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The purpose of this paper is to provide homogenization-based constitutive models for the overall,
finite-deformation response of isotropic porous rubbers with random microstructures. The proposed
model is generated by means of the ‘‘second-order’’ homogenization method, which makes use of
suitably designed variational principles utilizing the idea of a ‘‘linear comparison composite.’’ The
constitutive model takes into account the evolution of the size, shape, orientation, and distribution of
the underlying pores in the material, resulting from the finite changes in geometry that are induced by
the applied loading. This point is key, as the evolution of the microstructure provides geometric

softening/stiffening mechanisms that can have a very significant effect on the overall behavior and
stability of porous rubbers. In this work, explicit results are generated for porous elastomers with
isotropic, (in)compressible, strongly elliptic matrix phases. In spite of the strong ellipticity of the
matrix phases, the derived constitutive model may lose strong ellipticity, indicating the possible
development of shear/compaction band-type instabilities. The general model developed in this paper
will be applied in Part II of this work to a special, but representative, class of isotropic porous
elastomers with the objective of exploring the complex interplay between geometric and constitutive

softening/stiffening in these materials.

Keywords: Constitutive behavior; Finite strain; Microstructures; Porous material; Soft matter
nding author. Department of Mechanical Engineering and Applied Mechanics, University of

, Philadelphia, PA 19104-6315, USA.

dresses: olp@seas.upenn.edu (O. Lopez-Pamies), ponte@seas.upenn.edu (P. Ponte Castañeda).
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1. Introduction

Porous elastomers are of considerable technological interest. They enjoy a wide range of
applications which include packaging, cushioning, energy absorbtion, noise abatement,
etc. In numerous situations, these materials are subjected to large deformations. It is,
therefore, of practical interest to develop constitutive models for the mechanical behavior
of porous elastomers under such loading conditions. Ideally, these models should be
accurate and at the same time relatively simple, so that they are amenable to direct
implementation into standard finite element packages for solving structural problems of
interest. This presents a substantial challenge, as the mechanical behavior of porous
elastomers is known to depend critically on their underlying microstructure, which is by
and large rather complex. Indeed, more often than not, the distribution of pores in these
materials is random. Also, depending on the specific application, porous elastomers may be
open or closed cell, and may contain levels of porosity that range from very small to very
large. In this connection, ever since the pioneering work of Gent and Thomas (1959), there
have been numerous contributions concerning the modeling of the mechanical behavior of
high-porosity elastomers (or low-density foams) under large deformations (see, for
instance, the monograph by Gibson and Ashby, 1997). In contrast, the study of porous
elastomers with low to moderate levels of porosity has not been pursued to nearly the same
extent. The objective of this paper pertains precisely to the development of a constitutive
model for this latter class of materials. More specifically, attention will focused on porous
elastomers consisting of a random and isotropic distribution of polydisperse pores (in the
undeformed configuration) in an isotropic, elastomeric matrix phase.
In terms of prior work, various attempts have been made using different methods.

Phenomenological approaches include, for instance, the model of Blatz and Ko (1962),
which was motivated by experimental work on polyurethane rubber with a random and
isotropic distribution of pores of about 40mm in diameter and an approximate volume
fraction of about 50%. The predictive capabilities of this model for the response of actual
porous elastomers is limited. However, the Blatz–Ko material does have a very appealing
physical property: it loses strong ellipticity at sufficiently large compressive deformations
(Knowles and Sternberg, 1975). This property is in agreement with physical evidence
suggesting that porous elastomers can develop macroscopic bands of strain localization at
sufficiently large deformations, which could correspond, for example, to buckling of the
matrix ligaments at the micro-scale (see, e.g., Kinney et al., 2001; Gong and Kyriakides,
2005). Homogenization-based approaches include the microstructure-independent Voigt-
type bound (Ogden, 1978), some rigorous estimates for special microstructures and loading
conditions (Hashin, 1985), and various ad hoc approximations (Feng and Christensen,
1982). There is also a recently proposed estimate by Danielsson et al. (2004) for isotropic
porous elastomers with incompressible, isotropic matrix phases. In fact, this estimate—as
it will be discussed in Part II (Lopez-Pamies and Ponte Castañeda, 2007) of this work—can
be shown to be a rigorous upper bound for porous elastomers with incompressible matrix
phases and the composite sphere assemblage (CSA) microstructure (Hashin, 1962).
Admittedly a very special class of microstructure, the CSA can be considered as a fair
approximation to the type of microstructures of interest in this work, namely, random and
isotropic distribution of polydisperse pores in an elastomeric matrix phase.
In this work, we make use of the second-order homogenization theory, originally

developed by Ponte Castañeda (2002) for viscoplastic materials, and extended recently for
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general hyperelastic composites by Lopez-Pamies and Ponte Castañeda (2006a). This
technique has the capability to incorporate statistical information about the micro-
structure beyond the volume fraction of the phases and can be applied to large classes of
elastomeric composites (Lopez-Pamies and Ponte Castañeda, 2006a, b). In particular,
Lopez-Pamies and Ponte Castañeda (2004) have previously developed second-order
estimates for the effective stored-energy function of two-dimensional (2D) model porous
systems consisting of elastomers weakened by an isotropic distribution (in the transverse
plane) of aligned cylindrical pores with initially circular cross section, and subjected to in-
plane loading. Interestingly, these estimates—which account approximately for the change
in size, shape, and orientation of the pores that are induced by the finite deformations—
admit loss of strong ellipticity at sufficiently large compressive deformations (even when
specialized to strongly elliptic matrix phases). Furthermore, these analytical results were
found to be in qualitative agreement with previous numerical results obtained by
Abeyaratne and Triantafyllidis (1984) for 2D porous materials consisting of periodically

arranged, aligned, cylindrical holes of initially circular cross section. Motivated by these
findings, Michel et al. (2007) have recently conducted a combined numerical and analytical

study of the influence of the underlying microstructure on the development of microscopic

and macroscopic instabilities in 2D porous elastomers under finite deformations. These
investigations have shown that the second-order theory can deliver accurate estimates not
only for the macroscopic constitutive behavior, but also for the more sensitive information
on the possible development of macroscopic instabilities in porous elastomers with
periodic microstructures. These encouraging results for 2D microstructures strongly
suggest that the second-order theory should also be able to deliver accurate estimates for
the effective behavior, as well as for the onset of macroscopic instabilities, of porous
elastomers with the three-dimensional (3D), random microstructures of interest in this
work. In this connection, it should be remarked that while for 3D periodic microstructures
estimates can be obtained numerically, for the random case this approach would be
exceedingly intensive from a computational point of view, and the analytical approach
proposed here—though approximate—is perhaps more appropriate.

This paper is organized as follows. Section 2 provides a review of basic results for the
macroscopic and microscopic response of porous hyperelastic composites. Section 3
presents the specialization of the second-order theory to the above-defined general class of
porous elastomers, including a subsection on evolution of microstructure for these systems.
Section 4 describes the further specialization to porous elastomers with ‘‘generalized Neo-
Hookean’’ behavior for the matrix phase, as defined by relation (22). The main results are
contained in Eqs. (23) and (26) for compressible and incompressible matrix phases,
respectively. The derivation of these results is provided in Appendices B and C. Finally,
some general conclusions are drawn in Section 5.

2. Preliminaries on porous hyperelastic composites

Consider a porous material made up of initially spherical voids distributed randomly in
an elastomeric matrix.1 A specimen of this material is assumed to occupy a volume O0,
with boundary qO0, in the undeformed configuration and to be such that the characteristic
1These idealizations constitute a good approximation to the actual microstructures found in a wide range of

porous elastomeric systems.
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length of the underlying pores is much smaller than the size of the specimen and the scale
of variation of the applied loading.
The constitutive behavior for the matrix phase is characterized by a stored-energy

function W ð1Þ that is a non-convex function of the deformation gradient tensor F. The
porous phase is characterized by the stored-energy function W ð2Þ ¼ 0. Thus, the local

stored-energy function for the porous elastomer may be written as

W ðX;FÞ ¼ wð1Þ0 ðXÞW
ð1ÞðFÞ þ wð2Þ0 ðXÞW

ð2ÞðFÞ ¼ wð1Þ0 ðXÞW
ð1ÞðFÞ, (1)

where the characteristic function wð1Þ0 ðw
ð2Þ
0 Þ, which takes the value of one if the position

vector X is inside the matrix (porous) phase and zero otherwise, serves to characterize the
microstructure of the material in the undeformed configuration. Note that, in view of the
assumed random distribution of the pores, the dependence of wð1Þ0 on X is not known
precisely, and the microstructure is only partially defined in terms of its n-point statistics.
In this work, use will be made of one- and two-point statistics, as detailed further below.
The stored-energy function W ð1Þ is, of course, taken to be objective, in the sense that
W ð1ÞðQFÞ ¼W ð1ÞðFÞ for all proper orthogonal, second-order tensors Q and all deforma-
tion gradients F. Making use of the right polar decomposition F ¼ RU, where R is the
macroscopic rotation tensor and U denotes the right stretch tensor, it follows, in
particular, that W ð1ÞðFÞ ¼W ð1ÞðUÞ. Moreover, to try to ensure material impenetrability,
W ð1Þ is assumed to satisfy the condition: W ð1ÞðFÞ ! 1 as detF! 0þ. The local
constitutive relation for the porous elastomer is given by

S ¼
qW

qF
ðX;FÞ, (2)

where S denotes the first Piola–Kirchhoff stress tensor and sufficient smoothness has been
assumed for W on F.
Under the hypotheses of statistical uniformity, and the above-mentioned separation of

length scales, it follows (Hill, 1972) that the global constitutive relation for the porous
elastomer is given by

S ¼
q eW
qF

, (3)

where S ¼ hSi, F ¼ hFi are the average stress and average deformation gradient,
respectively, andeW ðFÞ ¼ min

F2KðFÞ
hW ðX;FÞi ¼ min

F2KðFÞ
c
ð1Þ
0 hW

ð1ÞðFÞið1Þ (4)

is the effective stored-energy function of the composite. In the above expressions the
triangular brackets h�i and h�ið1Þ denote, respectively, volume averages—in the undeformed
configuration—over the specimen ðO0Þ and the matrix phase ðOð1Þ0 Þ, so that the scalar
c
ð1Þ
0 ¼ hw

ð1Þ
0 i corresponds to the volume fraction of the elastomeric phase in the undeformed

configuration. Furthermore, K denotes the set of kinematically admissible deformation
gradients:

KðFÞ ¼ fFj9x ¼ xðXÞ with F ¼ Grad x in O0; x ¼ FX on qO0g. (5)

Note that eW represents the average elastic energy stored in the porous elastomer when
subjected to an affine displacement boundary condition that is consistent with hFi ¼ F.
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Moreover, from definition (4) and the objectivity of W ð1Þ, it can be shown that eW is an
objective scalar function of F, and hence such that eW ðFÞ ¼ eW ðUÞ. Here, U is the
macroscopic right stretch tensor associated with the right polar decomposition F ¼ RU,
with R denoting the macroscopic rotation tensor. (Note that UahUi and RahRi.) In turn,
the objectivity of eW guarantees the macroscopic rotational equilibrium: SF

T
¼ FS

T

(Hill, 1972).
Because of the non-convexity of W on F, the solution (assuming that it exists) of the

Euler–Lagrange equations associated with the variational problem (4) need not be unique.
Physically, this corresponds to the possible development of instabilities in the porous
elastomer under sufficiently large deformations. At this stage, following Triantafyllidis and
coworkers (see, e.g., Geymonat et al., 1993; Triantafyllidis et al., 2006; Michel et al., 2007),
it is useful to make the distinction between ‘‘microscopic’’ instabilities, that is, instabilities
with wavelengths that are small compared to the size of the specimen, and ‘‘macroscopic’’
instabilities, that is, instabilities with wavelengths comparable to the size of the specimen.
The computation of ‘‘microscopic’’ instabilities is a very difficult problem, especially for
the type of porous elastomers with random microstructures of interest in this work. On the
other hand, as explained in more detail further below, the computation of ‘‘macroscopic’’
instabilities is relatively simple, since it amounts to detecting the loss of strong ellipticity of
the effective stored-energy function of the composite (Geymonat et al., 1993). Hence, in
view of the difficulties associated with the computation of ‘‘microscopic’’ instabilities, we
do not attempt here to solve the minimization problem (4), but instead, we adopt a more
pragmatic approach. By assuming—for consistency with the classical theory of linear
elasticity—that W ð1Þ ¼ 1

2
e � Llineþ oðe3Þ as F! I, where e denotes the infinitesimal strain

tensor and Llin is a positive-definite, constant, fourth-order tensor, it is expected that, at
least in a neighborhood of F ¼ I, the solution of the Euler–Lagrange equations associated
with the variational problem (4) is unique, and gives the minimum energy. As the
deformation progresses into the finite deformation regime, the composite may reach a
point at which this ‘‘principal’’ solution bifurcates into lower energy solutions. This point
corresponds to the onset of an instability, beyond which the applicability of the ‘‘principal’’
solution becomes questionable. However, it is still possible to extract useful information
from the principal solution by computing the associated macroscopic instabilities from the
loss of strong ellipticity of the homogenized behavior. In practice, this means that we will
estimate the effective stored-energy function (4) by means of the stationary variational
statement:bW ðFÞ ¼ stat

F2KðFÞ
c
ð1Þ
0 hW

ð1ÞðFÞið1Þ, (6)

where it is emphasized that the energy is evaluated at the above-described ‘‘principal’’
solution of the relevant Euler–Lagrange equations. From its definition, it is clear thateW ðFÞ ¼ bW ðFÞ from F ¼ I all the way up to the onset of the first microscopic instability.
Beyond the first microscopic instability eW ðFÞp bW ðFÞ. The point is that, as already
mentioned, while the computation of microscopic instabilities is difficult, it is relatively
simple to estimate the onset of macroscopic instabilities from bW ðFÞ. Furthermore, it is
often the case (Geymonat et al., 1993) that the first instability is indeed a long wavelength
instability, in which case, eW ðFÞ ¼ bW ðFÞ all the way up to the development of a
macroscopic instability, as characterized by the loss of strong ellipticity of bW ðFÞ. More
generally, the first instability is of finite wavelength (i.e., small compared to the size of the
5



specimen), but it so happens that the loss of strong ellipticity of bW ðFÞ defines a ‘‘failure
surface’’ that bounds all other types of instabilities (Geymonat et al., 1993). In this case,
the porous elastomer would become unstable before reaching the deformations at whichbW ðFÞ loses strong ellipticity. Finally, it is appropriate to mention that the recent work by
Michel et al. (2007) suggests that the macroscopic instabilities may be the more relevant
ones for random, porous systems, since many of the microscopic instabilities in periodic
systems tend to disappear as the periodicity of the microstructure is broken down.
We conclude this section by spelling out the condition of strong ellipticity for the

effective stored-energy function (6), which will be used in the sequel to detect the
development of macroscopic instabilities in porous elastomers. Thus, the homogenized
porous elastomer characterized by bW is said to be strongly elliptic if and only if its
associated acoustic tensor is positive definite, namely, if and only if

bKikmimk ¼cLijklNjNlmimk40 (7)

is satisfied for all m�Na0. Here, bKik ¼cLijklNjNl is the effective acoustic tensor, andcL ¼ q2 bW=qF
2
is the effective incremental elastic modulus characterizing the overall

incremental response of the porous elastomer.
Note that, in general, the detection of loss of strong ellipticity requires a tedious, but

straightforward, scanning process (i.e., a numerical search of unit vectors N and m for
which condition (7) ceases to hold true). However, for certain special cases, it is possible to
write necessary and sufficient conditions for the strong ellipticity of bW exclusively in terms
of the material properties (i.e., in terms of the components of cL). This is the case, for
instance, for the isotropic materials of interest in this paper. The corresponding conditions,
first provided in three dimensions by Simpson and Spector (1983) (see also Zee and
Sternberg, 1983; Dacorogna, 2001) are recalled in Appendix A for completeness.
3. Second-order estimates for isotropic porous elastomers

Following up on the preceding formulation, the main purpose of the present work is to
generate an estimate for the effective stored-energy function (6) for isotropic porous
elastomers consisting of a random and isotropic distribution of initially spherical pores in
an isotropic, elastomeric matrix phase. A second aim is to provide estimates for the
evolution of suitably identified microstructural variables, as well as to establish the
development of macroscopic instabilities in these materials. This is accomplished here by
means of the second-order homogenization method (Lopez-Pamies and Ponte Castañeda,
2006a). The main concept behind this method is the construction of suitable variational
principles making use of the idea of a ‘‘linear comparison composite’’ (LCC) with the same
microstructure as the hyperelastic composite (i.e., the same wð1Þ0 ). This homogenization
technique has the distinguishing feature of being exact to second order in the heterogeneity
contrast, and, as already remarked, can be applied to a large class of hyperelastic
composites. In this section, we provide the key components of the theory needed to
generate estimates for the type of porous elastomers of interest in this work. Furthermore,
we identify the relevant microstructural variables and write down their evolution laws.
Thus, making use of the general results of Lopez-Pamies and Ponte Castañeda (2006a)

for two-phase composites, an estimate for the effective stored-energy function bW for
porous elastomers consisting of vacuous inclusions (i.e., W ð2Þ ¼ 0), with given initial
6



porosity f 0ð¼ 1� c
ð1Þ
0 Þ, in a compressible isotropic matrix with stored-energy function

W ð1Þ ¼W , may be generated in terms of a porous LCC with matrix phase characterized by

W T ðFÞ ¼W ðFÞ þSðFÞ � ðF� FÞ þ 1
2
ðF� FÞ � LðF� FÞ, (8)

and the same microstructure as the actual porous elastomer. In expression (8), Sð�Þ ¼
qW ð�Þ=qF and L is a constant, fourth-order tensor with major symmetry (but with no
minor symmetry) to be specified further below. The corresponding effective stored-energy
function for such LCC is given by (see, e.g., Lopez-Pamies and Ponte Castañeda, 2004):

bW T ðFÞ ¼ ð1� f 0ÞW ðFÞ þ
1
2
SðFÞ �M½eL� ð1� f 0ÞL�MSðFÞ, (9)

where M ¼ L�1, and eL is the effective modulus tensor of the LCC. After some
simplification, the second-order estimate for the effective stored-energy function bW may
finally be written as

bW ðFÞ ¼ ð1� f 0Þ½W ðF̂
ð1ÞÞ �SðFÞ � ðF̂ð1Þ � Fð1ÞÞ�, (10)

where the variables F̂ð1Þ and Fð1Þ are functions—of the applied loading F, the material
properties of the matrix phase, and the initial microstructure—that must be determined
from the above-defined LCC. More specifically, Fð1Þ corresponds to the average
deformation gradient in the matrix phase of the LCC, and is given explicitly in terms of
L by the expression:

Fð1Þ � hFið1Þ ¼ Fþ
1

1� f 0

MðeL� ð1� f 0ÞLÞMSðFÞ. (11)

On the other hand, the variable F̂ð1Þ is defined by the ‘‘generalized secant’’ condition:

SðF̂ð1ÞÞ �SðFÞ ¼ LðF̂ð1Þ � FÞ. (12)

Note that estimate (10) for bW is now completely specified in terms of the modulus tensor
L of the matrix phase of the LCC. From the general theory, this modulus tensor is
obtained from a variational approximation for bW , where the tensor L plays the role of trial
field. The corresponding optimization with respect to L leads to conditions that involve the
covariance tensor C

ð1Þ
F ¼ hðF� hFi

ð1ÞÞ � ðF� hFið1ÞÞið1Þ of the deformation field in the
matrix phase of the LCC, as outlined next.

Following Lopez-Pamies and Ponte Castañeda (2006a), L can be shown to be of the form:

Lijkl ¼ QrmQjnQspQlqRirRksL
�
mnpq, (13)

where indicial notation has been used for clarity. (In the absence of explicit statements to
the contrary, Latin indices range from 1 to 3, and the usual summation convention is
employed.) In expression (13), R is the rotation tensor in the polar decomposition of
F ¼ RU, and Q is the proper-orthogonal, second-order tensor describing the orientation
of the macroscopic Lagrangian principal axes (i.e., the principal axes of U) via the relation
U ¼ QDQ

T
, where D ¼ diagðl1; l2; l3Þ relative to the frame of reference of choice and li

ði ¼ 1; 2; 3Þ denote the principal stretches of U. Assuming that L� is orthotropic relative
to the laboratory frame of reference with at most nine independent principal components,
denoted by ‘�a ða ¼ 1; 2; . . . ; 9Þ, the above-mentioned optimization procedure for
determining L leads (Lopez-Pamies and Ponte Castañeda, 2006a) to the following
7



conditions:

ðF̂ð1Þ � FÞ �
qL
q‘�a
ðF̂ð1Þ � FÞ ¼

2

1� f 0

q bW T

q‘�a
ða ¼ 1; 2; . . . ; 9Þ. (14)

It is noted that this set of conditions for the parameters ‘�a ða ¼ 1; 2; . . . ; 9Þ involve the
fluctuations of the deformation-gradient fields in the matrix phase of the LCC, as discussed
in more detail in Lopez-Pamies and Ponte Castañeda (2006a).
In summary, Eqs. (12) and (14) reduce to a system of 18 nonlinear, coupled, algebraic

equations for the 18 scalar unknowns formed by the nine components of F̂ð1Þ and the nine
components of L (i.e., the nine independent components ‘�a). Upon computing the values
of the variables ‘�a and the components of F̂ð1Þ for a given initial porosity f 0, given stored-
energy function W , and given applied loading F, the values of the components of Fð1Þ can
be readily determined from (11). In turn, the second-order estimate (10) for the effective
stored-energy function of porous elastomers may be computed from these results.
To conclude this section, it is expedient to point out that the above-defined second-order

estimate (10) for the effective stored-energy function bW can be shown to be an objective

and isotropic scalar function of the macroscopic deformation gradient F, in agreement with
the exact result (see Lopez-Pamies and Ponte Castañeda, 2006a, for details). To be precise,

estimate (10) is such that bW ðKFK
0
Þ ¼ bW ðFÞ for all proper orthogonal tensors K and K

0
.

Making contact with the decompositions F ¼ RU and U ¼ QDQ
T
used in the context of

expression (13), this implies that:bW ðFÞ ¼ bW ðRQDQ
T
Þ ¼ bW ðDÞ ¼ bFðl1; l2; l3Þ, (15)

where bF is symmetric. A practical implication of (15) is that it suffices to restrict attention
to diagonal pure stretch loadings in the above formulation. Namely, it suffices to consider:

F ¼ D ¼ diagðl1; l2; l3Þ and R ¼ Q ¼ I. (16)

3.1. Estimates for the LCC

The above framework allows the determination of bW in terms of the effective modulus
tensor ~L of the LCC with the same microstructure as the actual nonlinear composite. In
this work, as already stated, we are interested in porous elastomers where the pores are
assumed to be initially spherical in shape, polydisperse, and to be randomly distributed
with isotropic symmetry in the undeformed configuration. For this type of ‘‘particulate’’
microstructure, we make use of the following isotropic Hashin–Shtrikman (HS) estimate
for the effective modulus tensor due to Willis (1977) (see also Walpole, 1966):eL ¼ Lþ f 0½ð1� f 0ÞP�M��1, (17)

where the microstructural tensor P is given (in component form) by

Pijkl ¼
1

4p

Z 2p

0

Z p

0

ðLimknxmxnÞ
�1xjxl sinFdFdY, (18)

with x1 ¼ cos Y sin F, x2 ¼ sin Y sin F, x3 ¼ cos F. It is important to recall that for the
special subclass of linear elastic composites with isotropic phases and the CSA
microstructure, the HS-type estimate (17) is very accurate for all values of initial porosity
8



f 0. Further, for more general classes of microstructures, estimate (17) is known to be
accurate for small to moderate initial porosities, and it may become inaccurate for large
values of f 0, when the interactions among the pores become especially strong. Since the
porosity, as well as the shape, orientation, and distribution of the voids, of a porous
material can evolve as a function of finite loading histories, this has the practical
implication that—in general—the second-order estimates of the HS type may become
inaccurate once the porosity, or other relevant microstructural variables reach values
approaching the percolation limit, as explained in detail in Lopez-Pamies (2006). However,
it should be emphasized that the second-order estimates (10) could still be used in the high-
porosity range, provided that a more refined estimate was used for the LCC.

3.2. The evolution of microstructure

The above-outlined characterization of the behavior of porous elastomers has been
carried out in the context of a Lagrangian description of the kinematics. This means that
the stationary solution in expression (6) for the effective stored-energy function of
porous elastomers contains implicitly all the necessary information to characterize how
every single material point in the specimen moves, and therefore, also how the
microstructure evolves, with the applied loading. In this subsection, we outline how to
extract information from the above formulation in order to characterize the evolution of
suitably selected microstructural variables. Knowledge of the evolution of such variables
will provide us with the means to develop a better understanding of the mechanical
behavior of porous elastomers.

First, there is the notion that the evolution of the size, shape, and orientation of the pores
should be governed—on average—by the average deformation gradient in the porous phase
Fð2Þ. Thus, the relevant microstructural variables characterizing the size, shape, and
orientation of the pores are identified here as the volume fraction, f , the average aspect
ratios, o1, o2, and the average orientation of the pores, f1, f2, f3, as determined by Fð2Þ. In
this regard, it is important to note that within the context of the second-order estimates
(10), with the HS-type approximation (17) for the effective behavior of the associated LCC,
the deformation gradient field FðXÞ inside the pores turns out to be constant, and therefore,
such that F ¼ hFið2Þ � Fð2Þ for X 2 Oð2Þ0 (with h�ið2Þ denoting the volume average over the
porous phase Oð2Þ0 in the reference configuration). As a result, a spherical pore of radius Ri

centered at Xi in the undeformed configuration, defined by

Ei
0 ¼ fXjðX� XiÞ � ðX� XiÞpðRiÞ

2
g, (19)

will deform according to: x� xi ¼ Fð2ÞðX� XiÞ, with xi denoting the center of the pore in
the deformed configuration. Thus, the spherical pore defined by (19) evolves into the
ellipsoid:

Ei ¼ fxjðx� xiÞ � ZTZðx� xiÞpðRiÞ
2
g, (20)

in the deformed configuration, where Z ¼ ðFð2ÞÞ�1. The eigenvalues 1=z21, 1=z22, and 1=z23
of the symmetric second-order tensor ZTZ define the current aspect ratios o1 ¼ z1=z3,
o2 ¼ z2=z3 of the pore in the deformed configuration. Similarly, the principal directions of
ZTZ, denoted here by the rectangular Cartesian basis fe0ig, characterize the principal
directions of the pore in the deformed configuration. Note that the orientation of fe0ig
relative to the frame of reference of choice feig can be conveniently characterized by the
9



three Euler angles f1, f2, f3. Moreover, by making use of the fact that hdetFið2Þ ¼ detFð2Þ

(recall that F is constant in the porous phase within the context of the HS-type
approximation), the current volume fraction of the pores in the deformed configuration may
be simply obtained via:

f ¼
detFð2Þ

detF
f 0. (21)

In short, the evolution of the size, shape, and orientation of the pores is completely
characterized by Fð2Þ, via expressions (20) and (21), which can be readily computed by
making use of the overall condition F ¼ ð1� f 0ÞF

ð1Þ þ f 0F
ð2Þ, together with estimate (11)

for the average deformation gradient Fð1Þ in the matrix phase of the LCC.
Concerning the evolution of the distribution of the pores (i.e., the relative motion of the

center of the underlying vacuous inclusions), it will be assumed here that center of the
pores evolve with the macroscopic deformation gradient F. That is, a pore centered at Xi in
the undeformed configuration will move according to: xi ¼ FXi. This is known to be the
exact result for periodic microstructures with simple unit cells.
4. Overall behavior of isotropic porous elastomers

The results presented in the previous sections are valid for any choice of the isotropic,
elastomeric matrix phase. In this section, in an attempt to generate a constitutive model
that is sufficiently general but as simple as possible, we will restrict attention to isotropic
matrix phases characterized by stored-energy functions of the form:

W ðFÞ ¼ Fðl1; l2; l3Þ ¼ gðIÞ þ hðJÞ þ
k
2
ðJ � 1Þ2, (22)

where I � I1 ¼ trC ¼ F � F ¼ l21 þ l22 þ l23, J ¼
ffiffiffiffiffiffiffiffiffiffiffi
detC
p

¼ detF ¼ l1l2l3 are, respectively,
the first and third fundamental invariants of the right Cauchy–Green deformation tensor
C ¼ FTF, with li ði ¼ 1; 2; 3Þ denoting the principal stretches associated with F. The
parameter k corresponds to the bulk modulus of the material at zero strain, and g and h are
twice-differentiable, material functions that satisfy the conditions: gð3Þ ¼ hð1Þ ¼ 0,
gI ð3Þ ¼ m=2, hJ ð1Þ ¼ �m, and 4gII ð3Þ þ hJJð1Þ ¼ m=3. Here, m denotes the shear modulus
of the material at zero strain, and the subscripts I and J indicate differentiation with
respect to these invariants. Note that when these conditions are satisfied
W ðFÞ ¼ ð12Þðk�

2
3mÞðtr eÞ2 þ m tr e2 þ oðe3Þ, where e is the infinitesimal strain tensor, as

F! I, so that the stored-energy function (22) linearizes properly. Furthermore, note that
to recover incompressible behavior in (22), it suffices to make the parameter k tend to
infinity (in which case W ðFÞ ¼ gðIÞ together with theincompressibility constraint J ¼ 1).
Experience suggests that ‘‘neat’’ (i.e., pure or unreinforced) elastomers normally do not

admit localized deformations. Within the context of the material model (22), this property
can be easily enforced by simply insisting that gðIÞ and hðJÞ þ ðk=2ÞðJ � 1Þ2 be strictly
convex functions of their arguments, which renders the stored-energy function (22)
strongly elliptic. Note also that the stored-energy function (22) is an extension of the so-
called generalized Neo-Hookean (or I1-based) materials to account for compressibility. It
includes constitutive models widely used in the literature such as the Neo-Hookean,
Arruda–Boyce 8-chain (Arruda and Boyce, 1993), Yeoh (Yeoh, 1993), and Gent (Gent,
10



1996) models. The analysis to follow will be carried out for matrix phases of the general
form (22). Results for more specific forms will be presented in Part II.

4.1. Compressible matrix

In this subsection, we specialize the second-order estimate (10) for the effective stored-
energy function bW to porous elastomers with initial porosity f 0 and compressible,
isotropic, elastomeric matrix phase characterized by the stored-energy function (22). In
addition, we spell out the expressions for the evolution of the associated microstructural
variables. The detailed derivation of the results is given in Appendix B, but the final
expression for the effective stored-energy function may be written asbW ðFÞ ¼ bFðl1; l2; l3Þ

¼ ð1� f 0Þ½gðÎ
ð1ÞÞ þ hðĴ ð1ÞÞ þ

k
2
ðĴð1Þ � 1Þ2

� ðF̂
ð1Þ
11 � lð1Þ1 Þð2gIl1 þ hJl2l3 þ kðJ � 1Þl2l3Þ

� ðF̂
ð1Þ
22 � l

ð1Þ

2 Þð2gIl2 þ hJl1l3 þ kðJ � 1Þl1l3Þ

� ðF̂
ð1Þ
33 � l

ð1Þ

3 Þð2gIl3 þ hJl1l2 þ kðJ � 1Þl1l2Þ�, ð23Þ

where gI ¼ gI ðIÞ, hJ ¼ hJðJÞ, I ¼ F � F ¼ l21 þ l22 þ l23, and J ¼ detF ¼ l1l2l3 have been
introduced for convenience.

Further, in estimate (23), the variables lð1Þ1 , l
ð1Þ

2 , l
ð1Þ

3 , which correspond to the principal
stretches associated with the phase average deformation gradient Fð1Þ defined by expression
(11), are given explicitly by expression (41) in Appendix B. They depend ultimately on the
applied loading, l1, l2, l3, the initial porosity, f 0, the constitutive functions, g, h, k,
characterizing the elastomeric matrix phase, as well as on the seven variables ‘�a ða ¼
1; 2; . . . ; 7Þ that are the solution of the nonlinear system of Eqs. (46) in Appendix B.
Similarly, the variables F̂

ð1Þ
11 , F̂

ð1Þ
22 , F̂

ð1Þ
33 , given explicitly by (43), as well as the variables Î ð1Þ

and Ĵ ð1Þ, given explicitly by (48), can be seen to depend ultimately on the applied loading,
l1, l2, l3, the initial porosity, f 0, the constitutive functions, g, h, k, and the seven variables
‘�a ða ¼ 1; 2; . . . ; 7Þ.

Thus, in essence, the computation of the second-order estimate (23) amounts to solving
a system of seven nonlinear, algebraic equations—provided by relations (46). In general,
these equations must be solved numerically, but, depending on the functional character of
g and h, and the applied loading conditions, possible simplifications may be carried out.

Next, we spell out the expressions for the evolution of the relevant microstructural
variables associated with the second-order estimate (23). To this end, recall from Section
3.2 that the appropriate microstructural variables in the present context are the current
porosity, f , the current average aspect ratios, o1, o2, and the current orientation of the
underlying voids in the deformed configuration—as determined from the average
deformation gradient in the porous phase Fð2Þ, by means of the tensor Z ¼ Fð2Þ

�1
. (No

reference is made here to the evolution of the distribution of pores, since it is assumed to be
controlled by the applied macroscopic deformation F.) Recall as well that, by employing
overall objectivity and isotropy arguments, attention has been restricted (without loss of
generality) to diagonal loadings (16). It then follows that within the framework of the
second-order estimate (23), the current porosity and current average aspect ratios of the
11



voids in the deformed configuration are given, respectively, by

f ¼
lð2Þ1 lð2Þ2 lð2Þ3
l1l2l3

f 0 (24)

and

o1 ¼
lð2Þ1
lð2Þ3

; o2 ¼
lð2Þ2
lð2Þ3

, (25)

where l
ð2Þ

i ¼ ðli � ð1� f 0Þl
ð1Þ

i Þ=f 0 ði ¼ 1; 2; 3Þ denote the principal stretches associated with

Fð2Þ and the variables l
ð1Þ

i are given by expression (41) in Appendix B. In the context of

relations (24) and (25), it is important to recognize that l
ð2Þ

i ði ¼ 1; 2; 3Þ depend ultimately

on the same variables that the stored-energy function (23).
Finally, it remains to point out that under the applied, diagonal, loading conditions (16),

the average orientation of the pores does not evolve with the deformation, but instead it
remains fixed. In this connection, it is important to remark that in the present context the
average deformation gradient in the pores, Fð2Þ, can be shown to be an objective and
isotropic tensor function of the applied deformation gradient F (i.e., Fð2ÞðKFK

0
Þ ¼

KFð2ÞðFÞK
0
for all F, and all proper, orthogonal, second-order tensors K, K

0
). As a result,

from the general loading F ¼ RQDQ
T
used in the context of expression (13), it follows

that Fð2ÞðFÞ ¼ RQFð2ÞðDÞQ
T
. In turn, it follows that the tensor ZTZ in (20) can be simply

written as ZTZ ¼ HAHT, where A ¼ diagðlð2Þ1
�2
; lð2Þ2

�2
; lð2Þ3

�2
Þ in the frame of reference of

choice andH ¼ RQ. In essence, this result reveals that for a general applied deformation F,
the current, average orientation of the pores is characterized explicitly byH ¼ RQ, where it
is recalled that R is the macroscopic rotation tensor in the polar decomposition of F, andQ

is the proper-orthogonal, second-order tensor describing the orientation of the macroscopic
Lagrangian principal axes. The above expressions for f , o1, and o2 are not affected, of
course, since they depend exclusively on the principal stretches associated with Fð2Þ.

4.2. Incompressible matrix

Elastomers are known to be essentially incompressible, since they usually exhibit a ratio
between the bulk and shear moduli of the order of 104. Accordingly, it is of practical
interest to generate estimates for the effective behavior of porous elastomers with
incompressible matrix phases. This can be efficiently accomplished by taking the limit
k!1 in the second-order estimate (23). The corresponding asymptotic analysis has been
included in Appendix C, but the final result for the effective stored-energy function bW I for
the class of porous elastomers considered in this work, with elastomeric matrix phase
characterized by the stored-energy function (22) (with k ¼ 1), reduces to the form:bW I ðFÞ ¼ bFI ðl1; l2; l3Þ ¼ ð1� f 0ÞgðÎ

ð1ÞÞ, (26)

where Î ð1Þ is given by expression (62) in Appendix C. Here, it should be emphasized that
Î ð1Þ depends ultimately on the applied loading, l1, l2, l3, the initial porosity, f 0, the
constitutive function, g, as well as on the seven variables ua ða ¼ 1; 2; . . . ; 7Þ defined by
(60), that are the solution of the system of seven nonlinear equations formed by relations
(57) and (58) in Appendix C. Thus, similar to its compressible counterpart (23), the
12



computation of the second-order estimate (26) for the effective stored-energy function of
porous elastomers with incompressible matrix phases amounts to solving a system of seven
nonlinear, algebraic equations.

In general, it is not possible to solve these equations in closed form. However, for certain
applied deformations, estimate (26) may be written down more explicitly. For instance, for
the case of hydrostatic loading l1 ¼ l2 ¼ l3 ¼ l, expression (62) for Î ð1Þ can be shown to
simplify to

Î ð1Þ ¼
l2½9u2f 0 � 6uf 0lðl

3
� 1Þ þ ð2þ f 0Þl

2
ðl3 � 1Þ2�

3u2f 0

, (27)

where the variable u satisfies the following condition:

27f
3=2
0 u3 � 27f

3=2
0 l

4
u2 þ 9ðf 0 � 1Þ

ffiffiffiffiffi
f 0

p
ðl3 � 1Þl5u

� ð
ffiffiffiffiffi
f 0

p
� 1Þ2ð2þ

ffiffiffiffiffi
f 0

p
Þðl3 � 1Þ2l6 ¼ 0. ð28Þ

Of course, the solution to the cubic equation (28) may be worked out in closed form.
However, for all practical purposes, it is simpler to solve (28) numerically. In this regard, it
is emphasized that only 1 of the 3 roots2 of (28) leads to the correct linearized behavior;
hence, this is the root that should be selected.

We conclude this subsection by noticing that expressions (24) and (25) continue to apply
for determining the current porosity, f , and the current aspect ratios, o1, o2, of the
underlying voids in porous elastomers with incompressible matrix phases, provided that the
leading-order terms in expression (52) in Appendix C be used for the stretches l

ð1Þ

i

ði ¼ 1; 2; 3Þ. In this light, f , o1, o2, are seen to depend ultimately on the same variables as
the effective stored-energy function (26).

4.3. Small-strain elastic moduli

In the limit of small strains, estimates (23) and (26) linearize properly, and therefore
recover the classical HS upper bounds for the effective shear and bulk moduli of the
composite. To be precise, the estimate (23) with compressible matrix phases linearizes tobW ðFÞ ¼ 1

2
ðek� 2

3
emÞðtr eÞ2 þ em tr e2 þ oðe3Þ, as F! I, where e ¼ 1

2
ðFþ F

T
� 2IÞ is the macro-

scopic, infinitesimal strain tensor, and

em ¼ ð1� f 0Þð9kþ 8mÞm
ð9þ 6f 0Þkþ 4ð2þ 3f 0Þm

; ek ¼ 4ð1� f 0Þkm
3f 0kþ 4m

, (29)

are the effective shear and bulk moduli, respectively. Similarly, the estimate (26) with
incompressible matrix phases linearizes to bW I ðFÞ ¼ 1=2ðekI � 2=3emI Þ ðtr eÞ2 þ emI tr e2 þ oðe3Þ,
as F! I, where

emI ¼
3ð1� f 0Þ

3þ 2f 0

m; ekI ¼
4ð1� f 0Þ

3f 0

m. (30)

It should be recalled that the HS effective moduli (29) and (30) are actually exact results in
the limit of dilute concentration of spherical voids (i.e., for f 0! 0). Moreover, the
effective moduli (29) and (30) are known to correlate well with experimental results for the
2The correct root linearizes as u ¼ 1þ ð1þ 3f 0Þ=f 0ðl� 1Þ þOðl� 1Þ2.
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elastic constants of isotropic porous rubbers with small to moderate initial porosities (see,
e.g., O’Rourke et al., 1997).
4.4. Exact evolution of porosity

To conclude this section, we recall that for porous elastomers with incompressible matrix
phase, it is possible to compute—from a simple kinematical argument—the exact evolution
of the porosity in terms of the applied macroscopic deformation. The result is

f ¼ 1�
1� f 0

detF
. (31)

In general, the specialization of the second-order estimate (24) for f to porous elastomers
with incompressible matrix phases does not recover the exact result (31). Nonetheless,
expression (24), when specialized to incompressible matrix phases, can be shown to be
exact up to second order in the strain (i.e., up to Oðe2Þ). For larger finite deformations, as
shown in Part II, relation (24) provides estimates that are in very good agreement with the
exact result (31), except for the limiting case of large hydrostatic tension together with
small initial porosities.
5. Concluding remarks

In this paper, homogenization-based constitutive models have been derived for the
effective mechanical behavior of isotropic porous elastomers subjected to large
deformations, by means of the second-order homogenization theory (Lopez-Pamies and
Ponte Castañeda, 2006a). The model applies to materials consisting of a random and
isotropic distribution of initially spherical pores in compressible and incompressible
isotropic matrix phases. A very important feature of the proposed constitutive model is
that it accounts for the evolution of the size, shape, orientation, and distribution of the
underlying pores in the material, which result from the finite changes in geometry that are
induced by the imposed large deformations. This point is essential, since the evolution of
the microstructure is known to induce significant geometric softening and stiffening effects
on the overall behavior and stability of porous elastomers. A further strength of the model
is that—in spite of incorporating fine microstructural details—it is relatively simple, as it
amounts to solving a system of seven nonlinear, algebraic equations. For convenience, a
Fortran program has been written and is available from the authors upon request.
In Part II of this work, the model developed in this paper will be used to generate

estimates for the effective behavior of porous elastomers with specific (compressible and
incompressible) strongly elliptic matrix phases under a wide range of loading conditions
and levels of initial porosity. The estimates will be shown to be in good agreement with
exact and numerical results available from the literature for special loading conditions. For
more general conditions, the proposed estimates will be shown to be drastically different
from existing models. In particular, the new models proposed in this work predict the
development of macroscopic instabilities for loading conditions where such instabilities are
expected to occur from physical experience. This is in contrast with existing models that
fail to predict the development of such instabilities. The reasons for this result will be
linked to the ability of the models proposed in this paper to capture more accurately the
14



subtle influence of the evolution of the microstructure on the mechanical response of
porous elastomers.
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Appendix A. Necessary and sufficient conditions for strong ellipticity of isotropic stored-

energy functions in 3D

In this appendix, we recall necessary and sufficient conditions for the strong ellipticity of
isotropic stored-energy functions bW ðFÞ ¼ bFðl1; l2; l3Þ, exclusively in terms of the
incremental modulus tensor cL ¼ q2 bW=qF

2
. Following Dacorogna (2001) (with some

minor changes), the conditions read as follows3:cLiiii40; i ¼ 1; 2; 3, (32)

cLijij40; 1piojp3, (33)

cLiiii
cLjjjj þcL2

ijij � ð
cLiijj þcLijjiÞ

2
þ 2cLijij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficLiiii
cLjjjj

q
40; 1piojp3, (34)

and either

md
12

ffiffiffiffiffiffiffiffiffiffiffifficL3333

q
þmd

13

ffiffiffiffiffiffiffiffiffiffiffifficL2222

q
þmd

23

ffiffiffiffiffiffiffiffiffiffiffifficL1111

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficL1111
cL2222

cL3333

q
X0 (35)

or

detMd40, (36)

where Md ¼ ðmd
ijÞ is symmetric and

md
ij ¼

cLiiii if i ¼ j;cLijij þ didjðcLiijj þcLijjiÞ if iaj

(
(37)

for any choice of di 2 f�1g.
Here,

cLiijj ¼
q2bF
qliqlj

,

cLijij ¼
1

l2i � l2j
li

qbF
qli

� lj

qbF
qlj

!
; iaj,

cLijji ¼
1

l2i � l2j
lj

qbF
qli

� li

qbF
qlj

!
; iaj (38)
3In this appendix, repeated Latin indices do not imply summation.
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ði; j ¼ 1; 2; 3Þ are the components of the effective incremental elastic modulus cL written
with respect to the macroscopic Lagrangian principal axis (i.e., the principal axis of F

T
F).

Note that for loadings with li ¼ lj ðiajÞ, suitable limits must be taken for the shear
components in (38), namely, Eqs. (38)2–(38)3 reduce to

cLijij ¼
1

2
cLiiii �cLiijj þ

1

li

qbF
qli

!
; iaj,

cLijji ¼
1

2
cLiiii �cLiijj �

1

li

qbF
qli

!
; iaj, (39)

respectively. Furthermore, note that there are three conditions in (32), three in (33), three
in (34), and, due to all possible signs, four in (35) or in (36). Thus, there is a total of 13
conditions.

Appendix B. Second-order estimates for isotropic porous elastomers with compressible

matrix phases

In this appendix, we spell out the analysis corresponding to the computation of the
second-order estimate (23) for the effective stored-energy function bW of porous elastomers
consisting of initially spherical, polydisperse, vacuous inclusions distributed randomly and
isotropically (in the undeformed configuration) in a compressible, isotropic matrix phase
characterized by the stored-energy function (22).
As a result of the restriction to pure stretch loadings (16), the modulus L defined by

expression (13) of the matrix phase in the linear comparison composite (LCC) reduces to
L ¼ L�, where it is recalled that L� is orthotropic with respect to the frame of reference
of choice and possesses, at most, nine independent components. In this work, for
simplicity, we introduce further constraints among the components of L� in order to
reduce them to seven independent components, denoted by the parameters ‘�a
ða ¼ 1; 2; . . . ; 7Þ. Thus, the independent principal components of L� are chosen to be
L�1111 ¼ ‘

�
1, L�2222 ¼ ‘

�
2, L�3333 ¼ ‘

�
3, L�1122 ¼ ‘

�
4, L�1133 ¼ ‘

�
5, L�2233 ¼ ‘

�
6, L�1212 ¼ ‘

�
7, while the

other non-zero components

L�2121 ¼ L�1313 ¼ L�3131 ¼ L�2323 ¼ L�3232 ¼ ‘
�
7,

L�1221 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�1 � ‘

�
7Þð‘
�
2 � ‘

�
7Þ

q
� ‘�4,

L�1331 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�1 � ‘

�
7Þð‘
�
3 � ‘

�
7Þ

q
� ‘�5,

L�2332 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�2 � ‘

�
7Þð‘
�
3 � ‘

�
7Þ

q
� ‘�6, (40)

are dependent. The motivation for the constraints (40) is twofold: (i) relations (40) are
consistent with the tangent modulus of Neo-Hookean materials; and (ii) conditions (40)
simplify considerably the computations involved. It should be emphasized, however, that
other choices are possible in principle.
Now, using the facts that F ¼ diagðl1; l2; l3Þ and L ¼ L�, together with Eq. (17) for the

HS estimate for eL, it follows from (11) that the average deformation gradient in the matrix
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phase of the LCC, needed in the computation of bW , is of the form

Fð1Þ ¼ diagðl
ð1Þ

1 ; l
ð1Þ

2 ; l
ð1Þ

3 Þ, where the average principal stretches l
ð1Þ

i ði ¼ 1; 2; 3Þ in the

matrix phase are given by

lð1Þ1 ¼ l1 � f 0E1111½2gIl1 þ ðhJ þ kðJ � 1ÞÞl2l3�

� f 0E1122½2gIl2 þ ðhJ þ kðJ � 1ÞÞl1l3�

� f 0 E1133½2gIl3 þ ðhJ þ kðJ � 1ÞÞl1l2�,

l
ð1Þ

2 ¼ l2 � f 0E1122½2gIl1 þ ðhJ þ kðJ � 1ÞÞl2l3�

� f 0E2222½2gIl2 þ ðhJ þ kðJ � 1ÞÞl1l3�

� f 0E2233½2gIl3 þ ðhJ þ kðJ � 1ÞÞl1l2�,

l
ð1Þ

3 ¼ l3 � f 0 E1133½2gIl1 þ ðhJ þ kðJ � 1ÞÞl2l3�

� f 0E2233½2gIl2 þ ðhJ þ kðJ � 1ÞÞl1l3�

� f 0E3333½2gIl3 þ ðhJ þ kðJ � 1ÞÞl1l2�. ð41Þ

In these expressions, E ¼ ðP�1 � ð1� f 0ÞLÞ
�1 has been introduced for convenience, and it is

recalled that gI ¼ gI ðIÞ, hJ ¼ hJðJÞ, with I ¼ l21 þ l22 þ l23, J ¼ l1l2l3. Note that relations

(41) provide explicit expressions for the non-zero components of Fð1Þ in terms of the applied

loading, F, the initial porosity, f 0, the constitutive functions, g, h, k, of the elastomeric matrix
phase, as well as of the independent components of L, i.e., ‘�a ða ¼ 1; 2; . . . ; 7Þ.

Having determined Fð1Þ, we proceed next to compute the variable F̂ð1Þ, also needed in the
computation of bW . By again making use of the identity L ¼ L�, together with conditions
(40) and Eq. (17) for the HS estimate for eL, Eq. (14) can be seen to reduce to seven
nonlinear, algebraic equations for seven combinations of the components of F̂ð1Þ, namely:

ðF̂
ð1Þ
11 � l1Þ

2
þ 2f 1F̂

ð1Þ
12 F̂

ð1Þ
21 þ 2f 2F̂

ð1Þ
13 F̂

ð1Þ
31 ¼

2

1� f 0

q bW T

q‘�1
¼
:

k1,

ðF̂
ð1Þ
22 � l2Þ

2
þ

1

2f 1

F̂
ð1Þ
12 F̂

ð1Þ
21 þ 2f 3F̂

ð1Þ
23 F̂

ð1Þ
32 ¼

2

1� f 0

q bW T

q‘�2
¼
:

k2,

ðF̂
ð1Þ
33 � l3Þ

2
þ

1

2f 2

F̂
ð1Þ
13 F̂

ð1Þ
31 þ

1

2f 3

F̂
ð1Þ
23 F̂

ð1Þ
32 ¼

2

1� f 0

q bW T

q‘�3
¼
:

k3,

ðF̂
ð1Þ
11 � l1ÞðF̂

ð1Þ
22 � l2Þ � F̂

ð1Þ
12 F̂

ð1Þ
21 ¼

1

1� f 0

q bW T

q‘�4
¼
: k4

2
,

ðF̂
ð1Þ
11 � l1ÞðF̂

ð1Þ
33 � l3Þ � F̂

ð1Þ
13 F̂

ð1Þ
31 ¼

1

1� f 0

q bW T

q‘�5
¼
: k5

2
,

ðF̂
ð1Þ
22 � l2ÞðF̂

ð1Þ
33 � l3Þ � F̂

ð1Þ
23 F̂

ð1Þ
32 ¼

1

1� f 0

q bW T

q‘�6
¼
: k6

2
,
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ðF̂
ð1Þ
12 Þ

2
þ ðF̂

ð1Þ
21 Þ

2
þ ðF̂

ð1Þ
13 Þ

2
þ ðF̂

ð1Þ
31 Þ

2
þ ðF̂

ð1Þ
23 Þ

2
þ ðF̂

ð1Þ
32 Þ

2
þ 2f 4F̂

ð1Þ
12 F̂

ð1Þ
21

þ 2f 5F̂
ð1Þ
13 F̂

ð1Þ
31 þ 2f 6F̂

ð1Þ
23 F̂

ð1Þ
32 ¼

2

1� f 0

q bW T

q‘�7
¼
:

k7. ð42Þ

Here, f 1¼qL�1221=q‘
�
1; f 2¼qL�1331=q‘

�
1 ; f 3¼qL�2332=q‘

�
2 ; f 4¼qL�1221=q‘

�
7 ; f 5¼qL�1331=q‘

�
7 ;

f 6 ¼ qL�2332=q‘
�
7,

while k1, k2, k3, k4, k5, k6, k7 are functions of the independent components of L, i.e., ‘�a
ða ¼ 1; 2; . . . ; 7Þ, as well as of the macroscopic deformation F, the initial porosity f 0, and
the constitutive functions g, h, and k that characterize the elastomeric matrix phase. It is
not difficult to check that the nonlinear system of Eqs. (42) may be solved explicitly to yield

two distinct solutions for Y 1¼
:
ðF̂
ð1Þ
11 � l1Þ, Y 2¼

:
ðF̂
ð1Þ
22 � l2Þ, Y 3¼

:
ðF̂
ð1Þ
33 � l3Þ in terms of

which the combinations p1¼
:

F̂
ð1Þ
12 F̂

ð1Þ
21 , p2¼

:
F̂
ð1Þ
13 F̂

ð1Þ
31 , p3¼

:
F̂
ð1Þ
23 F̂

ð1Þ
32 , and s¼

:
ðF̂
ð1Þ
12 Þ

2
þ ðF̂

ð1Þ
21 Þ

2
þ

ðF̂
ð1Þ
13 Þ

2
þ ðF̂

ð1Þ
31 Þ

2
þ ðF̂

ð1Þ
23 Þ

2
þ ðF̂

ð1Þ
32 Þ

2 may be uniquely determined. The two solutions for Y 1,

Y 2, and Y 3 are as follows:

Y 1 ¼ ðF̂
ð1Þ
11 � l1Þ ¼ �

ðk1 þ f 1k4 þ f 2k5Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
C1C2

p

C2

ffiffiffiffiffiffi
C3

p ,

Y 2 ¼ ðF̂
ð1Þ
22 � l2Þ ¼ �

ðk4 þ 4f 1ðk2 þ f 3k6ÞÞC2

2
ffiffiffiffiffiffiffiffiffiffiffiffi
C1C2

p ffiffiffiffiffiffi
C3

p ,

Y 3 ¼ ðF̂
ð1Þ
33 � l3Þ ¼ �

ðf 3 k5 þ f 2ð4f 3k3 þ k6ÞÞ
ffiffiffiffiffiffi
C3

pffiffiffiffiffiffiffiffiffiffiffiffi
C1C2

p , (43)

with C1 ¼ f 2ð4f 1k2 þ k4Þ þ 4f 1f 2
3ð4f 2k3 þ k5Þ þ 2f 3ðk1 þ f 1k4 þ f 2k5 þ 4f 1f 2k6Þ, C2 ¼

f 2ð4f 1k2 þ k4 þ 2f 2k6Þ þ 2f 3ðk1 þ f 1k4 þ 2f 2ð2f 2k3 þ k5 þ f 1k6ÞÞ, C3 ¼ k1 þ f 2k5 þ 2f 1

ð4f 2f 3k3 þ k4 þ f 3k5 þ f 2k6Þ þ 4f 2
1ðk2 þ f 3k6Þ, where it must be emphasized that the

positive (and negative) signs must be chosen to go together in the roots for Y 1, Y 2, and Y 3.
The corresponding final expressions for the remaining combinations read as

p1 ¼ Y 1Y 2 � k4=2; p2 ¼ Y 1Y 3 � k5=2; p3 ¼ Y 2Y 3 � k6=2 and

s ¼ k7 � 2ðf 4p1 þ f 5p2 þ f 6p3Þ. ð44Þ

At this point, it is expedient to make a few remarks regarding expressions (43) and (44).
From a computational point of view, the variables ka ða ¼ 1; 2; . . . ; 7Þ are determined by

performing the indicated derivatives of bW T , given by (9) in the main body of the text, with
respect to the moduli ‘�a. The resulting expressions, which involve suitable traces of the field

fluctuations C
ð1Þ
F , are rather complicated, but can be simplified in the manner detailed in

(Lopez-Pamies and Ponte Castañeda, 2006a) to render:

ka ¼
1

f 0

ðF� Fð1ÞÞ �
qE�1

q‘�a
ðF� Fð1ÞÞ ða ¼ 1; 2; . . . ; 7Þ, (45)

where E ¼ ðP�1 � ð1� f 0ÞLÞ
�1 has already been introduced in the context of expressions

(41). Moreover, it is important to emphasize that relations (43) and (44) provide explicit

expressions for seven combinations of the components of F̂ð1Þ in terms of the applied

loading F, the initial porosity f 0, the constitutive functions g, h, k of the elastomeric matrix

phase, and the moduli ‘�a ða ¼ 1; 2; . . . ; 7Þ. Note, however, that the variable F̂ð1Þ has nine
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components, so that two more relations would be needed to entirely characterize F̂ð1Þ, as it
will be seen further below.

Each of the two distinct roots (43) for the combinations Y 1, Y 2, Y 3, p1, p2, p3, s may be
substituted in the generalized secant condition (12) to yield a system of nine scalar
equations for the nine variables constituted by the two combinations of F̂ð1Þ:
p4 ¼ F̂

ð1Þ
23 F̂

ð1Þ
31 F̂

ð1Þ
12 , p5 ¼ F̂

ð1Þ
32 F̂

ð1Þ
13 F̂

ð1Þ
21 , and the seven moduli ‘�a. Algebraic manipulation of

the resulting system reveals that one equation is satisfied trivially, and the remaining eight
equations may be cast in the following form:

‘�1Y 1 þ ‘
�
4Y 2 þ ‘

�
5Y 3 ¼ 2ĝI ðY 1 þ l1Þ þ ½ĥJ þ kðĴð1Þ � 1Þ�ððY 2 þ l2Þ

	 ðY 3 þ l3Þ � p3Þ � 2gIl1 � ðhJ þ kðJ � 1ÞÞl2l3,

‘�4Y 1 þ ‘
�
2Y 2 þ ‘

�
6Y 3 ¼ 2ĝI ðY 2 þ l2Þ þ ½ĥJ þ kðĴð1Þ � 1Þ�ððY 1 þ l1Þ

	 ðY 3 þ l3Þ � p2Þ � 2gIl2 � ðhJ þ kðJ � 1ÞÞl1l3,

‘�5Y 1 þ ‘
�
6Y 2 þ ‘

�
3Y 3 ¼ 2ĝI ðY 3 þ l3Þ þ ½ĥJ þ kðĴð1Þ � 1Þ�ððY 1 þ l1Þ

	 ðY 2 þ l2Þ � p1Þ � 2gIl3 � ðhJ þ kðJ � 1ÞÞl1l2,

L�1221p1 ¼ ½ĥJ þ kðĴð1Þ � 1Þ�ðp4 � p1ðY 3 þ l3ÞÞ,

L�1331p2 ¼ ½ĥJ þ kðĴð1Þ � 1Þ�ðp4 � p2ðY 2 þ l2ÞÞ,

L�2332p3 ¼ ½ĥJ þ kðĴð1Þ � 1Þ�ðp4 � p3ðY 1 þ l1ÞÞ,

‘�7 ¼ 2ĝI , (46)

and

p4 ¼ p5. (47)

In these relations, ĝI ¼ gI ðÎ
ð1ÞÞ, ĥJ ¼ hJðĴ

ð1ÞÞ, with

Î ð1Þ ¼ F̂ð1Þ � F̂ð1Þ ¼ ðY 1 þ l1Þ
2
þ ðY 2 þ l2Þ

2
þ ðY 3 þ l3Þ

2
þ s,

Ĵð1Þ ¼ det F̂ð1Þ

¼ ðY 1 þ l1ÞðY 2 þ l2ÞðY 3 þ l3Þ � p1ðY 3 þ l3Þ � p2ðY 2 þ l2Þ

� p3ðY 1 þ l1Þ þ 2p4, ð48Þ

and it is recalled that L�1221, L�1331, L�2332 are given, respectively, by expressions (40)2, (40)3,

(40)4. The fact that one of the generalized secant equation (12) is satisfied trivially has the

direct implication that F̂ð1Þ enters the above equations only through eight (instead of nine)
independent combinations, namely, Y 1, Y 2, Y 3, p1, p2, p3, s, p4. As described below, these
are the only combinations needed in the computation of the second-order estimate (10) forbW . Now, by recalling the definitions p1 ¼ F̂

ð1Þ
12 F̂

ð1Þ
21 , p2 ¼ F̂

ð1Þ
13 F̂

ð1Þ
31 , p3 ¼ F̂

ð1Þ
23 F̂

ð1Þ
32 , and

p4 ¼ F̂
ð1Þ
23 F̂

ð1Þ
31 F̂

ð1Þ
12 , p5 ¼ F̂

ð1Þ
32 F̂

ð1Þ
13 F̂

ð1Þ
21 , it is seen that Eq. (47) can be solved in closed form to

render

p4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
. (49)
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Each of the two distinct roots (49) for p4 may be substituted back in Eqs. (46) to finally
generate a closed system of seven nonlinear, algebraic equations for the seven independent
moduli ‘�a. These equations must be solved numerically.

Having computed from (46) the values of all seven independent components of L

(i.e., ‘�a) for a given initial porosity ðf 0Þ, given material behavior (g, h, k), and given loading

(l1, l2, l3), the values of the non-zero components of Fð1Þ (i.e., lð1Þ1 , l
ð1Þ

2 , l
ð1Þ

3 ) and the

relevant combinations of F̂ð1Þ (i.e., Y 1, Y 2, Y 3, p1, p2, p3, s, p4) may be readily determined
using relations (41), (43), (44), and(49). In turn, these results can be used to compute the

second-order estimate (10) for the effective stored-energy function bW of isotropic porous

elastomers. The final expression for bW is given by (23) in the text.
In connection with these results, it is important to remark that there are four possible

combinations of the roots introduced in (43) and (49), which lead to four different
estimates for bW . In the case when the bulk modulus of the material (at zero strain) k is of
the order of the shear modulus (at zero strain) m, all four root combinations lead to very
similar results for the effective stored-energy function bW . However, when the bulk
modulus is significantly larger than the shear modulus, i.e., kbm, the estimates produced
by the four distinct combinations are very different. In fact, for kbm, it will be shown in
the next appendix that only one root combination generates physically meaningful
estimates that are superior to the other three possibilities.

Appendix C. Second-order estimates for isotropic porous elastomers with incompressible

matrix phases

In this appendix, we outline the derivation of the second-order estimate (26) for the
effective stored-energy function bW I of porous elastomers consisting of initially spherical,
polydisperse, vacuous inclusions distributed randomly and isotropically (in the un-
deformed configuration) in an incompressible matrix phase (22) with k ¼ 1.
In the approach that follows, we start out with the results presented in Appendix B for

the second-order estimate (23) for porous elastomers with compressible matrix phases and
carry out the asymptotic analysis corresponding to the incompressible limit k!1. In this
context, it is important to realize that two root combinations among the four possible ones
described in Appendix B lead to estimates for bW that become unbounded in the limit as
k!1. More precisely, for J41 ðJo1Þ the ‘‘positive’’ (+) (‘‘negative’’ ð�Þ) root in (43)
results in estimates for bW that blow up as k!1, regardless of the choice of roots for p4

in expression (49). (For J ¼ 1 the asymptotic behavior of the roots is different and it will
be addressed below.) These estimates suggest that a porous elastomer with an
incompressible matrix phase would be itself incompressible, which is in contradiction
with experimental evidence. Moreover, the two estimates associated with each of the roots
in (49) for bW that remain finite in the limit of incompressibility of the matrix phase are
considerably different, in general. In order to discern which one of them is the better
estimate, we make contact with the evolution of the microstructure. First, we recall that the
evolution of porosity in porous elastomers with incompressible matrix phases can be
computed exactly and the result is given by (31) in the text. In this regard, we note that the
evolution of porosity associated with the two above finite estimates can be shown to be
exact up to second order in the strain (i.e., up to ðli � 1Þ2). However, for larger
deformations, the porosities associated with these two roots differ significantly from each
20



other with the choice p4 ¼ signððlð1Þ1 � l1Þðl
ð1Þ

2 � l2Þðl
ð1Þ

3 � l3ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3
p

in (49) leading to a

better approximation to the exact result (31) than the alternative root. Thus, based on the
above-presented physical arguments, there is only one root combination among the four
possible choices that lead to physically meaningful, superior estimates in the limit as

k!1, namely, for Jo1 (for J41), the ‘‘positive’’ ðþÞ (‘‘negative’’ ð�Þ) root in (43) with

the choice p4 ¼ signððlð1Þ1 � l1Þðl
ð1Þ

2 � l2Þðl
ð1Þ

3 � l3ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3
p

in (49). Regarding these

combinations, it is important to make the following two remarks. First, both these

combinations can be shown to generate estimates for deformations with J ¼ 1 that are
superior to the other two alternatives. Moreover, the full numerical solution suggests that

these two superior choices, ðþÞ and ð�Þ in (43) with the p4 ¼ signððlð1Þ1 � l1Þðl
ð1Þ

2 �

l2Þðl
ð1Þ

3 � l3ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3
p

in (49), lead in fact to the same estimate for bW when J ¼ 1. This is

difficult to verify analytically, however, since the equations associated with the (+) root

develop a singularity as k!1 when approaching J ¼ 1. Second, the asymptotic analysis

associated with the superior root for deformations with Jo1 leads exactly to the same

expression for the effective stored-energy function bW I as the one obtained from the

analysis associated with the superior root for deformations with J41. In conclusion, the

stored-energy function bW I can be written as a single expression valid for all values of

Jð40Þ. Next, we sketch out the derivation of such expression.
Based on numerical evidence from the results for finite k, an expansion for the

unknowns in this problem, i.e., ‘�a ða ¼ 1; 2; . . . ; 7Þ, is attempted in the limit as k!1 of
the following form:

‘�1 ¼ a1D�1 þ a2 þ a3DþOðD2Þ,

‘�2 ¼ b1D�1 þ b2 þ b3DþOðD2Þ,

‘�3 ¼ c1D�1 þ c2 þ c3DþOðD2Þ,

‘�4 ¼ d1D�1 þ d2 þ d3DþOðD2Þ,

‘�5 ¼ e1D�1 þ e2 þ e3DþOðD2Þ,

‘�6 ¼ m1D�1 þm2 þm3DþOðD2Þ,

‘�7 ¼ n2 þ n3DþOðD2Þ, (50)

where D¼: 1=k is a small parameter and a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3,
m1, m2, m3, n2, and n3 are unknown coefficients to be determined from the asymptotic
analysis that follows. It proves useful to spell out the corresponding expansions of the
constrained moduli L�1221, L�1331, L�2332, as well as those for (the non-zero components of

Fð1Þ) lð1Þ1 , l
ð1Þ

2 , l
ð1Þ

3 and the combinations (of the components of F̂ð1Þ) Y 1, Y 2, Y 3, p1, p2, p3,

p4, and s, in the limit as k!1. Thus, substituting expressions (50) in relations (40) for the
components L�1221, L�1331, L�2332 can be shown to lead to the following expansions:

L�1221 ¼ ð
ffiffiffiffiffiffiffiffiffi
a1b1

p
� d1ÞD�1 þ

a2b1 þ a1b2 � ða1 þ b1Þn2

2
ffiffiffiffiffiffiffiffiffi
a1b1

p � d2 þOðDÞ,
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L�1331 ¼ ð
ffiffiffiffiffiffiffiffiffi
a1c1
p

� e1ÞD�1 þ
a2c1 þ a1c2 � ða1 þ c1Þn2

2
ffiffiffiffiffiffiffiffiffi
a1c1
p � e2 þOðDÞ,

L�2332 ¼ ð
ffiffiffiffiffiffiffiffiffi
b1c1

p
�m1ÞD�1 þ

b2c1 þ b1c2 � ðb1 þ c1Þn2

2
ffiffiffiffiffiffiffiffiffi
b1c1
p �m2 þOðDÞ. (51)

Similarly, substituting (50) in relations (41) leads to

lð1Þ1 ¼
˚lð1Þ1 þ

�lð1Þ1 DþOðD2Þ; l
ð1Þ

2 ¼
�lð1Þ2 þ

˚lð1Þ2 DþOðD2Þ,

l
ð1Þ

3 ¼
˚lð1Þ3 þ

�lð1Þ3 DþOðD2Þ. ð52Þ

The explicit form of the coefficients ˚lð1Þi , �lð1Þi ði ¼ 1; 2; 3Þ in these last expressions is too

cumbersome to be included here. In any case, at this stage, it suffices to remark that they
are known in terms of the coefficients a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, m1,
m2, m3, n2, and n3 introduced in (50). Finally, substituting (50) in relations (43), (44), and
(in the appropriate root of) (49) leads to:

Y 1 ¼ Y̊ 1 þ �Y 1DþOðD2Þ,

Y 2 ¼ Y̊ 2 þ �Y 2DþOðD2Þ,

Y 3 ¼ Y̊ 3 þ �Y 3DþOðD2Þ,

p1 ¼ p̊1 þ �p1DþOðD2Þ,

p2 ¼ p̊2 þ �p2DþOðD2Þ,

p3 ¼ p̊3 þ �p3DþOðD2Þ,

p4 ¼ p̊4 þOðDÞ ¼ sign½ð˚lð1Þ1 � l1Þð
˚lð1Þ2 � l2Þð

˚lð1Þ3 � l3Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p̊1p̊2p̊3

p
þOðDÞ,

s ¼ s1 þOðDÞ, (53)

where, similar to (52), the coefficients in these expressions are (known functions of the
coefficients defined in (50)) too cumbersome to be included here. For later use, it is

convenient to introduce the expansion of Ĵð1Þ ¼ det F̂ð1Þ:

Ĵ ð1Þ ¼ Ĵ
ð1Þ
1 þ Ĵ

ð1Þ
2 DþOðD2Þ, (54)

where, making contact with (53), we note that Ĵ
ð1Þ
1 ¼ ðY̊ 1 þ l1ÞðY̊ 2 þ l2ÞðY̊ 3 þ l3Þ�

p̊1ðY̊ 3 þ l3Þ � p̊2ðY̊ 2 þ l2Þ � p̊3ðY̊ 1 þ l1Þ þ 2p̊4. In addition, it will also prove useful to
introduce the following notation for the expansions of the derivatives of the constitutive
functions g and h characterizing the elastomeric matrix phase in the limit as k!1:

ĝI ¼ ĝ01 þ ĝ02DþOðD2Þ,

ĥJ ¼ ĥ01 þ ĥ02DþOðD2Þ, (55)

where it is recalled that ĝI ¼ gI ðÎ
ð1ÞÞ, ĥJ ¼ hJðĴ

ð1ÞÞ, and Î ð1Þ and Ĵ ð1Þ are given by (48).
22



Next, by making use of expressions (50)–(55) in (46), a hierarchical system of equations
is obtained for the unknown coefficients introduced in (50). The first set of equations, of
order OðD�1Þ, can be shown to yield the following non-trivial relations:

b1 ¼
l21
l22

a1; c1 ¼
l21
l23

a1; d1 ¼
l1
l2

a1; e1 ¼
l1
l3

a1; m1 ¼
l21
l2l3

a1, (56)

and

ðY̊ 1 þ l1ÞðY̊ 2 þ l2ÞðY̊ 3 þ l3Þ � p̊1ðY̊ 3 þ l3Þ � p̊2ðY̊ 2 þ l2Þ

� p̊3ðY̊ 1 þ l1Þ þ 2p̊4 ¼ 1. ð57Þ

Note that Eqs. (56) correspond actually to explicit expressions for the unknowns b1, c1, d1,
e1, and m1 in terms of the coefficient a1. Interestingly, relations (56) make the leading order
terms in the shear moduli (51) vanish identically, so that, in the limit of incompressibility,
these moduli remain finite, as it would normally be expected on physical grounds. On the
other hand, Eq. (57)—which can also be written as Ĵ

ð1Þ
1 ¼ 1—is an implicit equation that

ultimately involves the coefficients a1, a2, b2, c2, d2, e2, m2, and n2. Now, by making use of
(56) and (57), the second hierarchy of equations, of order OðD0Þ, can be shown to
ultimately yield the following relations:

a2Y̊ 1 þ d2Y̊ 2 þ e2Y̊ 3 þ a1
�Y 1 þ

l1
l2

�Y 2 þ
l1
l3

�Y 3

� �
¼ 2ĝ01ðY̊ 1 þ l1Þ þ ðĥ

0
1 þ Ĵ

ð1Þ
2 Þ½ðY̊ 2 þ l2ÞðY̊ 3 þ l3Þ � p̊3� � 2gIl1 � hJl2l3,

d2Y̊ 1 þ b2Y̊ 2 þm2Y̊ 3 þ a1
l1
l2

�Y 1 þ
l1
l2

�Y 2 þ
l1
l3

�Y 3

� �
¼ 2ĝ01ðY̊ 2 þ l2Þ þ ðĥ

0
1 þ Ĵ

ð1Þ
2 Þ½ðY̊ 1 þ l1ÞðY̊ 3 þ l3Þ � p̊2� � 2gIl2 � hJl1l3,

e2Y̊ 1 þm2Y̊ 2 þ c2Y̊ 3 þ a1
l1
l3

�Y 1 þ
l1
l2

�Y 2 þ
l1
l3

�Y 3

� �
¼ 2ĝ01ðY̊ 3 þ l3Þ þ ðĥ

0
1 þ Ĵ

ð1Þ
2 Þ½ðY̊ 1 þ l1ÞðY̊ 2 þ l2Þ � p̊1� � 2gIl3 � hJl1l2,

1

2

l1
l2

a2 þ
l2
l1

b2

� �
�

l21 þ l22
2l1l2

n2 � d2 ¼ ðĥ
0
1 þ Ĵ

ð1Þ
2 Þ

p̊4

p̊1

� ðY̊ 3 þ l3Þ
� �

,

1

2

l1
l3

a2 þ
l3
l1

c2

� �
�

l21 þ l23
2l1l3

n2 � e2 ¼ ðĥ
0
1 þ Ĵ

ð1Þ
2 Þ

p̊4

p̊2

� ðY̊ 2 þ l2Þ
� �

,

n2 ¼ 2ĝ01, (58)

and

ĥ01 þ Ĵ
ð1Þ
2 ¼

p̊4

p̊3

� ðY̊ 1 þ l1Þ
� ��1

1

2

l2
l3

b2 þ
l3
l2

c2

� �
�

l22 þ l23
2l2l3

n2 �m2

� �
. (59)

Solving (59) for Ĵ
ð1Þ
2 , the second term in the expansion (54), and substituting the result in

Eqs. (58), can be shown to ultimately lead to a system of seven nonlinear equations—
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formed by Eqs. (57) and (58)—for the seven unknowns:

u1¼
:

a1; u2¼
:

n2; u3¼
: l21b2 � l21a2; u4¼

: l23c2 � l21a2,

u5¼
: l2d2 � l1a2; u6¼

: l3e2 � l1a2; u7¼
: l2m2 � l3c2. (60)

Here, the primitive coefficients a1 and n2 have been relabeled as u1 and u2, respectively, for
consistency of notation.
At this point, it is important to recognize that knowledge of the seven variables (60), as

determined by the system of seven equations (57)–(58), suffices to determine the leading-

order terms (of the components of Fð1Þ)
˚lð1Þ1 , ˚lð1Þ2 , ˚lð1Þ3 , in (52) and (of the combinations of

the components of F̂ð1Þ) Y̊ 1, Y̊ 2, Y̊ 3, p̊1, p̊2, p̊3,p̊4, and s1, in (53), as well as the second-order

traces �lð1Þ1 l2l3 þ
�lð1Þ2 l1l3 þ

�lð1Þ3 l1l2 and �Y 1l2l3 þ �Y 2l1l3 þ �Y 3l1l2. The corresponding

final expressions are too cumbersome to be written down here, however, they do satisfy
certain interesting, simple relations which worth recording, namely

Y̊ 1 ¼
˚lð1Þ1 þ l1; Y̊ 2 ¼

˚lð1Þ2 þ l2; Y̊ 3 ¼
˚lð1Þ3 þ l3,

p̊1 ¼
1

f 0

ð
˚lð1Þ1 � l1Þð

˚lð1Þ2 � l2Þ; p̊2 ¼
1

f 0

ð
˚lð1Þ1 � l1Þð

˚lð1Þ3 � l3Þ,

p̊3 ¼
1

f 0

ð
˚lð1Þ2 � l2Þð

˚lð1Þ3 � l3Þ,

�lð1Þ1 l2l3 þ
�lð1Þ2 l1l3 þ

�lð1Þ3 l1l2 ¼ �Y 1l2l3 þ �Y 2l1l3 þ �Y 3l1l2. (61)

Finally, by making use of the above results, it can be shown that the leading-order term
of the second-order estimate (23) in the limit of incompressibility is given by (26) in the
text, where

Î ð1Þ ¼ ðY̊ 1 þ l1Þ
2
þ ðY̊ 2 þ l2Þ

2
þ ðY̊ 3 þ l3Þ

2
þ s1. (62)

In this relation, it should be emphasized again that the expressions for Y̊ 1, Y̊ 2, Y̊ 3, and
s1 are known—but not shown here for their bulkiness—explicitly in terms of the applied

loading, l1, l2, l3, the initial porosity, f 0, the constitutive function, g, and the seven
variables ua, defined by (60), that are the solutions to the system of the seven nonlinear,
algebraic equations formed by (57) and (58).
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Ponte Castañeda, P., 2002. Second-order homogenization estimates for nonlinear composites incorporating field

fluctuations. I. Theory. J. Mech. Phys. Solids 50, 737–757.

Simpson, H.C., Spector, S.J., 1983. On copositive matrices and strong ellipticity for isotropic materials. Arch.

Ration. Mech. Anal. 84, 55–68.
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