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In Part I of this paper, we developed a homogenization-based constitutive model for the effective

behavior of isotropic porous elastomers subjected to finite deformations. In this part, we make use of

the proposed model to predict the overall response of porous elastomers with (compressible and

incompressible) Gent matrix phases under a wide variety of loading conditions and initial values of

porosity. The results indicate that the evolution of the underlying microstructure—which results

from the finite changes in geometry that are induced by the applied loading—has a significant effect

on the overall behavior of porous elastomers. Further, the model is in very good agreement with the

exact and numerical results available from the literature for special loading conditions and generally

improves on existing models for more general conditions. More specifically, we find that, in spite of

the fact that Gent elastomers are strongly elliptic materials, the constitutive models for the porous

elastomers are found to lose strong ellipticity at sufficiently large compressive deformations,

corresponding to the possible onset of ‘‘macroscopic’’ (shear band-type) instabilities. This capability

of the proposed model appears to be unique among theoretical models to date and is in agreement

with numerical simulations and physical experience. The resulting elliptic and non-elliptic domains,
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which serve to define the macroscopic ‘‘failure surfaces’’ of these materials, are presented and 
discussed in both strain and stress space.

Keywords: Constitutive behavior; Finite strain; Microstructures; Porous material; Soft matter
1. Introduction

In the preceding paper (Lopez-Pamies and Ponte Castañeda, 2007), henceforth referred
to as Part I, we developed—by means of the second-order homogenization method (Lopez-
Pamies and Ponte Castañeda, 2006a)—a constitutive model for the mechanical response of
porous elastomers subjected to finite deformations. More specifically, the type of porous
elastomers under consideration were made up of initially spherical, polydisperse, vacuous
inclusions distributed randomly and isotropically—in the undeformed configuration—in a
compressible, and incompressible, isotropic elastomeric matrix.

The principal objective of the present work is to make use of the constitutive
model proposed in Part I to generate a comprehensive understanding of the stress–strain
behavior, the evolution of the underlying microstructure, and the onset of macroscopic
instabilities—as determined by loss of strong ellipticity—in the class of porous elastomers
under consideration here. Of particular interest is to provide insight concerning the
subtle interplay between the evolution of the microstructure and the stability of these
materials.

In the next section, we introduce the specific constitutive relations that will be used
throughout this paper to characterize the matrix phase of the porous elastomers of interest.
Moreover, we summarize briefly the results developed in Part I. For comparison purposes,
we also recall earlier estimates for the effective behavior of porous elastomers. Section 3
deals with the presentation and discussion of the model predictions for a wide range of
loading conditions, initial values of porosity, and matrix constitutive behavior, including
macroscopic ‘‘failure surfaces’’ (Triantafyllidis and Bardenhagen, 1996) in strain and stress
space. Finally, some general remarks will be drawn in Section 4.

2. Overall behavior of isotropic porous elastomers with Gent matrix

In Part I, we derived estimates for the effective stored-energy function bW of porous
elastomers consisting of a random and isotropic distribution of initially spherical,
polydisperse voids in a general class of isotropic elastomeric matrix phases characterized
by stored-energy functions of the form

W ðFÞ ¼ Fðl1; l2; l3Þ ¼ gðIÞ þ hðJÞ þ
k
2
ðJ � 1Þ2. (1)

Here, I ¼ F � F ¼ l21 þ l22 þ l23 and J ¼ detF ¼ l1l2l3 stand for, respectively, the first and
third invariants associated with the deformation gradient tensor F, with li ði ¼ 1; 2; 3Þ
denoting the corresponding principal stretches. Moreover, g and h are material functions
of their arguments, and the parameter k denotes the bulk modulus of the material at zero
strain. In this work, for definiteness, we will make use of a relatively simple model of the
general form (1), capturing the limiting chain extensibility of elastomers, known as the
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Gent (1996) model:

W ðFÞ ¼ �
Jmm
2

ln 1�
I � 3

Jm

� �
� m ln J þ

k
2
�

Jm þ 3

3Jm

m
� �

ðJ � 1Þ2. (2)

In this expression, m denotes the shear modulus of the material at zero strain and the
parameter Jm indicates the limiting value for I � 3 at which the elastomer locks up. Note that
the stored-energy function (2) is strongly elliptic for all deformations provided that m40,
Jm40, and k42m=Jm þ 2=3m, which will be assumed here. Note further that upon taking the
limit Jm !1 in (2), the Gent material reduces to the compressible Neo-Hookean solid:

W ðFÞ ¼
m
2
ðI � 3Þ � m ln J þ

k
2
�

m
3

� �
ðJ � 1Þ2. (3)

Moreover, in order to recover incompressible behavior in (2), it suffices to take the limit
k!1, in which case (2) reduces to

W ðFÞ ¼ �
Jmm
2

ln 1�
I � 3

Jm

� �
, (4)

together with the incompressibility constraint J ¼ 1.
Having specified the constitutive behavior for the elastomeric matrix phase, we next spell out

the specialization of the second-order estimates (SOEs) developed in Part I to porous elastomers
with—the compressible and incompressible—Gent matrix phases characterized by the stored-
energy functions (2) and (4). Before proceeding with the SOEs, however, it proves useful, for
comparison purposes, to recall earlier estimates for the effective behavior of porous elastomers.

2.1. Earlier estimates

2.1.1. Voigt bound

As pointed out in Part I, there are very few homogenization-based estimates for the
effective behavior of porous elastomers subjected to finite deformations. The most basic
one is the Voigt upper bound due to Ogden (1978). When specialized to porous elastomers
with initial porosity f 0 and Gent matrix phases of the form (2), this bound leads to

bW ðFÞ ¼ bFðl1; l2; l3Þ ¼ ðf 0 � 1Þ
Jmm
2

ln 1�
I � 3

Jm

� �
þ m ln J

�
�

k
2
�

Jm þ 3

3 Jm

m
� �

ðJ � 1Þ2
�
, ð5Þ

where I ¼ F � F ¼ l21 þ l22 þ l23 and J ¼ detF ¼ l1l2l3 stand for, respectively, the first and
third invariants associated with the macroscopic deformation gradient tensor F, and
li ði ¼ 1; 2; 3Þ denote the corresponding principal stretches. The rigorous upper bound
(5) depends only on the initial value of the porosity, f 0, and contains no dependence on
higher-order statistical information about the initial microstructure. Moreover, in the limit
when the elastomeric matrix phase becomes incompressible (i.e., for k!1),expression
(5) can be seen to become infinite for all deformations, except for isochoric loading paths
(i.e., for loading paths with J ¼ 1), for which it reduces to

bW I ðFÞ ¼ bFI ðl1; l2; l3Þ ¼ ðf 0 � 1Þ
Jmm
2

ln 1�
I � 3

Jm

� �
. (6)
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In other words, the Voigt bound suggests that a porous elastomer with incompressible
matrix phase is itself incompressible, which is in contradiction with experimental evidence.
Finally, it is interesting to remark that—also in disagreement with physical evidence—the
Voigt bounds (5) and (6) remain strongly elliptic for all deformations, provided that m40,
Jm40, and k42m=Jm þ 2=3m, which has been assumed here.

2.1.2. Hashin estimate

In addition, an exact result has been given by Hashin (1985) for hydrostatic loading

ðl1 ¼ l2 ¼ l3 ¼ lÞ of porous elastomers with incompressible, isotropic matrix phase and
the Composite Sphere Assemblage (CSA) microstructure (Hashin, 1962). When specialized
to porous elastomers with incompressible Gent matrix phases of the form (4), the result
reads as follows:

bW I ðFÞ ¼ bFI ðl; l; lÞ ¼ �
3Jmm
2

Z 1

f
1=3
0

ln 1�
I � 3

Jm

� �
R2 dR, (7)

where I ¼ 2l2 þ l�4 with l ¼ ð1þ ðl3 � 1Þ=R3Þ
1=3. The integral (7) can be computed

analytically, but the final expression is too cumbersome to be included here. Instead, for
illustrative purposes, we include the specialization of (7) to the simpler, limiting case of
Neo-Hookean matrix phase (i.e., Jm !1):

bW I ðFÞ ¼
3m
2
ðf 0 � 1� l�1 þ 2l2 þ f

4=3
0 ðl

3
þ f 0 � 1Þ�1=3

� 2f
1=3
0 ðl

3
þ f 0 � 1Þ2=3Þ. ð8Þ

2.1.3. The Danielsson– Parks– Boyce model

Finally, Danielsson et al. (2004)—making use of the work of Hou and Abeyaratne
(1992)—have recently provided a model, henceforth referred to as the Danielsson–Parks–
Boyce model (DPB) model, for isotropic porous elastomers with incompressible, isotropic
matrix phases. When specialized to porous elastomers with incompressible Gent matrix
phases of the form (4), the DPB estimate reads as follows:

bW I ðFÞ ¼ �
3Jmm
8p

Z 1

f
1=3
0

Z 2p

0

Z p

0

ln 1�
I � 3

Jm

� �
R2 sinYdYdCdR. (9)

In this expression,

I ¼
1

J2=3
c2I þ

1

R2
ðl21X

2
1 þ l22X

2
2 þ l23X

2
3Þ

1

c4
� c2

� �� �
, (10)

where I and J have already been defined above, c ¼ ð1þ ðJ � 1Þ=R3Þ
1=3, and

X 1 ¼ R sinY sinC, X 2 ¼ R sinY cosC, and X 3 ¼ R cosY. In the limiting case of Neo-
Hookean matrix phase (i.e., Jm !1), it is possible to solve (9) in closed form. Following
Danielsson et al. (2004) (Section 3.2), the corresponding final expression can be written as
follows:

bW I ðFÞ ¼
m
2

2�
1

J
�

f 0 þ 2ðJ � 1Þ

J2=3Z1=3

� �
I �

3

2
ð1� f 0Þm, (11)

where Z ¼ 1þ ðJ � 1Þ=f 0.
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At this point, it is important to remark that the DPB model is in fact a generalization of
both the Voigt bound and the Hashin estimate, in the sense that it reduces to the Voigt
bound for isochoric deformations and it recovers Hashin’s exact solution for hydrostatic
loading. This can be verified directly from relation (9). Indeed, it is easy to check that for
J ¼ l1l2l3 ¼ 1, the DPB estimate (9) reduces to the Voigt bound (6) and for
l1 ¼ l2 ¼ l3 ¼ l, to the Hashin estimate (7). For more general loadings, the DPB
estimate can be shown to be actually a rigorous upper bound for porous elastomers with
incompressible matrix phases and the Composite Sphere Assemblage (CSA) microstructure.
The reasons for this result rely on the fact that the DPB model is constructed by making
use of a kinematically admissible field in a spherical volume element (Danielsson et al.,
2004). Then, by well known arguments (Hashin, 1962), it follows that the resulting
estimate is an upper bound for porous elastomers with the CSA microstructure, much like
the Gurson (1977) model is an upper bound for porous metals with ideally plastic matrix
phase and the CSA microstructure. In conclusion, the DPB model is expected to be too
‘‘stiff’’—given that it is an upper bound—for general loading conditions, with the
exception of hydrostatic loading, for which it should be very accurate (in fact, it is exact for
the CSA microstructure).
2.2. Second-order estimates

2.2.1. Compressible Gent matrix

Following Section 4.1 of Part I, the SOE for the effective stored-energy function bW of a
porous elastomer with initial porosity f 0 and compressible, elastomeric matrix phase
characterized by the stored-energy function (2) is given by

bW ðFÞ ¼ bFðl1; l2; l3Þ
¼ ð1� f 0Þ �

Jmm
2

ln 1�
Î ð1Þ � 3

Jm

" #"

� m ln Ĵð1Þ þ
k
2
�

Jm þ 3

3Jm

m
� �

ðĴ ð1Þ � 1Þ2

� ðF̂
ð1Þ
11 � lð1Þ1 Þð2gIl1 þ hJl2l3 þ kðJ � 1Þl2l3Þ

� ðF̂
ð1Þ
22 � lð1Þ2 Þð2gIl2 þ hJl1l3 þ kðJ � 1Þl1l3Þ

�ðF̂
ð1Þ
33 � lð1Þ3 Þð2gIl3 þ hJl1l2 þ kðJ � 1Þl1l2Þ

#
, ð12Þ

where gI ¼ Jmm=½2ðJm þ 3� IÞ�, hJ ¼ �m=Jm � 2m=ð3JmÞð3þ JmÞðJ � 1Þ have been intro-

duced for ease of notation, and it is recalled that I ¼ F � F ¼ l21 þ l22 þ l23 and

J ¼ detF ¼ l1l2l3 ¼ 1. In addition, the variables lð1Þ1 ,lð1Þ2 , lð1Þ3 , F̂
ð1Þ
11 , F̂

ð1Þ
22 , F̂

ð1Þ
33 , Î ð1Þ, and

Ĵð1Þ are obtained from expressions (41), (43), and (48) in Appendix B of Part I. They are

functions of the applied loading, l1, l2, l3, the initial porosity, f 0, the matrix constitutive
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parameters, m, k, Jm, as well as of the seven variables ‘�a ða ¼ 1; 2; . . . ; 7Þ that are the

numerical solution of the non-linear system of algebraic equations (46) in Appendix B of
Part I.
2.2.2. Incompressible Gent matrix

The corresponding effective stored-energy function bW I for a porous elastomer with
incompressible elastomeric matrix phase characterized by the stored-energy function (4) is
obtained by taking the limit of k!1 in (12), as discussed in Appendix C of Part I. The
final result reads as follows:

bW I ðFÞ ¼ bFI ðl1; l2; l3Þ ¼ ðf 0 � 1Þ
Jmm
2

ln 1�
Î ð1Þ � 3

Jm

" #
. (13)

Here, the variable Î ð1Þ is given by expression (62) in Appendix C of Part I, and depends
ultimately on the applied loading, l1, l2, l3, the initial porosity, f 0, the matrix constitutive
parameters, m, Jm, as well as on the seven variables ua ða ¼ 1; 2; . . . ; 7Þ defined by (60) in
Part I, which are the solution of the system of seven non-linear, algebraic equations formed
by relations (57) and (58) in Part I (Appendix C). Except for certain special loading
conditions (see Section 4.2 of Part I), these equations must be solved numerically.
3. Results and discussion

In this section, the constitutive models (12) and (13) are used to study the effective
stress–strain response, the microstructure evolution, and the macroscopic stability of
porous elastomers with Gent matrix phases under different types of finite deformations.
Results are given for various values of the compressibility ratio k=m and lock-up parameter
Jm, as well as various values of initial porosity f 0 and are computed up to the point at
which either the associated effective incremental modulus is found to lose strong ellipticity
(see Section 2 of Part I), or, alternatively, the porosity is found to vanish. If neither of these
phenomena occurs, the results are truncated at some sufficiently large value of the
deformation. For clarity, the points at which the homogenized material loses strong
ellipticity are indicated with the symbol ‘‘�’’ in the figures, whereas the symbol ‘‘�’’ is
utilized to indicate the vanishing of the porosity.

The results presented in this section are organized as follows. First, we address the
effective response of Gent porous elastomers subjected to axisymmetric loading conditions.
Special attention is given to hydrostatic, biaxial, and uniaxial tension/compression
loadings, which, beyond providing comprehensive physical insight and contributing to
establish the accuracy of the proposed models through comparisons with the available
exact results, happen to correspond to actual loading conditions easily achievable with
standard experimental equipment. Following the axisymmetric subsection, we provide
representative results for the overall behavior of Gent porous elastomers subjected to
plane-strain loading conditions. In particular, we focus on pure shear and in-plane uniaxial

tension/compression loadings. The corresponding macroscopic failure surfaces, as
determined by the loss of strong ellipticity of the homogenized behavior of the material,
are presented—in principal strain and stress spaces—and discussed for the axisymmetric,
as well as for the plane-strain loading conditions.
6



3.1. Axisymmetric loadings

3.1.1. Hydrostatic tension/compression

Fig. 1 presents the comparison between the effective behavior as predicted by the
SOE (13) and the ‘‘exact’’ (Hashin, 1985) estimate (8) for a porous elastomer with
incompressible Neo-Hookean matrix phase under hydrostatic loading ðl1 ¼ l2 ¼ l3 ¼ lÞ.
Recall that the DPB model (11) coincides identically with the exact result (8) in this
case. Results are shown for initial porosities of 10%, 30%, and 50% as a function of
the logarithmic strain e ¼ ln l. Part (a) shows the normalized macroscopic stress
S=m ¼ m�1qbFI=ql1 ¼ m�1qbFI=ql2 ¼ m�1qbFI=ql3, and part (b), the associated evolution
of the porosity f. It is observed from Fig. 1(a) that the SOE predictions are in very good
agreement with the exact result. Note that the agreement improves for higher values of
initial porosity f 0. It is also discerned from Fig. 1(a) that the effective behavior of the
material is softer for higher values of f 0, as expected on physical grounds. Interestingly, it
is further recognized from Fig. 1(a) that the overall response of the porous elastomer under
hydrostatic compression exhibits very significant stiffening, but that, under hydrostatic
tension, the behavior gets more compliant with increasing strain. In this connection,
we note from Fig. 1(b) that the porosity decreases for compressive deformations and
increases for tensile ones. This entails a geometric stiffening/softening mechanism that is
entirely consistent with the stress–strain results shown in Fig. 1(a). With regard to
the remaining microstructural variables, it should be realized that they do not evolve
under hydrostatic loading, that is, the initially spherical shape and distribution of
the underlying pores remain—on average—spherical for all applied hydrostatic deforma-
tions. Turning back to Fig. 1(b), we remark that the predictions for the evolution of
the porosity f as determined by the SOE are in very good agreement with the exact result
Fig. 1. Comparisons of the effective response, as predicted by the second-order estimate (SOE) (13), with the

exact results (Hashin, 1985), of a porous elastomer with incompressible matrix phase subjected to hydrostatic

tension and compression ðl1 ¼ l2 ¼ l3 ¼ lÞ. The results correspond to a material with Neo-Hookean matrix

phase and various values of initial porosity f 0 and are shown as a function of the logarithmic strain e ¼ ln l.
(a) The normalized macroscopic stress S=m ¼ m�1qbFI=ql1 ¼ m�1qbFI=ql2 ¼ m�1qbFI=ql3. (b) The evolution of the

porosity f.
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Fig. 2. Effective response, as predicted by the second-order estimate (SOE) (13) and the DPB model (11), of a

porous elastomer with incompressible matrix phase subjected to hydrostatic loading ðl1 ¼ l2 ¼ l3 ¼ lÞ. The
results correspond to a material with Neo-Hookean matrix phase and initial porosity of f 0 ¼ 30% and are shown

as a function of the logarithmic strain e ¼ ln l. (a) The non-zero components ði; j 2 f1; 2; 3g; iaj; no summationÞ

of the effective incremental modulus cL—written with respect to the Lagrangian principal axes—for hydrostatic

compression ðlp1Þ. (b) The corresponding results for hydrostatic tension ðlX1Þ.
(see Eq. (31) in Part I) for the cases of 30% and 50% initial porosity. The agreement
between the prediction and the exact result for the case of f 0 ¼ 10% is excellent for
hydrostatic compression, but it deteriorates appreciably for tensile hydrostatic deforma-
tions larger than e ¼ ln l ¼ 0:2. This has the effect of slightly exaggerating the geometric
softening in tension for f 0 ¼ 10%, leading to slightly softer predictions than the Hashin
estimate. Finally, it should be noticed from Fig. 1 that the homogenized response of the
porous elastomer, as predicted by the SOE, becomes unstable—through loss of strong
ellipticity—under hydrostatic compression (denoted by the symbol ‘‘�’’), while it remains
strongly elliptic under hydrostatic tension. This result is investigated in more detail in the
context of the next two figures.

Fig. 2 provides results associated with those shown in Fig. 1 for the components1 of the
normalized effective incremental modulus cL ¼ m�1q2 bW I=qF2 of a porous elastomer with
incompressible, Neo-Hookean matrix phase and initial porosity of 30% under hydrostatic
loading ðl1 ¼ l2 ¼ l3 ¼ lÞ. Part (a) shows results for hydrostatic compression ðlp1Þ, and
part (b), for hydrostatic tension ðlX1Þ. Fig. 2(a) illustrates that—in accord with the
stress–strain results shown in Fig. 1(a)—the normal componentscL1111,cL2222, andcL3333,
as predicted by the SOE (13), increase rapidly with the applied compressive strain. That is,
the porous elastomer stiffens very significantly in the ‘‘direction’’ of the applied loading.
On the other hand, the effective incremental shear response of the porous elastomer, as
measured2 by cL1212, cL1313, and cL2323, is seen to soften with the applied hydrostatic
compression to the point that cL1212 ¼cL1313 ¼cL2323 ¼ 0 at some critical finite stretch
1Here and subsequently, the components of the effective incremental modulus cL are referred to the

macroscopic Lagrangian principal axes, i.e., the principal axes of FTF.
2Recall that for isotropic materials cLijij ¼cLjiji ði; j 2 f1; 2; 3g; iaj; no summationÞ.
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lcrit. This critical stretch corresponds to the point at which the porous elastomer
loses strong ellipticity. In this connection, it should be remarked that the combina-

tionscLiiii
cLjjjjþcL2

ijij�ð
cLiijjþcLijjiÞ

2
þ2cLijij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficLiiii
cLjjjj

q
ði; j 2 f1; 2; 3g; iaj; no summationÞ

also vanish at lcrit. Thus, making contact with Appendix A of Part I, this means that
conditions (33) and (34) in Part I cease to hold true. Physically, this implies that the porous
elastomer may develop localized deformations in planar zones with arbitrary normals N.
Furthermore, the deformation in these zones localizes in shear, since m ? N. (Recall from
Section 2 of Part I that m denotes the eigenvector corresponding to the zero eigenvalue of
the acoustic tensor associated with N, so that it characterizes the type of deformation
within the localized band.) This remarkable behavior predicted by the SOE is consistent
with numerical simulations (Michel et al., 2007), as well as with physical evidence (see, e.g.,
Kinney et al., 2001; Gong and Kyriakides, 2005). Indeed, local buckling of matrix
ligaments is anticipated to occur in porous elastomers subjected to compressive states of
deformation. In turn, connected networks of buckled ligaments that extend throughout
the entire specimen correspond to bands of localized deformation at the macroscopic level.
The development of these macroscopic bands of localized deformation may correspond to
the loss of strong ellipticity of the homogenized behavior of the material (Geymonat et al.,
1993). Comparing now the SOE with the DPB predictions in Fig. 2(a), it is observed that

the normal components cL1111, cL2222, and cL3333 of both models are in very good

agreement. In contrast, the effective incremental shear moduli cL1212, cL1313, and cL2323

predicted by the DPB model are much stiffer than the corresponding SOE results. In fact,
they exhibit different trends: while the SOE shear moduli decrease with the applied
loading, the DPB shear moduli increase, which ultimately entails that the DPB model
remains strongly elliptic for all applied hydrostatic compression (in disagreement with
numerical results and physical experience). Turning now to Fig. 2(b), it is noticed that—in

accord with the stress–strain results shown in Fig. 1(a)—the normal components cL1111,cL2222, andcL3333 decrease very distinctly with the applied hydrostatic tension. That is, the
porous elastomer softens in the ‘‘direction’’ of loading with the applied tensile strain.

Conversely, the effective incremental shear moduli cL1212, cL1313, and cL2323 are seen to
increase—though very slightly. Furthermore, Fig. 2(b) also shows more explicitly the fact
(already mentioned above) that there is no loss of strong ellipticity for hydrostatic tension.
Note that—as opposed to hydrostatic compression—the SOE and DPB predictions in
Fig. 2(b) are in very good agreement for the normal as well as for the shear effective
moduli. Note finally that the results shown in Fig. 2 for f 0 ¼ 0:3 are representative for all

values of initial porosity, since the trends followed by the components of cL for all values
of f 0 are similar to those displayed in Fig. 2. The precise effect of f 0 on the effective
incremental behavior and stability of porous elastomers subjected to hydrostatic loading
will be addressed in detail in the context of the next figure.
In short, Fig. 2 puts into evidence the subtle influence of the evolution of the underlying

microstructure on the effective behavior and stability of porous elastomers subjected to
finite deformations. Indeed, the stiffening of the effective incremental normal response of
the porous elastomer—as measured by cL1111, cL2222, and cL3333—when subjected to
hydrostatic compression (see Fig. 2(a)) is entirely consistent with the decrease of porosity
illustrated in Fig. 1(b). However, as shown in Fig. 2(a), the decrease of porosity does also
lead to the geometric softening of the effective incremental shear response of the
9



material—as measured by cL1212, cL1313, and cL2323—which eventually leads to the loss of
strong ellipticity of the porous elastomer at some finite stretch (in spite of the fact that the
elastomeric matrix phase is strongly elliptic). Analogously, the softening of the effective
incremental normal response of the porous elastomer when subjected to hydrostatic
tension (see Fig. 2(b)) is entirely consistent with the increase of porosity illustrated in
Fig. 1(b). Further, the increase of porosity does also lead to the (slight) geometric stiffening

of the effective incremental shear response of the material, which, in some sense, prevents
the porous elastomer from losing stability.

Fig. 3 provides plots associated with the results shown in Figs. 1 and 2 for (a) the critical
stretch, lcrit, and (b) the normalized critical stress, Scrit=m, at which the SOE (13) loses
strong ellipticity under hydrostatic compression as a function of the initial porosity f 0.
Fig. 3 exhibits two distinct regimes: the ‘‘dilute,’’ or small-porosity regime (0of 0o0:1),
and the ‘‘finite,’’ or large-porosity regime ð0:1of 0o1Þ. Interestingly, for 0of 0o0:1, Fig. 3
shows that the porous elastomer becomes more stable, in both, strain and stress space with
increasing initial porosity. That is, in the small-porosity regime, the material loses strong
ellipticity at smaller stretches lcrit (larger compressive strains) and larger compressive
stresses Scrit=m, for higher values of the initial porosity f 0. In passing, we remark that this
rather counterintuitive result has already been observed in 2D porous elastomers with
random and periodic microstructures (Lopez-Pamies and Ponte Castañeda, 2004; Michel
et al., 2007). In contrast, for 0:1of 0o1, the porous elastomer continues to improve its
stability with increasing porosity in strain space; however, in stress space, the trend is
reversed and the material is seen to become more unstable for higher values of f 0. The fact
that for the range of initial porosities 0:1of 0o1 the critical stretch lcrit exhibits a different
trend than Scrit=m can be understood by recognizing that the stress–strain relation of the
porous elastomer under hydrostatic compression softens drastically with increasing f 0 in
this regime (see Fig. 1(a)). This implies that even though jScrit=mj decreases with increasing
Fig. 3. Hydrostatic compression ðl1 ¼ l2 ¼ l3 ¼ lp1Þ of a porous elastomer with incompressible, Neo-Hookean

matrix phase. (a) The critical stretch lcrit at which the second-order estimate (13) loses strong ellipticity as a

function of initial porosity f 0. (b) The associated normalized critical stress Scrit=m. The isolated data points in the

plots correspond to experimental results for the critical buckling of spherical shells under hydrostatic compression

(Wesolowski, 1967).
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f 0, the corresponding stretches lcrit required to reach such critical stresses may, and in fact
do, decrease with increasing f 0. In connection with the results shown in Fig. 3, it is
important to recall that, unlike for small and moderate values of porosity, the SOE
predictions are not expected to be accurate—except for the CSA microstructure—for very
large f 0, as discussed in Section 3.1 of Part I. Whatever the case may be, it is interesting to
note that, according to the SOE results, Scrit=m! 0 as f 0! 1, as it may be expected on
physical grounds.
At this stage, it is important to remark that while the work of Hashin (1985) provides

exact results for the effective stored-energy function, bW , and the porosity evolution, f, for
the hydrostatic loading of porous elastomers with incompressible, isotropic matrix phase
and the Composite Sphere Assemblage (CSA) microstructure, it contains essentially no
information about the macroscopically stability of these materials. This is simply due to
the fact that the exact results of Hashin are given for a fixed loading path—namely,
l1 ¼ l2 ¼ l3—and therefore, the corresponding effective incremental modulus cL, needed
for detecting loss of strong ellipticity, cannot be computed. On the other hand, it is possible
to compute the effective incremental modulus associated with the DPB model (11), which
as already stated agrees with the Hashin estimate for hydrostatic loading, and check for
loss of strong ellipticity. It turns out, however, that—unlike the SOE (13)—the DPB model
(11) remains strongly elliptic for all hydrostatic deformations, in contradiction with
physical experience. More precisely, under this type of loading conditions—as illustrated in
Fig. 2—the effective incremental modulus cL associated with the DPB model not only
remains strongly elliptic, but also stiffens significantly with increasing strain. This overly
stiff behavior seems to be consistent with the fact that the DPB model is a rigorous upper
bound for CSA microstructures. Finally, it is fitting to mention that there have been a
number of experimental and analytical studies (see, e.g., Wesolowski, 1967; Wang and
Ertepinar, 1972) on the stability of isolated spherical shells under hydrostatic loading. Of
course, the buckling instabilities of an isolated shell cannot be identified with the buckling
instabilities that would take place in an actual porous elastomer with the CSA
microstructure, except possibly in the dilute limit, when no interaction is expected among
the pores. In this connection, we have included in Fig. 3 the experimental findings of
Wesolowski (1967) comprising the critical stretches and pressures at which a Neo-
Hookean, thick-walled, spherical shell first buckles as function of initial porosity (i.e., the
cube of the ratio of inner to outer radius of the shell in the undeformed state). Remarkably,
the experimental results of Wesolowski (1967) in strain space agree extremely well with the
SOE predictions in the small-porosity regime, where the comparisons between the isolated
shell and the porous elastomer may be relevant. For large values of initial porosity, it is
interesting to observe that the SOE results provide a bound for the experimental ‘‘failure
surface’’ characterized by the stretches and stresses at which the isolated shell first buckles.

3.1.2. Biaxial tension/compression

Fig. 4 presents the SOE predictions for the effective response of a porous
elastomer with incompressible Gent matrix phase under biaxial loading ðl2 ¼ l3 ¼ l;
S11 ¼ qbFI=ql1 ¼ 0Þ. Results are shown for a matrix lock-up parameter of Jm ¼ 50 and
initial porosities of f 0 ¼ 0%; 10%; 30% and 50% as a function of the logarithmic
strain e ¼ ln l. Part (a) shows the normalized macroscopic ‘‘biaxial’’ stress
Sbi=m ¼ m�1qbFI=ql2 ¼ m�1qbFI=ql3, and part (b), the associated ‘‘lateral’’ strain
elat ¼ ln l1. Similar to hydrostatic loading and as expected on physical grounds,
11



Fig. 4. Effective response, as predicted by the second-order estimate (13), of a porous rubber subjected to biaxial

tension and compression ðl2 ¼ l3 ¼ l;S11 ¼ qbFI=ql1 ¼ 0Þ, as a function of the logarithmic strain e ¼ ln l. The
results correspond to a material with incompressible, Gent matrix with lock-up parameter Jm ¼ 50 and various

values of initial porosity f 0. (a) The normalized macroscopic stress Sbi=m ¼ m�1qbFI=ql2 ¼ m�1qbFI=ql3. (b) The
lateral strain elat ¼ ln l1.
Fig. 4(a) shows that the effective response of the porous elastomer is softer for higher
values of the initial porosity f 0. Furthermore, for biaxial tension, as well as for
compression, the material is seen to stiffen very significantly with increasing strain. In spite
of this similarity, the porous elastomer is seen to become unstable—through loss of strong
ellipticity—under biaxial compression, while it remains stable under biaxial tension. This
disparity will be shown shortly to be due to differences in the evolution of the underlying
microstructure. Turning now to Fig. 4(b), we notice that the volume of the porous
elastomer increases (decreases) when subjected to biaxial tension (compression), that is,
ln ðdetFÞ ¼ elat þ 2e4ðoÞ0. Since the elastomeric matrix phase is incompressible, this has
the direct implication that the porosity increases (decreases) with the applied tensile
(compressive) deformation. In this connection, it is interesting to remark further from
Fig. 4(b) that for biaxial tension (compression) the porous elastomer undergoes a larger
volume increase (decrease) for higher values of initial porosity f 0.

Fig. 5 provides corresponding results for (a) the evolution of the porosity f and (b) the
evolution of the average aspect ratios o1 and o2 (defined by Eq. (25) in Part I). Fig. 5(a)
shows that the SOE predictions for the evolution of the porosity f virtually coincide with
the ‘‘exact’’ result for all values of initial porosities considered. In this regard, we should
make the following parenthetical clarification. As discussed in Section 4.4 of Part I, the
evolution of porosity in porous elastomers with incompressible matrix phase can be
computed exactly through expression (31) in Part I, provided that the determinant of the
macroscopic deformation gradient, detF, is known. For displacement boundary
conditions, detF is of course known since it is prescribed. On the other hand, for traction
and mixed boundary conditions, such as the one considered in this subsection, detF is not
known a priori and must be computed from the material response. In this connection, we
remark that what we have denoted by ‘‘exact’’ porosity in Fig. 5 corresponds to the
12



Fig. 5. Biaxial tension and compression ðl2 ¼ l3 ¼ l;S11 ¼ qbFI=ql1 ¼ 0Þ of a porous elastomer with

incompressible, Gent matrix phase with lock-up parameter Jm ¼ 50 and various values of initial porosity f 0.

(a) The evolution of porosity f, as predicted by the second-order estimate (13), compared with the exact result.

(b) The evolution of the aspect ratios o1 and o2 as predicted by the second-order estimate (13).
porosity generated by expression (31) in Part I evaluated at the detF predicted by the SOE
(13). Having clarified this point we next note that Fig. 5(a) illustrates explicitly the fact
already pointed out in Fig. 4(b) that the porosity increases for tensile loadings and
decreases for compressive ones. The former mechanism induces geometric softening and
the latter, stiffening. With regard to the evolution of the aspect ratios, we first notice from
Fig. 5(b) that the average aspect ratio o2 remains identically equal to one throughout the
entire loading process, as a result of the imposed macroscopic biaxial state of deformation
(i.e., l2 ¼ l3). On the other hand, the aspect ratio o1 is seen to decrease (increase) very
significantly for tensile (compressive) loadings, entailing that the pores evolve on average
into oblate (prolate) spheroids. In short, the pore ovalization resulting from the applied
biaxial compression induces geometric softening on the overall stress–strain relation of the
porous elastomer, while the development of ‘‘pancake’’ shapes for the pores resulting from
tension induces geometric stiffening. Thus, in summary, the results illustrated in Fig. 5
make it plain that the evolution of the underlying microstructure is very different for
biaxial compression than for tension. This is consistent with the fact that the porous
elastomer loses strong ellipticity under biaxial compression and not under biaxial tension.
In order to gain further insight on the results shown in Figs. 4 and 5, Fig. 6 provides

results for the normal (cL1111, cL2222, cL3333) and shear (cL1212, cL1313, cL2323) components

of the normalized effective incremental modulus cL ¼ m�1 q2 bW I=qF2 of a porous
elastomer with Gent matrix phase ðJm ¼ 50Þ and initial porosity of 30% under biaxial

loading ðl2 ¼ l3 ¼ l; S11 ¼ qbFI=ql1 ¼ 0Þ. Part (a) shows results for biaxial compression

ðlp1Þ, and part (b), for biaxial tension ðlX1Þ. Fig. 6(a) shows that—in agreement

with the stress–strain results shown in Fig. 4(a)—the normal components cL2222 ¼cL3333

increase monotonically with the applied compressive strain. Note also that the normal

component cL1111 increases monotonically as well. In contrast, the effective shear moduli
13



Fig. 6. Effective response, as predicted by the second-order estimate (13), of a porous elastomer with

incompressible matrix phase subjected to biaxial tension and compression ðl2 ¼ l3 ¼ l;S11 ¼ qbFI=ql1 ¼ 0Þ. The

results correspond to a material with Gent matrix phase (Jm ¼ 50) and initial porosity of f 0 ¼ 30% and are shown

as a function of the logarithmic strain e ¼ ln l. The normal and shear principal components of the effective

incremental modulus cL for (a) biaxial compression ðlp1Þ and (b) biaxial tension ðlX1Þ.
cL1212, cL1313, cL2323 are seen to decrease with increasing biaxial compression, especiallycL2323 which vanishes at some critical finite stretch lcrit. This stretch corresponds precisely
to the point at which the material loses strong ellipticity. In this connection, similar to the

hydrostatic loading case, it should be noted that the combination cL2222
cL3333 þcL2

2323 �

ðcL2233 þcL2332Þ
2
þ 2cL2323

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficL2222
cL3333

q
does also vanish at lcrit. Making contact with

Appendix A of Part I, this means that conditions ð33Þ3 and ð34Þ3 in Part I cease to hold
true. This implies that the porous elastomer may develop localized deformations in bands
with normals N 2 Spanfu2; u3g, where u2 and u3 denote the unit vectors defining the

macroscopic Lagrangian principal axes associated with the principal stretches l2 and l3,
respectively. Moreover, the vector m associated with a given N is such that m ? N, so that
the deformation localizes in shear within the bands. In other words, when subjected to
biaxial compression, the porous elastomer may become infinitesimally soft under
incremental shear deformations in planes with normals defined by the Lagrangian
principal axes associated with the smallest principal stretches (which correspond to the
largest compressive strains). As for the hydrostatic loading case, it should be emphasized
that this behavior is rather subtle. Indeed, Fig. 5(a) shows that, under biaxial compression,

the porous elastomer stiffens in the ‘‘direction’’ of the applied loading (i.e.,cL2222 ¼cL3333

increase with the applied stretch). However, its incremental shear response (in the
u22u3 plane) softens to the point that the material loses strong ellipticity at some

finite critical stretch lcrit (at which cL2323 ¼cL3232 ¼cL2222
cL3333 þcL2

2323 � ð
cL2233þcL2332Þ

2
þ 2cL2323

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficL2222
cL3333

q
¼ 0). Turning now to Fig. 6(b), it is observed that—in

accord with the stress–strain results shown in Fig. 4(a)—the incremental normal moduli
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cL2222 ¼cL3333 initially decrease and then increase, as a function of the applied biaxial

strain. On the other hand, the effective incremental shear moduli cL1212, cL1313, cL2323

increase monotonically with the applied tensile strain, improving the stability of the porous
elastomer. Even though the results illustrated in Fig. 6 correspond to f 0 ¼ 0:3, they are
representative of results for porous elastomers with any value of initial porosity f 0. A more
detailed investigation of the effect of f 0 on the effective incremental behavior and stability
of porous elastomers subjected to biaxial loading will be addressed in the context of the
next figure. As a final remark, it is appropriate to emphasize that the DPB model (11) (with
Neo-Hookean matrix phase) can be shown to remain strongly elliptic for all biaxial
tension/compression loading. This implies that the corresponding DPB estimate with Gent
matrix phase (9) remains strongly elliptic for all biaxial tension/compression loading as
well. This is easy to check by realizing that a Gent material (2) is stiffer than a Neo-
Hookean material (3) for all modes of deformation.
Fig. 7 presents plots associated with the results shown in Fig. 3 for (a) the critical stretch,

lcrit, and (b) the normalized critical stress, Scrit=m, at which the SOE (13) loses strong
ellipticity under biaxial compression as a function of the initial porosity f 0. Fig. 7(a) illustrates
that the stability of the porous material improves in strain space with increasing initial
porosity, in accord with the results found for hydrostatic compression (see Fig. 3(a)). Notice,
however, that the stretches lcrit in Fig. 7(a) are significantly smaller than those in Fig. 3(a). In
particular, it is observed that lcrit! l0crit with l0crit � 0:78 as f 0 ! 0 for biaxial compression,
whereas, for hydrostatic compression, lcrit! 1 as f 0! 0. This implies that for biaxial
compression lcrit has a discontinuity at f 0 ¼ 0, since for this type of loading lcrit ¼ 0 at f 0 ¼ 0
(due to the fact that the matrix phase is strongly elliptic for all isochoric deformations).
Physically, this result suggests that the addition of even a small proportion of pores can have a
dramatic effect on the overall stability of porous elastomers with incompressible, strongly
elliptic matrix phases under certain type of finite deformations. In contrast to the results found
Fig. 7. Biaxial tension and compression ðl2 ¼ l3 ¼ l;S11 ¼ qbFI=ql1 ¼ 0Þ of a porous elastomer with

incompressible, Gent matrix phase (Jm ¼ 50) with various values of initial porosity f 0. (a) The critical stretch

lcrit at which the second-order estimate (13) loses strong ellipticity as a function of initial porosity f 0. (b) The

corresponding critical stress Scrit=m.
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for hydrostatic compression, Fig. 7(b) shows that, in stress space, the porous elastomer
becomes more unstable with increasing initial porosity throughout the entire physical domain
0of 0o1. That is, jScritj decreases monotonically with increasing f 0.

3.1.3. Uniaxial tension/compression

Fig. 8 shows the SOE predictions for the effective response of a porous elastomer with
incompressible Gent matrix phase under uniaxial loading ðl1 ¼ l;S22 ¼ qbFI=ql2 ¼ S33 ¼

qbFI=ql3 ¼ 0Þ. Results are depicted for a matrix lock-up parameter of Jm ¼ 50 and initial
porosities of f 0 ¼ 0%, 10%, 30% and 50% as a function of the logarithmic strain e ¼ ln l.
Part (a) shows the normalized macroscopic ‘‘uniaxial’’ stress Suni=m ¼ m�1qbFI=ql1, and
part (b), the associated ‘‘lateral’’ strain elat ¼ ln l2 ¼ ln l3. A glance at Fig. 8 suffices to
remark its many similarities with Fig. 4 (for biaxial loading). Indeed, Fig. 8 shows that the
effective stress–strain behavior of the porous elastomer is softer for higher values of the
initial porosity f 0 and exhibits a very substantial stiffening for tension as well as
compression. Additionally, the volume of the porous elastomer increases under uniaxial
tension and decreases under uniaxial compression. That is, in the present context,
lnðdetFÞ ¼ 2elat þ e40 for e40 and 2elat þ eo0 for eo0. There are, however, two major
differences worth of notice. First, we remark that while for biaxial tension (compression) the
underlying pores evolve into oblate (prolate) spheroids, the opposite is true for uniaxial tension
(compression). This has an important effect on the overall behavior and, especially, on the
stability of the porous elastomer. In this connection, we note that, as opposed to biaxial
compression, no loss of strong ellipticity takes place under uniaxial compression. In fact, the
SOE predicts that for uniaxial compression the porosity will vanish at some finite stretch
(denoted with the symbol ‘‘�’’ in the plots) before any macroscopic instabilities take place.

For completeness, Fig. 9 illustrates the evolution of the relevant microstructural
variables associated with the results shown in Fig. 8. Part (a) shows the evolution of the
Fig. 8. Effective response, as predicted by the second-order estimate (13), of a porous rubber subjected to uniaxial

tension and compression ðl1 ¼ l;S22 ¼ qbFI=ql2 ¼ S33 ¼ qbFI=ql3 ¼ 0Þ, as a function of the logarithmic strain

e ¼ ln l. The results correspond to a material with incompressible, Gent matrix phase with Jm ¼ 50 and various

values of initial porosity f 0. (a) The normalized macroscopic stress Suni=m ¼ m�1qbFI=ql1. (b) The lateral strain

elat ¼ ln l2 ¼ ln l3.
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Fig. 9. Uniaxial tension and compression ðl1 ¼ l;S22 ¼ qbFI=ql2 ¼ S33 ¼ qbFI=ql3 ¼ 0Þ of a porous elastomer

with incompressible, Gent matrix phase with Jm ¼ 50 and various values of initial porosity f 0. (a) The evolution

of porosity f, as predicted by the second-order estimate (13), compared with the exact result. (b) The evolution of

the aspect ratios o1 and o2 as predicted by second-order estimate (13).
porosity f and part (b), the evolution of the aspect ratios o1 and o2, as a function of the
logarithmic strain e ¼ ln l. First, note that the porosity f, as predicted by the SOE (13), is
in excellent agreement with the ‘‘exact’’ result (as computed from expression (31) in Part I
evaluated at the detF predicted by (13)). Note further that the aspect ratio o2 is identically
equal to one throughout the entire loading process, as a consequence of the resulting
macroscopic uniaxial state of deformation (i.e., l3 ¼ l2 since S33 ¼ S22). On the other
hand, o14ðoÞ1 for e4ðoÞ0, so that the initially spherical pores deform on average into
prolate (oblate) spheroids under uniaxial tension (compression), corroborating the
comments in the previous paragraph. In summary, the above-presented results for
uniaxial loading induce similar geometric stiffening/softening effects to those found for
biaxial loading. Namely, under uniaxial tension, the increase of porosity induces geometric
softening and the pore ovalization, stiffening. Conversely,under uniaxial compression, the
decrease of porosity induces geometric stiffening and the development of ‘‘pancake’’
shapes for the pores, softening.

3.1.4. Macroscopic failure surfaces

Fig. 10 illustrates the macroscopic failure surfaces, as determined by the loss of strong
ellipticity of the SOE (13) (denoted by LOE in the plots). Results are given for a porous
elastomer with incompressible Neo-Hookean matrix phase and initial porosities of
f 0 ¼ 10%, 30%, and 50%. Part (a) shows failure surfaces for applied axisymmetric
deformations ðe3 ¼ e2Þ in strain space, and part (b), for applied axisymmetric stresses
ðS33 ¼ S22Þ in stress space. For completeness, the boundary at which the porosity vanishes
has also been included (dotted lines) in Fig. 10. Note that once the pore-closure boundary
is reached, no further compressive (with Jo1) deformation is possible.
Before proceeding with the bulk of the discussion, it is helpful to identify in Fig. 10 the

loading paths considered in the three previous subsections. Thus, we note that the line
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Fig. 10. Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the second-order

estimate (13), for a porous elastomer with incompressible, Neo-Hookean matrix phase and various values of

initial porosity. Part (a) illustrates the results for applied axisymmetric deformations ðe3 ¼ e2Þ in the e1–e2 plane in

strain space. Part (b) shows corresponding results for applied axisymmetric stresses ðS33 ¼ S22Þ in the S11–S22

plane in dimensionless stress space.
e2 ¼ e1 in Fig. 10(a), as well as the line S22 ¼ S11 in Fig. 10(b), correspond precisely to
hydrostatic loading, which was considered in detail in Figs. 1 and 3. Moreover, the lines
S11 ¼ 0 and S22 ¼ 0 in Fig. 10(b) correspond to biaxial and uniaxial tension/compression,
respectively. These loading paths were considered in detail in Figs. 4–7 and 8,9.

A key feature to remark from Fig. 10(a) is that the loci of points at which loss of strong
ellipticity occurs satisfy the condition: lnðdetFÞ ¼ e1 þ e2 þ e3 ¼ e1 þ 2e2o0. Thus, accord-
ing to the SOE (13), loss of strong ellipticity occurs necessarily under volume-reducing
deformations. Or, in other words, the development of macroscopic instabilities may take place
exclusively at ‘‘sufficiently’’ large compressive deformations. Another interesting point that
deserves further comment is the trend followed by the onset of loss of strong ellipticity as a
function of the initial porosity f 0. In effect, the porous elastomer becomes more stable—in the
sense that it loses strong ellipticity at larger strains—with increasing initial porosity. Recall that
this behavior has already been observed in the context of hydrostatic and biaxial compression
(see Figs. 3(a) and 7(a)). Fig. 10(a) illustrates, thus, that this counterintuitive trend applies
more broadly to general axisymmetric loading conditions.

In parallel with Fig. 10(a), Fig. 10(b) shows that a necessary condition for loss of strong
ellipticity to occur is the existence of a compressive component in the state of stress.
Fig. 10(b) also illustrates that the porous elastomer becomes more unstable—in the sense
that it loses strong ellipticity at smaller stresses—with increasing initial porosity f 0. This
trend is in contrast to that one observed in strain space. The explanation for such disparity
follows that one given in the context of Fig. 3 (for hydrostatic compression). That is, given
the drastically softer stress–strain relations of the porous elastomer for larger values of
initial porosity, the strains required to reach the critical stresses happen to be larger for
larger initial porosities.

Fig. 11 provides analogous results to those shown in Fig. 10 for a porous elastomer with
an initial porosity of f 0 ¼ 30% and Neo-Hookean matrix phase with compressibility ratios
18



Fig. 11. Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the second-order

estimates (12) and (13), for a porous elastomer with Neo-Hookean matrix phase and two values of compressibility

ratio of the matrix phase. Part (a) illustrates the results for applied axisymmetric deformations ðe3 ¼ e2Þ in the

e1–e2 plane in strain space. Part (b) shows corresponding results for applied axisymmetric stresses ðS33 ¼ S22Þ in

the S11–S22 plane in dimensionless stress space.
k=m ¼ 10 and k!1. Part (a) shows the macroscopic failure surfaces for applied
axisymmetric deformations (e3 ¼ e2) in strain space, and part (b), for applied axisymmetric
stresses ðS33 ¼ S22Þ in stress space. The main observation that can be made from Fig. 11 is
that the effect of compressibility of the matrix phase, as measured by the bulk modulus k,
on the overall stability of porous elastomers is opposite to that of the initial porosity f 0.
Namely, in strain space, the porous elastomer loses strong ellipticity at smaller strains for
larger bulk modulus. On the other hand, in stress space, the porous elastomer loses strong
ellipticity at larger stresses for larger bulk modulus. In this regard, we notice that by
increasing the bulk modulus of the matrix phase we are effectively constraining the matrix
material to deform isochorically. This results in an overall stiffening of the matrix phase,
and therefore, also of the porous elastomer. In turn, the critical stresses at which the
material loses strong ellipticity increase, while the corresponding critical strains decrease,
with increasing k.
Finally, it is appropriate to mention that the Neo-Hookean results shown in Figs. 10 and

11 are representative of results for Gent porous elastomers with any value of the material
lock-up parameter Jm. Indeed, according to the SOE predictions, the lock-up parameter
Jm has virtually no effect on the onset of loss of strong ellipticity. This is consistent with
the fact that loss of strong ellipticity occurs mostly at compressive states of deformation, at
which the effect of Jm is not ‘‘felt.’’

3.2. Plane-strain loadings

3.2.1. Pure shear

In Fig. 12, SOE predictions are given for the pure shear loading ðl1 ¼ l; l2 ¼ l�1; l3 ¼ 1Þ
of a porous elastomer with incompressible Gent matrix phases. Results are shown for an
initial porosity of f 0 ¼ 10% and matrix lock-up parameters of Jm ¼ 50 and Jm !1, as
19



Fig. 12. Effective response of a porous rubber with an incompressible, Gent matrix phase subjected to pure shear

ðl1 ¼ l; l2 ¼ l�1; l3 ¼ 1Þ, as a function of the logarithmic strain e ¼ ln l. (a) The normalized effective stored-

energy function bFI=m as predicted by the second-order estimate (13) and the Voigt bound (6). (b) The evolution of

the aspect ratios of the underlying pores, o1 and o2. Part (b) also includes the aspect ratios as predicted by the

DPB model (11).
a function of the logarithmic strain e ¼ ln l. First, we note from Fig. 12(a) that the SOE
predictions satisfy the rigorous Voigt upper bound (6). Recall that this bound is only
helpful for isochoric deformations (i.e., deformations with detF ¼ 1), like the one
considered in this subsection, since it becomes unbounded otherwise. Recall as well that
the DPB model (11) coincides exactly with the Voigt bound (6) in this case. In connection
with the evolution of the microstructure, it should be remarked that the porosity does not
evolve under pure shear deformations (i.e., f ¼ f 0). On the other hand, as shown in
Fig. 12(b), the aspect ratios, o1 and o2, of the underlying pores do evolve substantially with
increasing strain. In particular o1 increases while o2 decreases with increasing e. It is also
interesting to observe that the evolution of the aspect ratios appears to be practically
insensitive to the value of the matrix lock-up parameter Jm. For comparison purposes, we
have included in Fig. 12(b) the evolution of the aspect ratios o1 and o2 as predicted by the
DPB model (11) for the case of Jm !1. In this regard, it is noticed that the DPB result for
o2 is very similar to the corresponding SOE prediction. On the other hand, the aspect ratio
o1, as computed from the DPB model, is largely below the SOE result. This has the direct
implication that, in the direction of the applied tensile stretch l1 ¼ l, the DPB model
should exhibit a weaker geometric stiffening—due to pore ovalization—than the SOE. By
the same token, it should also exhibit a stronger geometric stiffening in the direction of the
applied compressive stretch l2 ¼ l�1. As a final point, it should be remarked that no loss of
ellipticity is observed for any level of pure shear deformation from any of the models.

Fig. 13 provides corresponding results for the normalized stress components (a) S11=m
and (b) S22=m as a function of the logarithmic strain e ¼ ln l. SOE predictions are given for
values of the matrix lock-up parameter of Jm ¼ 50 and Jm !1. DPB predictions are
given only for Jm !1. Fig. 13 clearly shows that the material parameter Jm has a strong
effect on the behavior of the porous elastomer. This is not surprising since the response of
20



Fig. 13. Effective response of a porous rubber with an incompressible Gent matrix phase subjected to pure shear

ðl1 ¼ l; l2 ¼ l�1; l3 ¼ 1Þ as a function of the logarithmic strain e ¼ ln l. (a) The normalized macroscopic stress

S11=m. (b) The normalized macroscopic stress S22=m.
the matrix phase is itself also highly dependent on Jm. Furthermore, we notice that both
stress components exhibit substantial stiffening with the applied stretch. In this regard, we
remark that (for Jm !1) the SOE prediction for the component S11=m is much stiffer
than the corresponding DPB estimate, while the opposite is true for the component S22=m.
This behavior is entirely consistent with the observations made in Fig. 12(b), where it was
concluded that the pore ovalization predicted by the DPB model induces a stronger
geometric softening (stiffening) in the direction of the tensile (compressive) stretch l1 ¼ l
ðl2 ¼ l�1Þ than the one predicted by the SOE.

3.2.2. In-plane uniaxial tension/compression

Fig. 14 provides results for the overall response of a porous elastomer with
incompressible Neo-Hookean matrix phase under plane-strain tension ðl1 ¼ lX1;
l3 ¼ 1;S22 ¼ qbFI=ql2 ¼ 0Þ. Results are shown for the second-order (13) and the DPB
(11) estimates, and finite element (FEM) calculations (from Danielsson et al., 2004) for
initial porosities of 5%, 15%, and 25% as a function of the logarithmic strain e ¼ lnðlÞ.
Part (a) shows the normalized macroscopic Cauchy stress T=m ¼ m�1ð1=l2ÞqbFI=ql1, and
part (b), the associated lateral strain elat ¼ ln l2.
Before proceeding with the discussion of Fig. 14, it is necessary to make the following

clarifications. First, the FEM results illustrated in Fig. 14 correspond to the effective
response of a multi-void cell model consisting of a random assembly of cubes that are
either solid or contain an initially spherical void. (For further details on the cell model see
Danielsson et al., 2004.) The microstructure of this multi-void cell model is thus
monodisperse, in contrast to the polydisperse microgeometry assumed by the SOE and the
DPB models. Nevertheless, for the small and moderate values of porosity considered in the
results shown in Fig. 14, the dispersion in the size of pores is not expected to be of critical
importance on the overall response of the material. Second, it should be mentioned that
the Cauchy stress T=m ¼ m�1ð1=l2ÞqbFI=ql1, as opposed to the first Piola–Kirchhoff stress
S=m ¼ m�1qbFI=ql1, is shown in Fig. 14(a) for two reasons: the FEM results were originally
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Fig. 14. Effective response of a porous rubber subjected to plane-strain tension ðl1 ¼ lX1; l3 ¼
1;S22 ¼ qbFI=ql2 ¼ 0Þ, as a function of the logarithmic strain e ¼ ln l. Comparisons between the SOE predictions,

the Danielsson–Parks–Boyce model (DPB), and FEM results for a material with incompressible, Neo-Hookean

matrix phase and various values of initial porosity f 0. (a) The normalized macroscopic Cauchy stress

T=m ¼ m�1ð1=l2ÞqbFI=ql1. (b) The lateral strain elat ¼ ln l2.
provided for this variable in Danielsson et al. (2004), and it brings out more clearly the
differences between the two compared estimates with the FEM results.

Fig. 14 shows that the SOE predictions are in excellent agreement with the FEM
calculations. Interestingly, the DPB model delivers estimates that are in very good
agreement with the numerical calculations for the case of f 0 ¼ 5%, but, for larger initial
porosities, the agreement between the DPB predictions and the FEM (and hence the SOE)
results deteriorates noticeably, especially for larger initial porosities f 0. It is also noted that
the stress–strain curves in Fig. 14(a) exhibit a pronounced stiffening with increasing strain.
With regard to Fig. 14(b), we notice that all three estimates indicate that the volume of the
porous elastomer increases when the material is subjected to plane-strain tension,
that is, eþ elat40. (The line eþ elat ¼ 0, which corresponds to f 0 ¼ 0, has been included in
Fig. 14(b) for reference purposes.) Again, since the elastomeric matrix phase is
incompressible, this has the direct implication that the porosity increases with the applied
deformation.

Fig. 15 provides analogous results to those shown in Fig. 14 for plane-strain compression

ðl1 ¼ lp1; l3 ¼ 1;S22 ¼ qbFI=ql2 ¼ 0Þ. Unfortunately, no FEM results were reported in
Danielsson et al. (2004) for this loading, and hence, attention is confined to the SOE and
the DPB predictions. Fig. 15(a) shows that the predictions from the DPB model are much
stiffer than the corresponding SOE results. This disparity, as it will be explained in more
detail in the discussion of Fig. 16, is due to different predictions of the evolution of
microstructure. Next, note that both models predict that the porous elastomer remains
stable for all applied plane-strain compression. However, while the SOE predicts that the
porosity will vanish at some finite compressive strain (indicated with the symbol ‘‘�’’ in the
plots), the DPB model predicts that zero porosity is never reached under plane-strain
compression. We conclude by remarking from Fig. 15(b) that the volume of the porous
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Fig. 15. Effective response of a porous rubber subjected to plane-strain compression ðl1 ¼ lp1; l3 ¼ 1;S22 ¼

qbFI=ql2 ¼ 0Þ, as a function of the logarithmic strain e ¼ ln l. Comparisons between the SOE and the

Danielsson–Parks–Boyce (DPB) predictions for a material with incompressible, Neo-Hookean matrix phase

and various values of initial porosity f 0. (a) The normalized macroscopic Cauchy stress T=m ¼ m�1ð1=l2ÞqbFI=ql1.
(b) The lateral strain elat ¼ ln l2.

Fig. 16. Plane-strain tension and compression ðl1 ¼ l; l3 ¼ 1;S22 ¼ qbFI=ql2 ¼ 0Þ of a porous elastomer with

incompressible, Neo-Hookean matrix phase with various values of initial porosity f 0. Comparisons between the

SOE and the Danielsson–Parks–Boyce (DPB) predictions for (a) the evolution of porosity f, and (b) the evolution

of the aspect ratios o1 and o2.
elastomer decreases with the applied plane-strain compression, that is, eþ elato0. (Similar
to Fig. 14(b),the line eþ elat ¼ 0, denoting the response of the incompressible elastomeric
matrix, has been included in Fig. 15(b) for reference purposes.)
Fig. 16 provides plots associated with the results shown in Fig. 14 and Fig. 15 for the

effective behavior of a porous elastomer with incompressible Neo-Hookean matrix phase
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under plane-strain loading (tension and compression). Part (a) shows the evolution of the
porosity f for initial porosities of f 0 ¼ 5; 15; and 25% as a function of the applied strain
e ¼ ln l. Part (b) shows the evolution of the aspect ratios o1 and o2 for an initial
porosity of f 0 ¼ 25% as a function of the applied strain e ¼ ln l. Fig. 16(a) shows that
while the SOE predictions for the evolution of the porosity under plane-strain tension
are in good agreement with the FEM calculations, the DPB predictions deviate
significantly. Moreover, Fig. 16(a) illustrates explicitly the fact already revealed
within the discussion of Fig. 14(b) and Fig. 15(b) that the porosity increases for
plane-strain tension and decreases for plane-strain compression. In this regard,
we note that the porosity predicted by the DPB model is always larger than the one
predicted by the SOE (13), which entails that for plane-strain tension ðe40Þ the DPB
model predicts a larger geometric softening due to changes in porosity than the SOE,
and, by the same token, a weaker geometric stiffening for plane-strain compression
ðeo0Þ. Furthermore, as already remarked in Fig. 15, it is seen that under plane-strain
compression the DPB porosity does not vanish at a finite strain as the SOE
predicts, but instead, reaches a horizontal asymptote. To conclude with Fig. 16(a),
we remark that the evolution of the porosity f, as determined from the SOE (13),
is in excellent agreement with the ‘‘exact’’ result, as computed from expression (31)
in Part I (evaluated at the detF predicted by (13)). Turning now to Fig. 16(b),
we notice that the aspect ratio o1 increases while o2 decreases for plane-strain tension.
The opposite trend is observed for plane-strain compression. We also recognize
that while the DPB predictions are similar to the SOE results for tension, they deviate
significantly for compression. In this connection, note that the DPB prediction for o1

under plane-strain compression is largely above the corresponding SOE result, which is
seen to vanish at some finite strain. In view of the fact that the decrease of o1 induces
geometric softening in the present context, this strong disparity contributes to explain why
the DPB predictions for the stress–strain relations in Fig. 15(a) are stiffer than the
corresponding SOE results.

3.2.3. Macroscopic failure surfaces

Fig. 17 shows the macroscopic failure surfaces, as determined by the loss of strong
ellipticity of the SOE (13), for a porous elastomer with incompressible, Neo-Hookean
matrix phase and initial porosities of f 0 ¼ 10%, 30% and 50% under plane-strain loading
ðe3 ¼ 0Þ. Part (a) shows the results in strain space, and part (b), in stress space. For
completeness, the boundary at which the porosity vanishes has also been included in
Fig. 17.

Similar to Fig. 10(a) for axisymmetric loading, Fig. 17(a) shows that loss of strong
ellipticity can only take place for volume-reducing deformations. More specifically, in the
present context, the loci of points at which loss of strong ellipticity occurs satisfy the
condition lnðdetFÞ ¼ e1 þ e2 þ e3 ¼ e1 þ e2o0. Also in accord with Fig. 10(a), Fig. 17(a)
depicts that Neo-Hookean porous elastomers subjected to plane-strain loadings improve
their stability in strain space with increasing initial porosity. As a final remark, it is
interesting to note that the results shown in Fig. 10(a) are qualitatively similar to those
previously found for porous elastomers with 2D random, isotropic microstructures (see
Lopez-Pamies and Ponte Castañeda, 2004, Fig. 7). However, in quantitative terms, the
3D-microstructure material is more unstable (in strain space) than the 2D one, as loss of
strong ellipticity occurs at smaller strains.
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Fig. 17. Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the second-order

estimate (13), for a porous elastomer with incompressible, Neo-Hookean matrix phase and various values of

initial porosity under plane-strain loading ðe3 ¼ 0Þ. (a) Failure surface in strain space. (b) The corresponding

failure surface in dimensionless stress space.
Consistent with all previous results, Fig. 17(b) shows that a necessary condition for loss
of strong ellipticity to occur is the existence of a compressive component in the state of
stress. In fact, note that for f 0o0:5 both components of the stress must be compressive. In
this regard, it is emphasized that the corresponding stress S33 (not shown in the figure) is
positive. (Recall that the results correspond to plane-strain conditions, i.e., e3 ¼ 0.) This is
in accord with the results shown in Fig. 13(b) for axisymmetric loading, where loss of
strong ellipticity could occur at states with two components of stress being compressive
(with the other component being tensile). Moreover, it is observed that in stress space the
porous elastomer is more unstable for larger values of the initial porosity, in accord with
preceding results. The reasons for this behavior parallel those given in the context of
Fig. 10 (for axisymmetric loading conditions).

4. Concluding remarks

In this paper, use has been made of the homogenization-based constitutive model
developed in Part I to generate comprehensive predictions for the stress–strain relation, the
evolution of microstructure, and the onset of macroscopic instabilities in Gent porous
elastomers under a wide range of loading conditions and values of initial porosity.
In accord with other elastomeric systems subjected to finite deformations (see, e.g.,

Lopez-Pamies and Ponte Castañeda, 2006b), the predictions generated in this work
indicate that the evolution of the underlying microstructure has a very significant and
subtle effect on the mechanical response of isotropic porous elastomers. In particular, it
has been observed that the decrease of porosity—induced by macroscopic, volume-
reducing loadings—produces geometric stiffening of the effective incremental response of
the material in the ‘‘direction’’ of the applied loading. At the same time—and rather
interestingly—the decrease of porosity does also lead to the geometric softening of the
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effective incremental shear response of the material. Similarly, the change in shape of the
underlying pores, as measured by the their average aspect ratios, has also been identified as
a geometric mechanism that can produce stiffening of the effective incremental response of
the porous elastomer in some directions and softening in others.

An important consequence of the aforementioned softening mechanisms is that the
‘‘second-order’’ estimates for the effective behavior of porous elastomers can lose strong
ellipticity, even in the case when the underlying matrix phase material is taken to be
strongly elliptic. Thus, in this work, loss of strong ellipticity has been found to occur under
sufficiently large macroscopic, compressive stresses and strains. In other words, according
to the predictions, the onset of macroscopic instabilities—as determined by loss of strong
ellipticity—for the class of porous elastomers under consideration in this work is driven by
the applied compressive loading. In this connection, it is worth remarking that the recent
model of Danielsson et al. (2004), which is based on a generalization of the earlier Voigt
bound (Ogden, 1978) and Hashin (1985) estimate, is strongly elliptic for all deformations,
and is thus unable to capture the expected development of instabilities under compressive
loading.

Finally, the results generated in this paper have been shown to be in good agreement
with exact and numerical results available from the literature for special loading
conditions, and generally improve on existing models for more general loading conditions.
In particular—as already stated—the new model proposed here predicts the development
of macroscopic instabilities for loading conditions where such instabilities are expected to
occur from numerical simulations (Triantafyllidis et al., 2006; Michel et al., 2007), as well
as from physical evidence (Kinney et al., 2001; Gong and Kyriakides, 2005). This is in
contrast with prior homogenization- and micromechanics-based models that fail to
predict the development of such instabilities. Thus, although somewhat more difficult to
implement than earlier homogenization estimates and micromechanics models, which
make use of simpler trial fields and micromechanical hypotheses, the second-order method
could prove to become a very useful tool in the development of accurate—but still
computationally tractable—models for porous, as well as for other types of elastomeric
composites.
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