension of the geometrical shapes. (b) Fractal dimension of the fault network. D = 1 for a straight-
line fault, D = 2 for a surface completely filled by faults, 1 � D � 2 for a surface partially filled by faults.
(c) D corresponding to the lowest value from the geometrical shape or from the fractal dimension.
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determined analytically only numerically. Also, seismicity is
not uniformly distributed in space but is self-similar due to
the fact that events can be associated with fault systems. This
must be taken into account in equation (17) since the area Ash

is assumed to correspond to the spatial distribution of
seismicity. Thus D is linked to the shape of the stress lobes
and to the distribution of active faults. For an homogeneous
distribution of events, D only depends of the geometrical
shape of the stress shadow. By analogy to simple geometrical
patterns such as a straight line (D = 1) and a circle (D = 2), a
stress lobe corresponds to 1 � D � 2 because a change of its
size is not homogeneous in all directions of space (Figure 5a).
The spatial distribution of faults can be characterized (in
theory at least) by an appropriate spatial fractal. In this case,
a fractal generator with a dimension of 1 is equivalent to a
straight line, a generator with a dimension of 2 can
completely fill an area, and a generator with a dimension
of 3 can fill space. For two-dimensional faulting, the surface
will be partially filled with 1 � D � 2 [e.g., King, 1983]
(Figure 5b). Thus D corresponds to the lowest value
obtained from the geometrical shape or from the fractal
dimension of the fault network. For example, if the
geometrical shape is a circle, D should be equal to 2 but if
seismicity occurs on a fault network of fractal dimension 1,
D will be equal to 1 (Figure 5c).
[19] With these geometrical considerations in mind, we

can now study the shape of the accelerating moment release
time-to-failure equation predicted by the stress accumula-
tion model. From equations (12), (15), and (17), we find

lAMR / � dsl

dt

tf � t

Dsb

� �D=3

; 1 � D � 2 ð18Þ

[20] By analogy with the accelerating moment release
power law time-to-failure equation (1), we obtain

1

3
� m � 2

3
ð19Þ

This result is in agreement with m values found for real data
(Table 1) and is represented in Figure 6 based on

lAMR tð Þ ¼ clkAh
D dsl

dt

tf

Dsb

� �2=3

�1

 !D=2
2
4

� dsl

dt

tf � t

Dsb

� �2=3

�1

 !D=2
3
5 ð20Þ

which is the complete formulation of Equation 18 that
corresponds to the time-to-failure power law equation
defined from the stress accumulation model.

3. Discussion

3.1. A Noncritical Origin of the Time-to-Failure Power
Law

[21] Other authors have considered that the stress accu-
mulation model [King and Bowman, 2003] is a critical point
process [e.g., Sammis and Sornette, 2002; Tiampo and
Anghel, 2006]. This is not the case (see below) although
the stress accumulation model could be parameterized as a
class of percolation critical point models if it is treated as a
driven threshold with a mean field approximation [Sammis
and Sornette, 2002]. However, this does not add to our
understanding of the mechanical processes.
[22] The fact that the stress accumulation model is not

based on critical processes can be demonstrated by the
following arguments:
[23] 1. Loading processes are due to stable sliding at

depth during the seismic cycle of a given fault.
[24] 2. The main shock is due to loading processes and

not to preevent seismicity, distant from the fault. In other
words, the main shock is not the final result of a cascading
phenomenon, but the processes originally described by Reid
[1910] as elastic rebound.
[25] 3. Events that compose accelerating moment release

(AMR) are due to loading processes. Whereas aftershocks
relax the excess stresses generated by a main shock, AMR
events relax excess stresses generated by loading. As a
consequence, they delay (slightly) the time of occurrence of
the future main shock. This is opposite to the concept of
cascade triggering from the smallest events to the largest
one.
[26] 4. The Gutenberg-Richter law, often considered as a

signature of critical phenomena [e.g., Bak and Tang, 1989;
Sornette et al., 1990; Blanter et al., 1997], is not a necessary
condition for the emergence of a time-to-failure power law
pattern.

Figure 6. Possible shapes for the time-to-failure power
law equation defined from the stress accumulation model.
For two-dimensional faulting, 1/3 � m � 2/3. Note that the
two curves have been rescaled for display reasons.

Table 1. List of m Values Determined From the Study of

Accelerating Moment Release in Different Regions

m Value Region Reference

0.30 (0.10–0.39) northern California Bufe and Varnes [1993]
0.26 (0.10–0.55) California Bowman et al. [1998]
0.24 (0.12–0.47) New Madrid Seismic

Zone
Brehm and Braile [1998]

0.47 (0.27–0.70) Aegean region Papazachos and
Papazachos [2000]

0.36 (0.29–0.46) New Zealand Robinson, 2000]
0.34 (0.29–0.40) northwest Anatolia Papazachos et al. [2002]
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[27] In our study, we do not claim that critical processes
do not exist. Loading processes (stress accumulation model)
and stress triggering (e.g., epidemic-type aftershock
sequence model) should be seen as independent processes
that may superimpose their effects but stress triggering is
not the cause of AMR [Mignan et al., 2006b]. It is also
important to note that we do not consider that all critical
processes involve cascade triggering. However, other criti-
cal models such as percolation models [e.g., Sammis and
Sornette, 2002], as explained earlier, do not add to our
understanding of the mechanical processes. Rupture pro-
cesses on the fault are commonly considered to be due to
critical phenomena [e.g., Allegre et al., 1982], but the stress
accumulation model is not concerned with these processes
which are therefore not discussed here.

3.2. Acceleration of the Number of Events Versus
Accelerating Moment Release

[28] It can be noted that the quantity lAMR(t) corresponds
to the evolution of the cumulative number of events through
time, whereas accelerating moment release is defined by the
evolution of the cumulative Benioff strain through time
(equation (1)). However, the choice of the cumulative
Benioff strain to fit accelerating seismicity has never been
shown to be the most appropriate parameter, only a conve-
nient observational tool (as explained previously).
[29] In the stress accumulation model, the time power law

is due to the decrease of the size of the stress shadow which
is similar to an increase of the size of the region of
background seismicity. By consequence, the studied param-
eter lAMR(t) is linked to the density of events per unit of
space and not to their magnitude. This is in agreement with
the fact that accelerating moment release usually corre-
sponds to an increase of the a value and not of the b value
[e.g., Sammis et al., 2004].
[30] We now add to equation (20) an appropriate noise to

simulate the Gutenberg-Richter statistics to compare the
power law time-to-failure equation with real data. Figure 7
shows two examples of seismicity distribution (random
uniform in space, random in magnitude in respect to the
Gutenberg-Richter law). The first one corresponds to the
expected seismicity evolution in the region of accelerating
seismicity (power law) following equation (20) (Figures 7a,
7b, and 7c), and the second one corresponds to an associ-
ation of accelerating seismicity (power law) following
equation (20) and of background seismicity (linear law)
following equation (16) (Figures 7d, 7e, and 7f). This
second example simulates a case where accelerating seis-
micity is searched in such a way that the optimized region
contains events that are part of the acceleration but also
some independent events from the background, where r >
r*max (see Figure 4).
[31] Figure 7 also shows the variability of the power law

time-to-failure curve for different criteria (cumulative num-
ber of events, cumulative Benioff strain and cumulative
seismic energy). From our formulation, it is evident that the
best acceleration is found for the cumulative number of
events (Figure 7a). Acceleration is also clear for the
cumulative Benioff strain and accelerating moment release
simulated using equation (20) is similar to real patterns
(Figure 7b). We can note that no acceleration is visible for
the cumulative seismic energy due to the role of the largest

events of the fractal noise (Figure 7c). In the case that a
linear seismicity contribution is added, depending on the
random noise, accelerating moment release can become
difficult to observe (Figures 7b and 7e).

3.3. Duration of Accelerating Seismicity

[32] The mathematical formulation of accelerating seis-
micity shows that acceleration should be observed through-
out the seismic cycle. However, if the signal is perturbed by
background noise, the acceleration appears later during the
seismic cycle, as observed in simulations by King and
Bowman [2003] and in real data by Bowman and Sammis
[2004]. This phenomenon is illustrated schematically in
Figure 8 and can explain why no correlation has yet been
made between the duration of acceleration moment release
and the recurrence time of large earthquakes on a same
fault. Because of the power law behavior, the curve is at
first undistinguishable from a straight line.
[33] A better determination of the spatial distribution of

precursory seismicity, such as done by Bowman and King
[2001] and Mignan et al. [2006b], may permit some
background seismicity noise to be removed and to extract
accelerating patterns over longer time periods.

4. Conclusion

[34] The mathematical formulation of accelerating seis-
micity based on the stress accumulation model permits low
level regional seismic activity to be related to the loading
rate of the fault that is going to fail. Contrary to critical
processes, this view links directly the parameters of the
acceleration to the behavior of the main fault (loading rate,
duration of the seismic cycle). Moreover, it gives a new
explanation for the m value which depends on the geomet-
rical shape of the stress shadow and of the fractal dimension
of the regional fault network.

Figure 8. Schematic representation of the observed
duration of accelerating precursory seismicity. Accelerating
moment release is masked by background noise (constant
rate). The greater the noise, the later in the seismic cycle that
acceleration is observable; t0 indicates the approximate
starting time determined from a temporal search.
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[35] The proposed formulation should in the future be
used for real data sets, with real fault characteristics, to
compare with current time-to-failure analysis employed in
earthquake forecasts. The complementary role of the stress
accumulation model to the concept of seismic gap and time
recurrence of large earthquakes has already been discussed
by Mignan et al. [2006a], and at present, the loading rate is
directly integrated in the power law time-to-failure equation
of accelerating moment release. Although at present we do
not yet know how well the parameters in the equation can
be determined and the degree to which this will improve the
identification of AMR, nonetheless having a clear mathe-
matical description of the process is the best approach to
improve AMR related seismic hazard determination.
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