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nonlinear composites with anisotropic
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In part T of this work, bounds were derived for the effective potentials of nonlinear
composites with anisotropic constituents, making use of an appropriate generalization of
the linear comparison variational method. In this second part, the special case of
nonlinear composites with crystalline constituents is considered. First, it is shown that,
for this special but very important class of materials, the ‘variational’ bounds of part I
are at least as good as an earlier version of the bounds due to deBotton & Ponte
Castafieda. Then, the relative merits of these two types of bounds are studied in the
context of a model, two-dimensional, porous composite with a power-law crystalline
matrix phase, under anti-plane loading conditions. The results show that, indeed, the
variational bounds of part I improve, in general, on the earlier bounds, with the former
becoming progressively sharper than the latter as the number of slip systems of the
crystalline matrix phase increases. In particular, it is shown that, unlike the bounds of
deBotton & Ponte Castafieda, the variational bounds of part I are able to recover the
variational bound for composites with an isotropic matrix phase, as the number of slip
systems, all having the same flow stress, tends to infinity.

Keywords: nonlinear homogenization; variational methods; crystalline materials

1. Crystalline phases and polycrystals

In part I of this work (Idiart & Ponte Castafieda 2007), bounds have been derived
for the effective stress potentials of nonlinear composites made of a fairly general
class of anisotropic constituents, satisfying a certain ‘square convexity’
hypothesis. These bounds were obtained by making use of an appropriate
generalization of the linear comparison variational method, introduced by Ponte
Castafeda (1991) in the context of composites with isotropic constituents, and
will be referred to here as ‘variational’ bounds. In this second part of the work,
we consider the special case of nonlinear composites with crystalline constituents,
including polycrystals, which is perhaps the most common type of composite
material with anisotropic constituents. It will be shown that the variational
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bounds are at least as good as an earlier version of the bounds due to deBotton &
Ponte Castafieda (1995), which were developed specifically for nonlinear
composites with crystalline constituents.

We consider a reference single crystal which is capable of undergoing
viscoplastic deformation on a set of K preferred crystallographic slip systems.
These systems are characterized by the second-order tensors u), k=1, ..., K,
defined by

1
Ry = §(n(k)®m(k) + m) @ny ), (1.1)

where n; and m;, are the unit vectors normal to the slip plane and along the
slip direction in the kth system, respectively. When the crystal is subjected to an
applied stress o, the resolved shear stress acting on the kth slip system is given
by T(y=0-mu and the strain (rate) & in the crystal is the superposition of the
strain (rates) y(y on each slip system k (k=1, ..., K). They are assumed to
depend on the resolved shear stress 7(;), through a slip potential ¥, such that

Yk = WE )( (k)) For consistency with the hypothesis of square convexity
introduced in part I, the potentials (3 will be assumed here to be conver in
the variable T( ) (and are therefore also convex in 7). A commonly used form
for the slip potentials ¥ is the power-law form

_vomo)w (|7 i
holr) = (<m><k>> | .

n+1

where m=1/n (0<m<1) and (7¢) are the strain-rate sensitivity and flow
stress of the kth slip system, respectively, and v, is a reference strain rate. Note
that the limiting values of the exponent m=1 and 0 correspond to linear and
rigid-ideally plastic behaviours, respectively. In this connection, it is recalled
that, even though the slip potentials ¥ ;) are not differentiable in the rigid-ideally
plastic case, it is still possible to relate vy and 7(; via the subdifferential of
convex analysis.

Since the phases in a composite made of such crystalline materials may also
exhibit different orientations, it is useful to introduce a set of rotation tensors R""
(r 1...,N). Then, deﬁnmg phase r as the region occupied by all crystals of a
given type and orientation R, its constitutive behaviour is characterized by
the stress potential

K1)
N(g) = ;%g (Tgk;) (1.3)

where the functions 1//(;) characterize the constitutive response of the slip systems
of all the crystals associated with phase r and

(r _ nT (NRp(r
Ty =0 (R( ) u(k)R( )>. (1.4)

It is recalled that a polycrystal is an aggregate of a large number of identical
single crystals with different orientations. This special case is included in
expression (1.3), provided that all the phase shp systems and potentials be taken
identical to each other (”Ek; = p) and Y k =Y())- But the definition (1.3) is
general enough to include multi- phase polycrystals as well as composites w1th
crystalline phases, such as the porous crystalline materials considered in §1a.



(a) Variational bounds

Since the phase stress potentials (1.3) have been assumed to be ‘square
convex’, the variational bound given in result 4.4 of part I holds and can be used
for the above-defined class of composites with crystalline phases.

Result 1.1. The effective stress potential u of an N-phase nonlinear composite
(or polycrystal) with crystalline phase potentials (1.3) is bounded below by

(o) = sup {ﬂo(a) — Z My™) (S(()r)) }, (1.5)

si">0
r=1,...,.N
where the error functions " are given by
. : 1 : :
™) <§é7)) = sup {50-8(7)0— u(7)(a)}, (1.6)
and where
]- ~ S
io(@) = 575 (S}")a. (17)

is the effective stress potential of a linear comparison composite (LCC) with

uniform compliance tensors S(()T) in each of the phases (r=1..., N), and effective
compliance tensor S

As discussed in remark 4.5 of part I, the bound (1.5) involves a non-smooth,
concave optimization problem for the variables S(()T), which can be solved by
making use of appropriate numerical methods. However, as will be seen in the
context of the model problem considered below, the main difficulty in the
determination of this bound lies in the computation of the ‘error’ functions v(r),
which involve a non-concave optimization problem that must be solved making
use of more sensitive numerical algorithms.

If the slip potentials 1//28 are all of the power-law type (1.2) with the same
exponent n, as in the model problem considered in §2, the bound (1.5) admits
the following alternative representation, as can be deduced from result 4.6 of part I.

Result 1.2. The effective stress potential u of an N-phase, power-law composite
(or polycrystal) with crystalline phase potentials given by equation (1.3), together
with equation (1.2), is bounded below by

(1=n)/2
n+1
Z () ,

2
n+1

sup ao(&)(n+1 /2
s\’ >0
r=1,...N

i(6) =

(1.8)
where Uy is given by (1.7), and

: 1 n—1 [o-Sya]"TV/ (D)
(r) P - 0 1

The main advantage of this special representation for power-law composites is
that, even though the functions '™ as given by equation (1.9) still require the




solution of a non-concave optimization problem, this optimization is now over a
bounded domain (||e||=1). In addition, expression (1.8) is well behaved for large
values of the nonlinearity n, which facﬂltates the numerical resolution of the
problem. In general, further smlphﬁcatlons are not possible for potentials W' of
the form (1.3), and the solution strategies must be adapted to the specific system
of interest.

However, considerable simplification is possible for ideally plastic compo-
sites. It is then convenient to introduce the strength domain P of each

phase 7, defined by the conditions «”(¢)=0 if ¢€ P, and % otherwise. For
crystalline phases charactemzed by ideally plastic slip potentials of the form
(1.2) with n— oo, the sets P") are polyhedral; therefore, the extreme points of
those sets are glven by their finitely many wertices (See Rockafellar 1970).
This fact allows the following, further specialization of result 4.7 of part I,
for the effective strength domain P of an ideally plastic composite with
crystalline phases.

Result 1.3. The effective strength domain p of an N-phase composite (or
polycrystal) with crystalline, rigid-ideally plastic phases is bounded from the
outside by

N
P, = {aia()(a) <> d(s)), vsy = 0}, (1.10)
r=1

(r)

where gy is given by equation (1.7), and the functions v'" are given by

T T 1 T s r
(s17) = mw, {get oot} g

where K( is the total number of vertices ofP( " and o 3 denotes the stress vector
associated with the kth vertex.

Thus, in the case of ideally plastic, crystalline phases, evaluation of the
functlons o as given by equation (1.11) is very simple, requiring only knowledge
of the vertex stress vectors o of the crystal in question. Such geometric
information on the yield surface is already available for common crystal
symmetries, since it is required in applications of the classical Taylor theory of
polycrystal plasticity.

(b) Relazed variational bounds

As already mentioned, there is an alternative version of the variational bound
introduced by deBotton & Ponte Castafieda (1995) for composites with
crystalline phase potentials of the form (1.3). With the objective of establishing
a relationship between the new bound (1.5) and this earlier version, the rest of
this section is devoted to a derivation of the bound of deBotton & Ponte
Castaneda (1995) directly from equation (1.5).

Let the compliance tensors S in equation (1.5) take the special form

o) =2 alufjont. o0 w2



where the u(g are those of the nonlinear crystalline phase r. Then, recalling the

definition (1.6) of the functions v\, it follows that

N 1
0(7)<§((] )> = sup {56'55 o — ul )(a')}

KT
= s> {afy (o-u) ' =0l (o-ui) } 113)

7 k=1
KT
(r) ()2 _ () ()
= S“,p{“(k) (7)) =¥ (Toc))}’
k=1 ng))
and therefore
K™
) g(r) (ry( ()
o )(SO ) <D U <a(k)), (1.14)
k=1
where
(L)) = (r) .2 _ . (r)
V) (a(k)> = sup {a(k)T _¢(k)(7)}- (1.15)

In view of the square convexity hypothesis for the slip potentials 302,3, the

expression inside the curly brackets in equation (1.15) is concave in 7%, and so
the computation of the functions 11((,:) is straightforward, as opposed to that of the
functions v("), which as already stated requires, in general, the solution of a non-
concave optimization problem. For this reason, the bound of deBotton & Ponte
Castafieda (1995), which follows from equation (1.14) and is detailed in the next

result, is much simpler to compute.

Result 1.4. The lower bound (1.5) for the effective stress potential u of an
N-phase nonlinear composite with crystalline phase potentials (1.3) is bounded
below by

N KO
(@)= suw {%(«) =32 ) (o) } (1.16)
T r=1 k=1
) >0
r=1,....N
k=1,.. K"

where Uy is the effective stress potential of an LCC, defined by equation (1.7), with
phase compliance tensors Sés), as given by equation (1.12) in terms of the slip

compliances a(z), and the functions v(,:) are determined by relations (1.15).
Owing to its derivation here, the bound equation (1.16) will be referred to as
the ‘relaxed variational’ (linear comparison) bound, as opposed to the bound
(1.5), which will be plainly called the variational (linear comparison) bound.
For power-law and ideally plastic crystalline phases, the functions v; can be
computed explicitly and the ‘relaxed’” bounds can be simplified further. The
results are quoted below (Ponte Castanieda & Suquet 1998) for completeness.



Result 1.5. For N-phase composites with power-law crystalline phases, the
relaxzed variational bound (1.16) can be rewritten as

(1.17)

Also, the effective strength domain p of an N-phase composite with rigid-ideally
plastic (n— ), crystalline phases is bounded from the outside by

N K
- 2
P, = {ayuo(a)gzl;d a7 ((TO)EZ;) . Ve >0} (1.18)
=1 =
It is worth noting that equality in equation (1.14) holds if the set of K'" ™
tensors u(kg form a basis for the space of stress tensors, since in that case, the
scalar quantities 7 k) represent the components of a stress tensor relative to that
basis. This suggests that the relaxed variational bound (1.16) coincides with the

variational bound (1.5) when this is the case, and the optimal S(()T) in the context
of the latter are of the form (1.12). This is precisely what happens in the model
problem to be discussed below. Unfortunately, it is not representative of what
happens in practice, since for most cases, including FCC, BCC and HCP crystals,
the number of available slip systems is larger than the dimension of the relevant
stress space.

2. Application to porous crystalline materials

In this section, the focus is on a special class of (two-phase) porous materials with
‘particulate’ microstructures, consisting of aligned cylindrical pores (r=2) that
are distributed randomly and isotropically in a viscoplastic single-crystal phase
(r=1). It is assumed that the symmetry axes of the crystalline matrix and the
cylindrical pores are aligned with the z3 axis. It is further assumed that the
behaviour of the crystalline matrix is characterized by an 1ncompr6881ble stress
potential u™V of the form (1.3), where the slip potentials zp are of the power-
law type (1.2), and the Schmid tensors u(; are taken to be of the form
1

1200 =§(’n(k)®€3 + €3 ®’I’L(k)) (21)
Here, ej is parallel to the slip direction and

ny = cos 0 e, +sin 0, e, (2.2)

denotes the unit vector normal to the slip plane of the kth system, relative to
a laboratory frame of reference e; (in the sequel, components are always referred
to this basis). The porous material is subjected to anti-plane loadings, and the
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Figure 1. Yield surfaces in o13-693 space for (a) square (K=2), (b) hexagonal (K=3) and
(¢) octagonal (K=4) symmetries.

relevant viscoplastic boundary value problem becomes a vectorial two-dimen-
sional problem, where the non-zero components of the stress and strain-rate
vectors, namely, 613, 023, €13 and &y3, are functions of z; and x5 only. (This
problem is mathematically equivalent to two-dimensional conductivity.)

For simplicity, it will be assumed initially that all slip systems have the same
flow stress, i.e., (7o) (x =70 for all k. Of particular interest here are three different
types of anisotropy, characterized by the sets of angles 6 given by {0, 7/2},
{0, £7/3} and {0, £x/4, w/2}, which correspond to square (K=2), hexagonal
(K=3) and octagonal (K=4) symmetry, respectively. In the linear case, the
potential u(!) is in fact isotropic for these three types of anisotropies. In the non-
linear case, however, the potential uM is, in general, anisotropic and in the ideally
plastic limit, it defines an anisotropic polygonal yield surface in the g3 — a3 stress
space, as depicted in figure 1. Note that as the number of slip systems K increases,
the potential approaches an isotropic yield surface with flow stress 7.

From the homogeneity of the potential (1.3) and the symmetry of the problem,
it follows that, under anti-plane conditions, the effective stress potential can be

written as -
~ - n
~ ToYo [ Te
u(o) = — , 2.3
@) =7 (2 (2.3
where 7,=/(1/2)6,-6,= (633 + 63;)"/? is the macroscopic equivalent stress
and 7, is the effective flow stress, which depends on the porosity f= ¢ and the
direction of loading 6=tan'(7,3/7:3), and completely characterizes the
effective response of the porous material. It is noted that, for the particular
class of composites considered here, the potential @ exhibits the same

symmetries as the matrix potential u(l), and therefore 7 is a periodic function
of @ with period 7/K. Thus, it suffices to restrict attention to loading direc-
tions in the range || <w/(2K). Note that the values §=0and +7/(2K)
correspond to loadings directed along a slip system and a ‘corner’ of the matrix
phase, respectively.

(a) Variational bounds

In this section, the variational bounds described in result 1.2 are specialized to
the model porous material introduced above. Thus, from the lower bound (1.8)
for the effective stress potential of a power-law composite, we obtain the



following upper bound for the effective flow stress of the model porous material:

— 1/n 1 (n—1)/2n
7@ = ()" it L lan(a/ml R (=) S (s0)) ,
2 s{V>0

n—1

(2.4)

where @y and vV are defined by equations (1.6) and (1.7), respectively.

For the problem at hand, it suffices to restrict the optimization over the
compliance tensors S[(Jl) to the out-of-plane components 50(1.3)(].3), ,7=1,2. It
is then convenient to write these tensors in the spectral form

1 _ 1 1

Sy ST E+ S F, (2.5)
where E and F are eigentensors given by E= uy®uy, and F =K —E, with uy= %
(n®e;+ e3®n), n=cos e +sinfe,, and K denoting the out-of-plane
projection of the fourth-order identity tensor. Thus, the tensors S[()l) are com-
pletely specified by two positive moduli Ay and uq (eigenvalues), and the orien-
tation of their principal axes 8, given by tan 26 = 25(511)323/(5(()11)313 — S(()1%323). Note
that the degree of anisotropy of these compliance tensors is characterized by the
ratio ko= Ao/, which takes the value 1 for isotropic tensors, and 0 or infinity,
for strongly anisotropic tensors.

The variational bounds (2.4) require the use of appropriate bounds for the
effective potential @, of linearly viscous, porous materials with matrix
compliances of the form (2.5). In this work, use is made of the generalized
Hashin—Shtrikman (HS) bounds of Willis (1977), which are known to be optimal
for (two-phase) porous materials. In this case, they can be expressed in the form

So=sy + 1%(@(1))‘1, (2.6)
where QW) is given by QY = Cél) —C(()l)P(l)C(()l). Here, Cél) = S(()l)i], and PW is a
microstructural tensor, that can be found in Ponte Castaieda & Nebozhyn
(1997). The resulting effective compliance tensor Sy has the same form as the

compliance tensor of the matrix phase (2.5), but with effective moduli given by
s 1—f 1—f

Ao Zm%a fo Zmﬂo-

Note that the compliance tensors S, and Sél) are therefore co-axial, i.e. they have
the same principal directions, which is a consequence of the assumed isotropy of
the microstructure.

In addition, the bound (2.4) requires the evaluation of the error function o'V,
This actually constitutes the main difficulty in the computation of the variational
bound, for the optimization with respect to ") in equation (1.6) is a non-convex
global optimization problem. In general, this optimization has to be carried out
numerically, using, for instance, methods based on genetic algorithms, such as
the differential evolution algorithm of Storn & Price (1997). In this connection, it
should be emphasized that such optimization methods cannot, in general,
guarantee that the result obtained is indeed the global optimum. However, in the
context of the model problem considered here, the optimization in equation (1.6)
involves only one variable in a bounded domain, namely the orientation angle of
the stress vector ¢V, and is therefore a fairly simple one for these methods,

(2.7)



which have been developed to deal with high-dimensional optimizations. Finally,
the optimization of the bound (2.4) with respect to the compliance tensor
Sol should be carried out numerically, in general, making use of an appropriate
method for non-smooth optimization, since the error function oY is not
differentiable in its entire domain (see part I).

(i) Rigid-ideally plastic matriz

It has been shown that the computation of the variational bound simplifies
considerably in the case of ideal plasticity. Indeed, in this case, the variational
bounds for the model problem considered here can be computed analytically.
First, note that in the ideally plastic limit (n— o), the variational bound (2.4)

for 7, simplifies to -1/2

o) = | O/
S A ey

which defines a bound from the outside for the macroscopic yield surface of the
ideally plastic porous material. The most 1mportant simplification, however,
comes from the fact that, in this case, the function v'*) can be written in the form
(1.11), with a(k) being the stress vectors corresponding to the 2K vertices, or
corners, of the matrlx yield surface (figure 1). Then, the following exph(:lt
expressions for v'Y) may be derived by routine analysis:

(2.8)

K =2: v(Sg) = (r5/2){%" + " + 2" — o' [sin(|26])},
K=3: o¥(Sy) = (r/3) {2 + 1" + 135" —uo*|eos 126~ TH(1— k)] }.
K=4: v(l)(§0) = (7(2)/4)8602(77/8){/151 —|—,u61 + .-

125" — ko' cos | [26] = 5+ wH (ky—1)] |,

where H denotes the Heaviside function, and it is recalled that ko=2Ag/ug. These
expressions are valid for || <7 /(2K), but use can be made of the fact that the
functions v'") are even and periodic in B, with period 7/K, to obtain
corresponding expressions that are valid outside this range. It is emphasized
that these functions are differentiable everywhere except at §=0 and Ay=u,.
The optimization with respect to S(()l) in equation (2.8) can then be carried out
analytically, leading to the following explicit bound for the effective flow stress:
s 1+ k]2
o(0) = rsec0.1-p)|1+5 L)
where §.=m/(2K), and the anisotropy ratio kg is a periodic function of 4, with
period 26., given by

\/(cos 20 — cos 20,)* + f?sin?26, — (cos 26 —cos 20,
Vi = (1 —cos 20.)f
1 6.<16/<4.,
(2.10)

(2.9)

16| < 6,




with the angle 6, given by cos 26, = min{(1+ f)cos 26.,1}. It is noted that, even
though kg is not smooth at § = 6., the effective flow stress (2.9) turns out to be a
smooth function of 6.

(b) Relaxed variational bounds

In this section, the relaxed variational bounds of deBotton & Ponte Castafieda
(1995) recalled in result 1.5 are specialized for the above-described model
problem. Thus, from the lower bound (1.17) for the effective stress potential,
we obtain the following upper bound for the effective flow stress of the model
porous material

K (n—1)/2n
7o(0) = 7o inf < [ig(/7)] " (L= 1) (o) Y , (2.11)

Oé(k)ZU =1

where @, is the effective potential of a linear porous material with matrix
compliance tensor

=9 o (2.12)

HMN

with the u, given by equation (2. 1) The tensor (2.12) can be written in the
form (2.5), where the tensors E and F depend on the orientation of the principal
axes of equation (2 12), B, and the moduli Ay and o are given by

2—/10222_:04@ o Engy 2—%:22“ ) Frgy)- (2.13)

Then, the linear Hashin—Shtrikman bounds for the effective stress potential % of
the LCC in equation (2.11) are given by expressions (2.6) and (2.7), with Ag, o, E
and F being those associated with the compliance tensor (2.12).

Finally, the optimization with respect to the variables ;) in equation (2.11)
should be carried out numerically using a smooth optimization method.

(i) Ideally plastic matriz

In the ideally plastic limit, the relaxed variational bound (2.11) for 7, can be
shown to reduce to

_ ko o0k M2
o(0) = Varg(1=p) jnf, {141 Leospo=g) + 200 L L 210

In this expression, k; and @ depend on the slip compliances a( and the
symmetry of the matrix potential through the relations

K K
> agpy (1 —cos[2(0y —B)]) > apysin 20

b =1 . tan28 =12 : (2.15)
kz_:l “(k)(l + COS[Q(B(k) —06)]) 1«2—:1 (1) COS ZH(k)

In general, the optimization in equation (2.14) still has to be carried out
numerically. However, for macroscopic loadings directed along a slip system (i.e.
0= 0;); expression (2.2)), the symmetry of the problem requires the optimal

10



a(r)’s to be such that 8= 6. Then, the optimization in equation (2.14) reduces to
a one-dimensional minimization with respect to kg, which yields

Vk = (/14 f2—1)/f, and so the bound (2.14) becomes

_ /
%0=\/§Tolff(\/1+f2—1>12, (2.16)

which is independent of the number of slip systems K.

(¢) Results and discussion

This section presents comparisons between the variational (VAR) and relaxed
variational (RVAR) bounds of the Hashin-Shtrikman type, as well as the
classical Voigt bounds, for the above-described model problem.

Figure 2 provides comparisons among the various bounds for porous, power-
law materials with square (K=2), hexagonal (K=3) and octagonal (K=4)
symmetries, subjected to a macroscopic stress ¢ directed along a slip system of
the matrix phase (= 0). In this figure, plots are shown for the effective flow
stress 7, normalized by the flow stress of the matrix 7, as a function of the
strain-rate sensitivity m, for a moderate value of the porosity (f=0.25). We begin
by noting that, independently of K, the VAR and the RVAR bounds coincide for
m=1 with the linear Hashin—Shtrikman bounds, as they should, and they are
seen to improve on the Voigt bound for all values of the strain-rate sensitivity,
even though the improvement is less significant in the ideally plastic limit
(m=0). The main observation in the context of this figure, however, is that,
while the VAR and RVAR bounds agree exactly in the case of a matrix with two
slip systems (see part (a)), the VAR bounds become progressively sharper than
the RVAR bounds as the number of slip systems increases, for all values of the
strain-rate sensitivity different than 1 (see parts (¢) & (e)). In fact, in the ideally
plastic limit, the RVAR bounds are found to be insensitive to K for this
particular loading direction (#=0), while the corresponding VAR bounds
decrease monotonically with increasing K. The largest difference between these
two sets of bounds is found to be approximately 6% in the case of K=4. Finally,
it is noted that the fact that the VAR and RVAR bounds coincide for
K=2, but not more generally, is because, in that case, the optimal compliances
S(( ) assomated with both sets of bounds can be written as equation (2.12), with
the tensors () forming a basis for the relevant (two- dlmensmnal) stress space, so
that equality holds in the relaxation of the function v'") (expression (1.13)).

Also shown in figure 2 are plots for the anisotropy ratio ko= A/ ug of the optimal
compliances Sg ) associated with the VAR and RVAR bounds. It is recalled that
ko=1 and 0 correspond to isotropic and strongly anisotropic compliance tensors,

. ., - . . al(l . .
respectively. Thus, it is observed that, in general, the optimal S~ associated with
the VAR bounds tends to be more 1sotroplc as the number of slip systems in the
matrix (and therefore the symmetry of the potential ut )) increases. In fact, in
the case of K=3, the potential u'') is isotropic not only for m=1, but also for
m=1/3, and in the case of K= 4, it is also isotropic for m=1/5, and so are the
optimal S(() ) associated with the corresponding VAR bounds. (Note that the latter
are also isotropic for other values of m, for which the potential u M g anisotropic.)

In contrast, the optimal S((] ) associated with the R VAR bounds are always found to
be amsotroplc for strain-rate sensitivities different than 1, even if the potential u @)

11
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Figure 2. Effective flow stress 7, normalized by the flow stress of the matrix 74, and corresponding
anisotropy ratios k, as a function of the strain-rate sensitivity m, for power-law porous materials
with square, hexagonal and octagonal symmetry and a given porosity ( f=0.25). The macroscopic
stress is directed along a slip system (= 0). Comparisons between the ‘variational’ (VAR) and
‘relaxed variational’ (RVAR) bounds of the Hashin—Shtrikman type, and the Voigt bound.
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is isotropic. This is consistent with the fact that, while in the context of the VAR

bounds, the tensors SO) are identified with secant compliances of the phase
potentials, which are known to be 1sotroplc if the potentials are isotropic, in the

context of the RVAR, the tensors SO are constructed by summing slip secant
compliances, and do not correspond to secant compliances of the phase potentials.

Finally, it is worth noting that the optimal compliances §0 associated with both,
the VAR and RVAR bounds of figure 2, have principal axes that are ‘aligned’
with the symmetry axes of the potential uV and the macroscopic stress vector
o (i.e. B=60=0), as expected from the symmetry of the problem. It should be
emphasmed however, that in the context of the VAR bounds, the optimal

orientation of the tensor SO does not follow from a stationarity condition, since the
function vV, as given by equation (1.6), is non-smooth precisely at §= 0

Figure 3 provides comparisons between the various bounds for the yield
surfaces of porous, ideally plastic materials with square (K=2), hexagonal
(K=3) and octagonal (K=4) symmetries, for a given value of the porosity
(f=0.25). The yield surfaces are symmetric about the oi3- and g93-axes. We
begin by noting that, in all three cases, the VAR and RVAR bounds improve on
the Voigt bounds for all directions of the macroscopic stress vector . The main
observation in the context of this figure, however, is that, once again, the VAR
and RVAR bounds agree exactly in the case of a matrix phase with two slip
systems (see part (a)), but as the number of slip systems increases, the VAR
bounds become progressively sharper than the RVAR bounds, for all directions
of the macroscopic stress vector ¢ (see parts (¢) & (e)), the largest difference
being of the order of 6% in the case of a matrix phase with four slip systems. In
addition, it is interesting to note that while the macroscopic yield surfaces
predicted by the Voigt bounds are simply rescaled versions of the yield surface of
the corresponding matrix phase, and therefore exhibit homologous corners, the
macroscopic yield surfaces predicted by the VAR and RVAR bounds are smooth
and exhibit a more complicated dependence on the loading direction.

Also shown in figure 3 are plots for the anisotropy ratio kg of the optimal
SO) associated with the VAR and RVAR bounds, as a function of the loading
angle 0. Given the symmetries of the problem, it is sufficient to restrict attention
to values of # between 0 and 7/(2K), which correspond to loadings along a slip
system and a corner of the matrix phase, respectively. It can be seen that the
optimal S(()l) associated with the VAR bounds are, in general, anisotropic (ko<1),
but become isotropic (kg— 1) as the loading dlrectlon approaches that of a corner
of the matrix phase (§ — 7/(2K)). On the other hand, the principal axes of §é ,
always 1n the context of the VAR bounds, remain ahgned with the symmetry
axes of u) (i.e. 6=0) for all loading directions in this range. It follows from the
symmetry of the problem that, as the loading dlrectlon varies from one slip
system to an adJacent one, the principal directions of SO () ‘switch’ from one set of
symmetry axes of u M to another by becoming isotropic in between. Thus, it is
found that the principal directions of the optimal S(()l) depend on the direction of
loading, as expected, but in such a way that they always coincide with symmetry
axes of the phase potential u™V. This fact, if also true in higher dimensions, could
be exploited to simplify the computations of the variational bounds in the
context of more complex materials with phase potentials exhibiting certain
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Figure 3. Yield surfaces, normalized by the flow stress of the matrix 73, and corresponding
anisotropy ratios kg, for porous, ideally plastic materials with square, hexagonal and octagonal
symmetry and a given porosity (f=0.25). Comparisons between the ‘variational’ (VAR) and
‘relaxed variational’ (RVAR) bounds of the Hashin—Shtrikman type, and the Voigt bound.
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symmetries, such as polycrystals. In contrast, the optimal compliances S(()l)

associated with the RVAR bounds for K=3 and 4 are seen to remain anisotropic
for all loading directions (see parts (d) & (f)), and their principal directions
are found to vary smoothly with 6, being aligned with the macroscopic stress
vector whenever the latter is directed along a symmetry axis of uY, as expected.

3. Application to isotropic porous materials

(a) Power-law porous materials

It has been found in §2¢ that the differences between the variational and relaxed
variational bounds become more significant as the number of slip systems in the
matrix phase increases. In this section, the limiting case of a power-law matrix
phase with an infinite number of slip systems is considered. To that end, it is
convenient to consider first the following variant of the matrix potential (1.3)
with a finite number of slip systems:

o o ;
u (o) = ?ﬂ ;‘P(G'ﬂ(m)a ¥(7) = e(n) nw:ol

In this expression, the Schmid tensors py are given by equation (2.1), with ny
denoting unit vectors (2.2) normal to the slip planes defined by the angles
Oy =m(k—1)/K, and ¢ is defined as

— (3.2)

n) = ,
o) = A
where I' denotes the Euler gamma function. Then, in the limit K— o, the
potential (3.1) becomes

e n+1

To

(3.1)

n+1 I'(%H)

Te

jim (&) = [ Flon(o)0 = 17 (—) —yr), (33)

K—w n+1\7

where 7,=/(1/2)6, 6,= (075 + 03;)"/? is the equivalent stress. Thus, the
potential (3.1) tends to an isotropic, power-law potential ¥, as the number of slip
systems tends to infinity. In fact, equation (3.3) is nothing more than the plane-
wave decomposition of the isotropic potential y (see e.g. Gel’fand & Shilov 1964).
This decomposition makes it possible to apply the relaxed variational method of
deBotton & Ponte Castafieda (1995), which is specifically designed for potentials
of the form (1.3), to composites made up of isotropic power-law phases. In
addition, it allows us to compare the variational and relaxed variational bounds,
in the limiting case of an infinite number of slip systems, where the differences
between them are expected to be most significant.

It is recalled that under anti-plane conditions, the effective stress potential @ of
a porous material with a matrix potential (3.1) can be written as equation (2.3),
where the effective flow stress 7 is a function of the loading direction 6, except in
the limit K— o, where the material becomes isotropic and, therefore, 7
independent of 6.

Finally, it is recalled that in §2, only the stress formulations of the variational
and the relaxed variational bounds were considered. The reason for this is that
the Legendre transform of potentials of the form (1.3) cannot be written as a sum
of slip potentials, and therefore a strain-rate version of the relaxed variational
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bounds of deBotton & Ponte Castafieda (1995) is not available in that case,
except for the case of an infinite number of slip systems, when the Legendre
transform of equation (3.3), ", can in fact be written as an infinite sum of slip
potentials, again, by making use of the plane-wave decomposition. This last
result will be used below to obtain an alternate relaxed variational bound for
porous materials with an isotropic, power-law matrix. On the other hand, there is
no point in making use of the dual form (strain-rate version) of the variational
bound, since we know from the general theory that it would lead to precisely the
same bounds.

(b) Variational bounds

The wvariational bounds of the Hashin—Shtrikman type for the effective
behaviour of a porous material with a matrix potential (3.1), with finite number
of slip systems, can be derived as already discussed in §3a. However, in the
limiting case of infinitely many slip systems, the matrix potential becomes
isotropic, and the optimal compliance tensors §0 can be shown to be isotropic,
i.e., Ag=pno in equation (2.5) and ko=1. Then, the function o can be easily
computed, and the optimization with respect to the single modulus ugy can be
carried out analytically. The resulting variational bound for the effective flow
stress is given by

7o 1—f
T_O — W . (3.4)

This result is in exact agreement with the bound for porous, power-law materials
first obtained by Ponte Castaneda (1991) by means of the variational method
initially proposed for composites with isotropic phases.

(¢) Relazed variational bounds

The relaxed variational bounds of the Hashin—Shtrikman type for the effective
behaviour of a porous material with a matrix potential (3.1), with finite number
of slip systems, are computed in the manner described in §3b. Although the
matrix potential becomes isotropic for infinitely many slip systems (with the
same flow stress), the optimal compliance tensors go are found to remain
anisotropic (i.e. kg#1) in this case. But from the symmetry of the problem, it
follows that the principal axes of g(()l) should be such that §=6. Then, the
optimality conditions with respect to the slip compliances simplify, and the
relaxed variational bounds for the effective flow stress arising from the stress
formulation can be written as

To _ -7

vl ,HL)]“””)/Q
2\M VR (3.5)

(n+1)/2 -m
o) [r| VR0 k)
* Vg |, RSO TA Y )

1+
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Figure 4. Effective flow stress 7, normalized by the flow stress of the matrix 7, of power-law
porous materials, as a function of the strain-rate sensitivity m, for several numbers of slip systems
K and a given porosity ( f=0.25). The macroscopic stress is directed along a slip system (6= 0).
Comparisons between the (a) ‘variational’ (VAR) and (b) ‘relaxed variational’ (RVAR) bounds
with the ‘variational’ bound for isotropic phases.

where kg is the solution to

/2 _ _ (n—=1)/2 _
J 1+ v = (f/2)(1 = k) cos 26 <COS 260 — ! ko)dﬁ =0. (3.6)
0 Vo + (f/2)(1 + k) 1+ k

In the ideally plastic limit (n— ), equation (3.6) yields vk = (v/1+ f2—1)/f,
and expression (3.5) reduces to equation (2.16). In addition, as already stated
above, a dual (strain-rate) version of the bound (3.5) can be obtained in a
completely analogous fashion, but it will not be detailed here, for conciseness.

(d) Results and discussion

In figure 4, results are provided for porous power-law materials with a matrix
potential (3.1), loaded along a slip system (6 = 0), for several values of K (number of
slip systems). Figure 4a,b shows plots for the stress versions of the variational
(VAR) and relaxed variational (RVAR) upper bounds, respectively, for the
effective flow stress 7, normalized by the flow stress of the matrix phase 7, as
a function of the strain-rate sensitivity m, for a moderate value of the porosity
(f=0.25). Also shown in this figure are the corresponding variational upper bounds
for an isotropic matrix, given by equation (3.4). The key observation in the context
of this figure is that, while the VAR bounds tend to the ‘isotropic’ bounds as K tends
to infinity, the R VAR bounds tend to a different limit, given by equation (3.5), well
above the isotropic bounds, for all values of the strain-rate sensitivity different than
1. In the ideally plastic limit, the difference between the RVAR and the isotropic
bounds is of the order of 10% for this particular value of the porosity.

Direct comparisons between the VAR and RVAR bounds for K=o are
provided in figure 5, as a function of the strain-rate sensitivity m. Note that both,
the stress (U) and the strain-rate (W) versions of the RVAR bounds have been
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Figure 5. Effective flow stress 7, normalized by the flow stress of the matrix 7, and corresponding
anisotropy ratio kg, for isotropic power-law porous materials, as a function of the strain-rate
sensitivity m, for a given porosity (f=0.25). Comparisons between the ‘variational’ (VAR) and
‘relaxed variational’ (R VAR) bounds.

included in this figure. The main observation is that, unlike the dual versions of
the VAR bounds, the stress and strain-rate versions of the RVAR bounds are
not equivalent to each other, for all values of m different than 1 (see part (a)).
In other words, the R VAR bounds exhibit a duality gap, which is seen to increase
with increasing nonlinearity. Furthermore, of the two versions of the RVAR
bounds, the RVAR(W) bounds are found to be sharper than the RVAR(U)
bounds, lying roughly midway between the VAR and RVAR(U) bounds in the
ideally plastic limit. The reason for the duality gap in the RVAR bounds is that
the functions inside the integrals of the plane-wave decompositions of ¥ and y*
(expression (3.3)) are not Legendre duals of each other, except for n=1/m=1.
Finally, part (b) provides plots for the optimal anisotropy ratios kq associated
with the bounds shown in part (a). It can be seen that, as already mentioned, the
optimal compliance tensor SO associated with the VAR bounds is isotropic (i.e.
ko=1) for all values of m, whereas those associated with the RVAR(U) and
RVAR(W) bounds are anisotropic for all values of m different than 1.

4. Concluding remarks

The variational bounds proposed in part I of this work for composites with
anisotropic phases have been specialized for composites with crystalline phases
and computed for a model (two-phase) porous material with a power-law
crystalline matrix phase. It was found that the new variational bounds improve,
in general, on the earlier relaxed variational bounds of deBotton & Ponte
Castafieda (1995). The improvement was found to become more significant with
increasing nonlinearity and with an increasing number of slip systems, being as
much as 10% in some extreme cases. Although these findings were made in the
context of a model (two-phase) system, they are expected to be representative of
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what would happen for more general material systems, including the very
important case of polycrystalline aggregates (Dendievel et al. 1991; Willis 1994;
deBotton & Ponte Castafieda 1995). While the computation of variational
bounds for general types of viscoplastic polycrystals might be a difficult task due
to the non-convex optimizations involved, it should be relatively simple at least
in the strongly nonlinear limit of rigid-ideally plastic behaviour, which is actually
the most interesting case. Applications to such polycrystalline systems will be
pursued in future work. In this context, it should be recalled from part I that
bounds have already been obtained for such polycrystalline systems by means of
the ‘translation’ method (Goldstein 2001; Garroni & Kohn 2003). While thus far
these bounds have been computed only for two- and three-dimensional
conductivity, they exhibit scaling laws in the anisotropy contrast parameters
that are substantially more restrictive than the classical Taylor bound. Owing to
this, they will provide useful benchmarks against which to compare the new
methodology proposed in this work (when applied to polycrystals).

This material is based upon work supported by the National Science Foundation under Grants
CMS-02-01454 and OISE-02-31867.
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