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This work is concerned with the development of bounds for nonlinear composites with
anisotropic phases by means of an appropriate generalization of the ‘linear comparison’
variational method, introduced by Ponte Castañeda for composites with isotropic phases.
The bounds can be expressed in terms of a convex (concave) optimization problem,
requiring the computation of certain ‘error’ functions that, in turn, depend on the solution of
a non-concave/non-convex optimization problem. A simple formula is derived for the
overall stress–strain relation of the composite associated with the bound, and special,
simpler forms are provided for power-law materials, as well as for ideally plastic materials,
where the computation of the error functions simplifies dramatically. As will be seen in part
II of this work in the specific context of composites with crystalline phases (e.g.
polycrystals), the new bounds have the capability of improving on earlier bounds, such as
the ones proposed by deBotton and Ponte Castañeda for these specific material systems.

Keywords: nonlinear homogenization; variational methods; anisotropy
*A
1. Introduction

For a linear-elastic constitutive response, there are well-established methods to
estimate the effective or overall behaviour of composite materials. These so-called
homogenization methods include the variational principles of Hashin & Shtrikman
(1963), which can be used to bound the effective modulus tensor of linear-elastic
composites. A comprehensive review of this and other works on linear composites is
given, for example, in the recent monograph by Milton (2002).

On the other hand, for nonlinear (e.g. plastic, viscoplastic, etc.) composites,
rigorous methods have not been available until more recently, even though
efforts along these lines have been going on for some time, particularly in the
context of ductile polycrystals (e.g. Hill 1965; Hutchinson 1976). Making use of a
nonlinear extension of the Hashin–Shtrikman (HS) variational principles, due to
Willis (1983), the first bounds of the HS type for nonlinear composites were
uthor for correspondence (ponte@seas.upenn.edu).
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derived by Talbot & Willis (1985). Further applications of this methodology to
composites with nonlinear anisotropic phases (e.g. polycrystals) were given by
Willis (1994). A more general variational approach making use of the notion of
optimally chosen ‘linear comparison composites’ was proposed by Ponte
Castañeda (1991). This approach is not only capable of delivering bounds of
the HS type for nonlinear composites, but also, in addition, can be used to
generate bounds and estimates of other types, such as self-consistent estimates
and three-point bounds (Ponte Castañeda 1992). The connections between these
two different approaches were explored by Willis (1992) and Talbot & Willis
(1992). Suquet (1993) and Olson (1994) proposed alternative, but equivalent
methods for the special classes of power-law and ideally plastic materials,
respectively. Suquet (1995) also gave a novel physical interpretation of the
variational estimates of Ponte Castañeda (1991) in terms of ‘secant’ moduli and
the second moments of the local fields in the linear comparison composite. In
addition, deBotton & Ponte Castañeda (1995) proposed an extension of the
variational principle of Ponte Castañeda (1991) to generate bounds for composite
materials with (anisotropic) viscoplastic crystalline phases. This variational
approach was, in turn, generalized further by Suquet (see Ponte Castañeda &
Suquet 1998) to include more general types of anisotropies in the context of
nonlinear composites. Finally, it should be mentioned that there is another
approach, called the ‘translation’ method, which has been applied successfully to
polycrystals, but thus far only for scalar potential problems (Kohn & Little 1998;
Nesi et al. 2000; Goldsztein 2001; Garroni & Kohn 2003).

The present work is concerned with an extension of the variational method of
Ponte Castañeda (1991, 1992) for composites with nonlinear (viscoplastic)
anisotropic phases. It will be shown that this generalization, which is more closely
tied to the original formulation, has the capability to give improved bounds relative
to the generalizations provided by deBotton & Ponte Castañeda (1995) in the
specific context of viscoplastic polycrystals, and the further generalizationprovided
by Ponte Castañeda & Suquet (1998) for more general anisotropies.

Thus, attention will be focused on composite materials made of N
homogeneous constituents, or phases, that are randomly distributed in a
specimen occupying a volume U at a length-scale which is much smaller than
the size of the specimen and the scale of variation of the loading conditions. The
constitutive behaviour of the nonlinear (viscoplastic) anisotropic phases is
characterized by convex strain (strain-rate) potentials w(r) (rZ1, ., N ),
satisfying the conditions w(r)(0)Z0 and w(r)(3)/N as j3j/N. The micro-
structure is defined by characteristic functions c(r) that are equal to 1 if the
position vector x is in phase r (i.e. x2U(r)), and 0 otherwise. In this case, the
relation between the stress s and the strain (strain-rate) 3 is defined by a local
strain potential w, such that

sZ
vw

v3
ðx; 3Þ; wðx; 3ÞZ

XN
rZ1

cðrÞðxÞwðrÞð3Þ: ð1:1Þ

The problem is then that of determining the effective behaviour of the
composite, which is defined as the relation between the average stress �sZhsi
and the average strain �3Zh3i. Here, the symbols h$i and h$i(r) will be used to
denote volume averages over the composite (U) and phase r (U(r)), respectively.
For the class of materials characterized by relations (1.1), the effective behaviour
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is determined by the effective strain potential, defined by

~wð�3ÞZ inf
32Kð�3Þ

hwðx; 3ÞiZ inf
32Kð�3Þ

XN
rZ1

cðrÞhwðrÞð3ÞiðrÞ; ð1:2Þ

where c(r)Zhc(r)i denotes the volume fraction of phase r; and Kð�3Þ is the set of
‘kinematically admissible’ strain fields, such that there is a continuous
displacement field u satisfying 3Zð1=2Þ½VuCðVuÞT� in U, and uZ�3x in vU. It is
important to recall that (strict) convexity of the local strain potentialw on the local
strain 3 implies (strict) convexity of the effective potential ~w in the applied strain �3.

The effective stress–strain relation is then known to be given by

�sZ
v ~w

v�3
ð�3Þ; ð1:3Þ

where it has been assumed that ~w is differentiable, as has been done for the local
potential w in expression (1.1). In practice, the local and effective potentials can
be assumed to be differentiable for most material models of interest, except in
some special cases, including the ideally plastic materials to be considered further
in §4b, where the potential is not differentiable (everywhere), but is still convex
(although not strictly so). In this case, it is most natural to work with the
subdifferential of convex analysis (Ekeland & Temam 1999). Here, for simplicity,
the distinction will not be made between standard (Gateaux) derivatives and
subdifferentials, except when it becomes necessary or convenient to do so.

Alternatively, the behaviour of phase r may be characterized by a convex
stress potential u(r), defined by the Legendre–Fenchel transform, or convex dual
(Ekeland & Temam 1999), of w(r),

uðrÞðsÞZ ðwðrÞÞ�ðsÞZ sup
3

s$3KwðrÞð3Þ
h i

: ð1:4Þ

Then, the local stress and strain tensors are related by

3Z
vu

vs
ðx;sÞ; uðx;sÞZ

XN
rZ1

cðrÞðxÞuðrÞðsÞ; ð1:5Þ

and the effective behaviour can be described in terms of the effective stress
potential ~u, such that

�3Z
v~u

v�s
ð�sÞ; ~uð�sÞZ inf

s2Sð�sÞ
huðx;sÞiZ inf

s2Sð�sÞ

XN
rZ1

cðrÞhuðrÞðsÞiðrÞ; ð1:6Þ

where Sð�sÞ is the set of ‘statically admissible’ stress fields s that are divergence-
free in U, satisfying the traction continuity conditions across phase boundaries,
and are such that hsiZ �s. Note that ~u is convex, and it has also been assumed to
be differentiable, for simplicity.

Given the assumed convexity of the phase potentials, the variational
formulations (1.2) and (1.6)2 for the effective behaviour of the nonlinear
composites can be shown to be completely equivalent, in the sense that the
functions ~w and ~u are Legendre duals of each other, ~uZ ~w�. Thus, the problem of
finding the constitutive relation for the composite reduces to that of determining
the effective potentials ~w or ~u. It is well known (e.g. Hutchinson 1976) that upper
and lower bounds for ~w and ~u may be obtained by making use of uniform trial
3



fields in the context of definitions (1.2) and (1.6)2. In the linear case, they are
known as the bounds of Voigt and Reuss.
2. Linear comparison materials

Consider a linear-elastic comparison material with positive-definite, fully
symmetric stiffness tensor C0, such that its strain potential is given by

w0ðx; 3ÞZ
1

2
3$C0ðxÞ3: ð2:1Þ

Assuming that w(r) has ‘weaker-than-quadratic’ growth at infinity, implying that
(w(r)Kw0)/KN as j3j/N (for fixed x), suggests the following definition.

Definition 2.1. Let v(r) be the phase ‘error’ function, serving as a measure of
the nonlinearity in the original material with the strain potential w(r), given by

vðrÞðC0ÞZ sup
3

wðrÞð3ÞK1

2
3$C03

� �
: ð2:2Þ

Remark 2.1. Definition (2.2) is still valid when the stiffness tensor C0 is not
positive definite, but in this case v(r) takes on infinite values. This is easy to see,
because choosing 3 to be proportional to the eigentensor corresponding to any zero,
or negative eigenvalue of C0, leads to an infinite value for the supremum in
expression (2.2). In fact, v(r) tends to infinity, when any eigenvalue of (a positive
definite) C0 tends to zero. Also, note that, by definition, vðrÞðC0ÞRwðrÞð0ÞZ0, and

hence v(r) is anon-negative function. In addition, being the pointwise supremumof a
collection of affine functions of C0, v

(r) is a convex function of C0. Furthermore,
assuming smoothness of the functions w(r), the solutions of the non-concave
optimization problem defined by (2.2) normally satisfy the stationarity conditions

C03̂
ðrÞ
ðmÞ Z

vwðrÞ

v3
3̂
ðrÞ
ðmÞ

� �
; ð2:3Þ

where 3̂
ðrÞ
ðmÞ,mZ1,., M (r), denote all the strain tensors for which the maximum is

attained in (2.2) for a given C0. (Note that M (r) can be infinite in some instances,

such as when the potential w(r) and C0 are both isotropic.)

It follows from definition (2.2) that

wðrÞð3Þ% 1

2
3$C03CvðrÞðC0Þ; ð2:4Þ

for any C0, and hence that

wðrÞð3Þ% inf
C0

1

2
3$C03CvðrÞðC0Þ

� �
: ð2:5Þ

But, as has been pointed out earlier, the function v(r) is infinite if C0 is not
positive definite, and therefore expression (2.5) can be equivalently written as

wðrÞð3Þ% inf
C0O0

1

2
3$C03CvðrÞðC0Þ

� �
; ð2:6Þ

where the notation C0O0 has been used to signify that C0 is positive definite.
In general, the inequality in expression (2.6) will hold. However, there may be
classes of nonlinear materials, for which the equality would hold. Noting that the
right-hand side of expression (2.6) is concave in the variable 353 (because it is
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the pointwise infimum of a set of affine functions in this variable) suggests that in
order for equality to hold in expression (2.6), the potential w must be concave in
the variable 353. Accordingly, it will be assumed that the potentials w of
interest here satisfy the following ‘square concavity’ hypothesis.

Hypothesis 2.1. It is assumed that there exist functions f (r) that are concave in
the space of fourth-order tensors, ejj , possessing the usual symmetry properties of
elasticity tensors, and satisfying the following properties: (i) f ðrÞðOÞZ0 and (ii)
f (r)/N as jejj j/N, such that the phase potentials w(r) may be expressed as

wðrÞð3ÞZ f ðrÞ
1

2
353

� �
: ð2:7Þ

This hypothesis was introduced by Ponte Castañeda (1992) for isotropic
materials and generalized as described previously for anisotropic materials by
Suquet (see Ponte Castañeda & Suquet 1998). It should be emphasized that the
functions f (r) are not uniquely determined. Also, a consequence of hypothesis 2.1 is
that the potentials w(r), as defined by relation (2.7), should satisfy the relation
wðrÞðK3ÞZwðrÞð3Þ. In addition, it should be noted that this hypothesis is consistent
with the earlier assumption that the potentials w(r) exhibit weaker-than-quadratic
growth on the strain 3. It is shown next that the equality holds strictly in expression
(2.6) when the stronger square concavity hypothesis is made.

Lemma 2.1. Consider a composite with ‘square concave’ phase potentials w(r),
as defined in hypothesis 2.1. It then follows that

wðrÞð3ÞZ inf
C0O0

1

2
3$C03CvðrÞðC0Þ

� �
; ð2:8Þ

where the error functions v(r) have been defined by relations (2.2). It also follows
that

wðx; 3ÞZ inf
C0O0

fw0ðx; 3ÞCvðx;C0Þg; ð2:9Þ

where w0 is given by (2.1), and v is the function defined by

vðx;C0ÞZ sup
3
fwðx; 3ÞKw0ðx; 3Þg: ð2:10Þ

Proof. The concave Legendre–Fenchel transform of f (r) is defined as

f
ðrÞ
� ðC0ÞZ inf

ejj
fC0$ejj Kf ðrÞðejj Þg: ð2:11Þ

Note that f
ðrÞ
� is a non-positive, concave function ofC0, such that f

ðrÞ
� ðC0ÞZKNwhen

C0 is not positive definite. It then follows from the assumed concavity of f (r) that

f ðrÞðejj ÞZ inf
C0O0

fC0$ejj Kf
ðrÞ
� ðC0Þg; ð2:12Þ

where the restriction to positive definiteC0 has beenmade since, otherwise, the right-
hand side would be infinite.

Using (2.7) in relation (2.12), it is concluded that

wðrÞð3ÞZ inf
C0O0

1

2
3$C03Kf

ðrÞ
� ðC0Þ

� �
: ð2:13Þ

It should be emphasized that this result, first given by Ponte Castañeda &
Suquet (1998), is valid for any ‘concave extension’ f (r) of the phase potential w (r),
as provided by hypothesis 2.1.
5



Now, it follows from (2.11) that

f
ðrÞ
� ðC0Þ% inf

ejj Zð1=2Þ353
fC0$ejj Kf ðrÞðejj ÞgZ inf

3

1

2
3$C03KwðrÞð3Þ

� �
; ð2:14Þ

and hence that

Kf
ðrÞ
� ðC0ÞRvðrÞðC0Þ; ð2:15Þ

where v(r) is the phase error function, as defined by (2.2). (It is important to
emphasize that, in general, the functions v(r) cannot be identified with the
functionsKf

ðrÞ
� .) Therefore, from expression (2.13), it is concluded that

wðrÞð3ÞR inf
C0O0

1

2
3$C03CvðrÞðC0Þ

� �
: ð2:16Þ

But this expression, together with (2.6), which is itself independent of any
concavity hypothesis, indeed implies that the identity (2.8) holds under the
square concavity hypothesis 2.1.

Next, recalling that w is defined in terms of the phase potentials w (r) by
relation (1.1), and defining v similarly in terms of the functions v(r) by

vðx;C0ÞZ
XN
rZ1

cðrÞðxÞvðrÞðC0Þ; ð2:17Þ

it is concluded that relations (2.9) and (2.10) also hold true, where use has been
made of relation (2.1). &

Remark 2.2. On account of the convexity of v(r) on C0, and of the fact that the
restriction to positive definite C0 is artificial, the optimality condition in
expression (2.8) for w(r) is given by the condition that zero should be included in
the subdifferential of the terms in curly brackets, which may also be written as

K
1

2
3532vC0

vðrÞðĈ0Þ; ð2:18Þ
where Ĉ0 is the optimal value of C0, and vC0

vðrÞ is the subdifferential of the
function v (r). In this connection, it should be emphasized that the functions v (r)

are not smooth, even when the functions w (r) are. (This is essentially because the

optimal solutions (2.3) in expressions (2.2) for the functions v(r) can change
abruptly with changes in C0, leading to ‘corners’ and ‘edges’ in v (r).) As a
consequence, the eigendirections of Ĉ0 may be determined by these sharp edges,
leaving the corresponding eigenvalues to be determined by appropriate
stationarity conditions. In this connection, it is useful to note that the
subdifferential of v (r), which is, by definition, a ‘max-function’, may be expressed
as (e.g. Exercise 10 in section 6.1 of Borwein & Lewis 2000)

vC0
vðrÞðC0ÞZ ejj jejj ZK

1

2

XM ðrÞ

mZ1

aðrÞm 3̂
ðrÞ
ðmÞ53̂

ðrÞ
ðmÞ

� �
; aðrÞm R0;

XM ðrÞ

mZ1

aðrÞm Z1

( )
; ð2:19Þ

where 3̂
ðrÞ
ðmÞ, mZ1,., M (r), denote all the strain vectors for which the maximum

in (2.2) is attained for a given C0 (see also the optimality relations (2.3)). In other
words, the subdifferential (2.19) of the function v(r) is the set of all convex
combinations of the rank-one tensors ðK1=2Þ3̂ðrÞðmÞ53̂

ðrÞ
ðmÞ, formed by the optimal

strain vectors 3̂
ðrÞ
ðmÞ in expression (2.2) for the functions v(r).
6



Result 2.1. The stress–strain relation associated with the strain potential w(r),
as determined by expression (2.8), is given by

sZ
vwðrÞ

v3
ð3ÞZ Ĉ0ð3Þ3; ð2:20Þ

where Ĉ0ð3Þ is the optimal value of C0 in expression (2.8), evaluated at 3.

Proof. Given the convexity of w(r) and the fact that the optimality condition
in expression (2.8) is not a simple stationarity condition, it is best to work here
with the subdifferential. Now, if s2vw(r)(3), then

s$ð30K3Þ%wðrÞð30ÞKwðrÞð3Þ; for all 30; ð2:21Þ

or, using expression (2.8) for w(r),

s$ð30K3Þ% inf
C0O0

1

2
30$C03

0 CvðrÞðC0Þ
� �

K inf
C0O0

1

2
3$C03CvðrÞðC0Þ

� �

%
1

2
30$C0

03
0KvðrÞðC0

0ÞK
1

2
3$Ĉ03CvðrÞðĈ0Þ; for all 30;C0

0;

where Ĉ0 is the optimal value of C0 evaluated at 3. In particular, for C0
0Z Ĉ0ð3Þ,

it follows that

s$ð30K3Þ% 1

2
30$Ĉ0ð3Þ30K

1

2
3$Ĉ0ð3Þ3; for all 30; ð2:22Þ

which means that s2vw0, where w0Zð1=2Þ3$Ĉ03, with Ĉ0 fixed. But w0 is
differentiable,with derivative Ĉ03, andhencevw0ð3ÞZfĈ0ð3Þ3g. In conclusion, it has
been shown that if s2vw(r)(3), then sZ Ĉ0ð3Þ3, which is the desired result. &

Remark 2.3. Result 2.1 should not be confused with the optimality condition
(2.3), which is only a prescription for the optimal 3̂

ðrÞ
ðmÞ, for some given C0, in the

definition of the error function v(r). Interestingly, although expression (2.3) is
commonly used to define (in a non-unique fashion) the secant modulus tensor
(e.g. Ponte Castañeda & Suquet 1998), it follows from result 2.1 that, in fact, a
better definition of the secant modulus, in the general anisotropic case, is
provided by the optimal Ĉ0 in expression (2.8). This leads to a well-defined
prescription that can be shown to be consistent with the standard prescription in
the isotropic case.

It is also possible to obtain an alternative representation starting from the
local stress potentials (2.2). To accomplish this, note that (1.4) can be
re-expressed as

vðrÞðC0ÞZ sup
3

sup
s

n
3$sKuðrÞðsÞ

o
K

1

2
3$C03

� �

Z sup
s

sup
3

3$sK
1

2
3$C03

� �
KuðrÞðsÞ

� �

Z sup
s

1

2
s$ðC0ÞK1sKuðrÞðsÞ

� �
; ð2:23Þ
7



where use has been made of the fact that wðrÞZuðrÞ* and of the positive definiteness
of C0, as well as of the fact that the order of suprema can be interchanged. This
allows the definition of a new function �v ðrÞðS0ÞZvðrÞðC0ZS

K1
0 Þ, as follows.

Definition 2.2. The phase ‘error’ functions can alternatively be expressed in
terms of the phase compliance tensors S0 via the relations

�v ðrÞðS0ÞZ sup
s

1

2
s$S0sKuðrÞðsÞ

� �
: ð2:24Þ

Remark 2.4. �v ðrÞ is a convex, non-negative function of S0ðZC
K1
0 Þ, such that

�v ðrÞZ0 when S0%0. Note that in the following there will be no risk of confusion,
and, for simplicity, no attempt will be made to distinguish between �v ðrÞ and v(r),
henceforth writing simply as vðrÞðS0Þ. Also, assuming smoothness of the functions
u(r), the solutions of the non-concave optimization problem defined by (2.24)
normally satisfy the stationarity conditions

S0ŝ
ðrÞ
ðmÞ Z

vuðrÞ

vs
ŝ
ðrÞ
ðmÞ

� �
; ð2:25Þ

where ŝ
ðrÞ
ðmÞ, mZ1,., N (r), denote all the stress tensors for which the maximum

is attained in (2.24) for a given S0.

Then, introducing the stress potential of the linear comparison material via

u 0ðx;sÞZ
1

2
s$S0ðxÞs; ð2:26Þ

it is also possible to define the local ‘error’ function

vðx;S0ÞZ sup
s
fu 0ðx;sÞKuðx;sÞg: ð2:27Þ

From these definitions, the next result follows.

Lemma 2.2. Consider a composite with the phase stress potential uðrÞZwðrÞ*,
as defined by relation (1.4), where w(r) are square concave (see hypothesis 2.1).
Then, u(r) are ‘square convex’ and

uðrÞðsÞZ sup
S0R0

1

2
s$S0sKvðrÞðS0Þ

� �
; ð2:28Þ

where the functions vðrÞZ �v ðrÞ are defined by (2.24). Similarly, the local stress
potential uZw�, as defined by relation (1.5)2, is given by

uðx;sÞZ sup
S0R0

fu0ðx;sÞKvðx;S0Þg; ð2:29Þ

where u0 and v are the functions defined by (2.26) and (2.27), respectively.

Proof. On account of (2.8), it follows that

uðrÞðsÞZ sup
3

3$sK inf
C0O0

1

2
3$C03CvðrÞðC0Þ

� �� �

Z sup
C0O0

sup
3

3$sK
1

2
3$C03

� �
KvðrÞðC0Þ

� �

Z sup
C0O0

1

2
s$ðC0ÞK1sKvðrÞðC0Þ

� �
; ð2:30Þ
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which leads to result (2.28) upon setting S0ZC
K1
0 (recall that C0O0). This result

also demonstrates the existence of a convex function g(r) (in the space of fully
symmetric, fourth-order tensors), such that

uðrÞðsÞZ gðrÞ
1

2
s5s

� �
: ð2:31Þ

Thus, square concavity for w(r) implies square convexity for u(r). Note also that
square convexity is consistentwith ‘super-quadratic’ growth foru(r). The derivation
of (2.29) is now straightforward in view of (1.5)2, (2.17) and (2.26). &
3. Variational principles for anisotropic materials

In this section, use is made of expressions (2.8) and (2.28) for the local potentials
w and u in terms of linear comparison materials to derive alternative variational
representations for ~w and ~u that are equivalent to (1.2) and (1.6)2. These
representations have the advantage that they can be used to generate improved
bounds—relative to the classical bounds of Voigt and Reuss—for the effective
potentials.

Proposition 3.1. Under the ‘square concavity’ hypothesis 2.1, the effective
potential ~w defined by (1.2) admits the alternative representation

~wð�3ÞZ inf
C0ðxÞO0

f ~w0ð�3ÞCVðC0Þg; ð3:1Þ

where VðC0ÞZhvðx;C0ðxÞi, with v given by (2.10) and ~w0 denotes the effective
potential of the linear comparison material with local potential (2.1), i.e.

~w0ð�3ÞZ inf
32Kð�3Þ

hw0ðx; 3Þi: ð3:2Þ

Proof. Lemma 2.1 is used together with expression (1.2) to deduce the
following result for the effective strain-energy density:

~wð�3ÞZ inf
32Kð�3Þ

inf
C0ðxÞO0

fhw0ðx; 3ÞiChvðx;C0ðxÞig; ð3:3Þ

where the infimum over C0 has been taken out of the volume integral implied by
the triangular brackets. (Note that C0 is now a function of position x.) But the
order of infima can be interchanged, and hence

~wð�3ÞZ inf
C0ðxÞO0

inf
32Kð�3Þ

fhw0ðx; 3ÞiChvðx;C0ðxÞig: ð3:4Þ

Noticing that the inner infimum over 3 affects only the first term inside the curly
brackets, and that VðC0ÞZhvðx;C0ðxÞi, one arrives at the desired result. &

Remark 3.1. The variational representation (3.1) generalizes a corresponding
variational representation for nonlinear composites with isotropic phases first
given by Ponte Castañeda (1992). It expresses the effective properties of the
nonlinear composite (through its potential ~w) in terms of two functionals. The
functional ~w0 is the elastic energy of a fictitious linear heterogeneous solid, called
the linear comparison material, made up of phases with stiffness C0ðxÞ at a point
x, whose properties are determined by the solution of the variational
representation (3.1) itself. The functional V depends on the phase error functions
9



v(r), and thus provides a measure of the nonlinearity of the actual material. The
representation (3.1) is exact and strictly equivalent to the variational
characterization of ~w given in (1.2). But it requires the exact solution of the
homogenization problem (3.2), which is a difficult task in view of the fact that it
corresponds to a linear composite material with infinitely many phases. However,
as will be seen in §4, this variational representation can be used to generate
estimates for ~w, by making use of suitable trial fields for the moduli tensor C0 of
the linear comparison material.

Remark 3.2. Representation (3.1) also provides an interpretation of the strain
field in the actual nonlinear composite as the strain field in the optimal linear
comparison solid. Indeed, although the strain field 30 associated with the
minimizer in the linear comparison problem (3.2) depends on C0, and is therefore
different, in general, from the strain field 3 associated with the original nonlinear
problem (1.2), under the hypothesis of square concavity of w, it follows from (3.1)
that the ‘linear’ minimizer 30 arising from the optimal choice of C0 is precisely
the nonlinear minimizer 3.

It is also possible to start from the identity (2.29) for the local stress potential
u to generate a corresponding representation for the effective stress potential ~u.

Proposition 3.2. Assuming ‘square convexity’ of the local stress potential u (or
‘square concavity’ of the corresponding strain potential w), the effective stress
potential ~u defined by (1.6)2 admits the alternative representation

~uð�sÞZ sup
S0ðxÞR0

f~u 0ð�sÞKVðS0Þg; ð3:5Þ

where VðS0ÞZhvðx;S0ðxÞi, with v given by (2.27) and ~u0 denotes the effective
potential of the linear comparison material with local potential (2.26), i.e.

~u0ð�sÞZ inf
s2Sð�sÞ

hu 0ðx;sÞi: ð3:6Þ

Proof. Lemma 2.2 is used together with expression (1.6)2 to deduce the
following result for the effective stress potential:

~uð�sÞZ inf
s2Sð�sÞ

sup
S0ðxÞR0

fhu 0ðx;sÞiKhvðx;S0ðxÞig; ð3:7Þ

where the supremum over S0 has been taken out of the triangular brackets. But
u0 is convex in s and Kv is concave in S0, and, therefore, by the saddle point
theorem (Ekeland & Teman 1999), the order of the infimum and supremum can
be interchanged, and hence

~uð�sÞZ sup
S0ðxÞR0

inf
s2Sð�sÞ

fhu 0ðx;sÞiKhvðx;S0ðxÞig; ð3:8Þ

which leads to the desired result. &

Remark 3.3. It can be shown directly that the two versions of the variational
representations, (3.1) and (3.5), are exactly equivalent, under the given
hypothesis on the potentials w and u, respectively. (In other words, result
(3.5) for ~u can be shown to follow directly from result (3.1) for ~w by using the fact
that ~uZ ~w�.) It should also be emphasized that the variational principles (3.1)
and (3.5) for composites with anisotropic phases are entirely consistent with the
10



earlier variational representations (Ponte Castañeda 1992) for composites with
isotropic phases. Indeed, it can be shown that, for isotropic nonlinear composites,
the optimal choice for the comparison elasticity and the compliance tensors in
the context of the general anisotropic forms (3.1) and (3.5) is provided by
isotropic fourth-order tensors.

Remark 3.4. Finally, it is noted that an alternative version of the variational
representations (3.1) and (3.5) for composites with anisotropic phases was
presented by Ponte Castañeda & Suquet (1998), generalizing earlier estimates for
the special case of crystalline plasticity by deBotton & Ponte Castañeda (1995).
These variational principles have a form identical to the representations (3.1)

and (3.5), except that the functions v(r) are defined differently. Essentially, v(r)

are identified with the functionsKf
ðrÞ
� introduced in expressions (2.11), which, as

has already been observed (see equations (2.15)), are different, in general, from
the functions v(r), as defined by relations (2.2).
4. Bounds and estimates via piecewise constant moduli

Unlike the stress and strain trial fields in the context of the classical variational
representations (1.2) and (1.6)2, the trial fields of stiffnesses and compliances in
the variational representations (3.1) and (3.5) can be chosen to be constant in
each phase (not necessarily the same constant). Thus, the optimization over the
elasticity moduli C0ðxÞ can be restricted to the set of piecewise constant moduli

C0ðxÞZ
XN
rZ1

cðrÞðxÞCðrÞ
0 ; ð4:1Þ

where the tensors C
ðrÞ
0 are taken to be constant. Making use of this trial field in

the variational statement (3.1) for ~w then leads to the following bound, which is a
generalization for composites with anisotropic phases of bounds that were first
given for composites with isotropic phases by Ponte Castañeda (1991).

Result 4.1. The effective strain potential ~w of the nonlinear composite is
bounded above by

~wCð�3ÞZ inf
C
ðrÞ
0
O0

rZ1;.;N

~w0ð�3ÞC
XN
rZ1

cðrÞvðrÞ C
ðrÞ
0

� �( )
; ð4:2Þ

where the functions v (r) are defined by relations (2.2), and

~w0ð�3ÞZ
1

2
�3$~C0 C

ðsÞ
0

� �
�3; ð4:3Þ

is now the effective strain potential (3.2) of a linear comparison composite (LCC)

with the uniform stiffness tensors C
ðrÞ
0 in each of the phases (rZ1,., N)—and,

hence, the same microstructure as the nonlinear composite—and with the
effective stiffness tensor ~C0.

Remark 4.1. The form (4.2) for the bound ~wCð�3Þ involves a convex
optimization problem for the stiffness tensors C

ðrÞ
0 . This follows, for example,

from lemma 2.1 of Ekeland & Temam (1999), because the terms inside the curly
11



brackets may be written as the infimum (over the variables 32Kð�3Þ) of a convex

function in the arguments 3 and C
ðrÞ
0 (refer to equation (3.3)). In this connection,

it is important to recall that the tensors C
ðrÞ
0 need not be restricted to be positive

definite (cf. the passage from relations (2.5) to (2.6)); it is simply that the
infimum cannot occur for C

ðrÞ
0 that are not positive definite, since the value of the

functions v(r) would be infinite in that case. Thus, given that the optimization
problem for the bound ~wC is convex for the whole space of stiffness tensors
C
ðrÞ
0 —and the fact that the functions v(r) need not be smooth—a necessary and

sufficient condition for the minimum to be attained is that zero be included in the
subdifferential of the terms inside the curly brackets in equation (4.2), for the

optimal stiffness tensors Ĉ
ðrÞ
0 . Now, since ~w0 is differentiable (with respect to

C
ðrÞ
0 ), this optimality condition can also be written as

K
1

2cðrÞ
vð�3$ ~C0�3Þ
vC

ðrÞ
0

2vC0
vðrÞ Ĉ

ðrÞ
0

� �
: ð4:4Þ

Then, making use of the following identity for linear composites (e.g. Parton &
Buryachenko 1990)

h3L53LiðrÞ Z
1

cðrÞ
vð�3$ ~C0�3Þ
vC

ðrÞ
0

; ð4:5Þ

where 3L is the local strain field in the LCC, as well as of expression (2.19) for the
subdifferential of v(r), the optimality conditions (4.4) forC

ðrÞ
0 may also be expressed as

follows: do there exist an integerM (r) and constants a
ðrÞ
m (mZ1,.,M (r)), satisfying

the conditions a
ðrÞ
m R0,

PM ðrÞ

mZ1 a
ðrÞ
m Z1, such that the identity

h3L53LiðrÞ Z
XM ðrÞ

mZ1

aðrÞm 3̂
ðrÞ
ðmÞ53̂

ðrÞ
ðmÞ

� �
; ð4:6Þ

is satisfied?Thus, it is seen here too that the optimal values Ĉ
ðrÞ
0 may be related to the

second moments h3L53LiðrÞ of the strain field in the LCC, as has been shown by
Suquet (1995) for the special case of composites with isotropic phases. In general,
the tensor of the second moments of the strain is of full rank, and, consequently, the

optimality conditions (4.6) require that Ĉ
ðrÞ
0 be such that the maximum in the

function v (r) be attained simultaneously at several strains 3̂
ðrÞ
ðmÞ (i.e. M (r) should

be sufficiently large), so that the fourth-order tensors on the two sides of (4.6) have the

same rank. In turn, this implies that the optimal Ĉ
ðrÞ
0 should be precisely in regions

where the functions v(r) are not differentiable (M (r)O1). Thus, the fact that the

functions v(r) have sharp edges implies that the optimal tensors Ĉ
ðrÞ
0 have certain

preferred orientations, depending on the anisotropy of the functions w(r), and
correspondingly depend only on certain traces of the second moment strain
tensor h3L53LiðrÞ.

Remark 4.2. It is also possible to make use of expressions (2.2) for the
functions v(r) in expression (4.2) for ~wC, to rewrite the problem as an inf–sup
optimization. (Note that this problem is not concave in the variables 3, and
therefore the order of the inf and the sup cannot be interchanged in general.)
Then, using the optimality conditions (4.6), it can be shown that the bound ~wC
12



can be formally written in the form

~wCð�3ÞZ
XN
rZ1

XM ðrÞ

mZ1

cðrÞaðrÞm wðrÞ 3̂
ðrÞ
ðmÞ

� �
; ð4:7Þ

where 3̂
ðrÞ
ðmÞ are the optimal solutions of problem (2.2) for the functions v(r),

satisfying the secant condition (2.3), and evaluated at the optimal values of Ĉ
ðrÞ
0 ,

as determined by relation (4.2). This form generalizes the form proposed by
Suquet (1995) for composites with isotropic phases, but it should be emphasized
that in the more general case of anisotropic phases the (difficult) inf–sup problem

must be solved anyway to determine the correct choice for 3̂
ðrÞ
ðmÞ.

In general, the estimate (4.2) for ~w requires numerical treatment, and
therefore to determine the associated stress directly from this expression, the
relevant derivative with respect to �3 would have to be computed numerically.
However, the following result avoids this complication.

Result 4.3. The effective stress–strain relation of the nonlinear composite is
approximated by

�sZ
v ~wC

v�3
ð�3ÞZ ~C0 Ĉ

ðsÞ
0

� �
�3; ð4:8Þ

where Ĉ
ðsÞ
0 are the stiffness tensors satisfying the optimality conditions in (4.2).

Remark 4.4. The demonstration of this result is analogous to the derivation
of result 2.1, and will not be detailed further here for conciseness. It should be
emphasized, however, that relation (4.8) is an approximation to the exact
stress–strain relation of the nonlinear composite. This relation is a general-
ization of a result first given in the context of composites with isotropic phases
by deBotton & Ponte Castañeda (1993). In spite of its appearance, this effective
stress–strain relation is nonlinear, due to the nonlinear dependence of the

optimal Ĉ
ðrÞ
0 on the average strain �3. In fact, in parallel with remark 2.3

concerning the interpretation of Ĉ
ðsÞ
0 as the secant moduli tensors of the phases,

relation (4.8) suggests that ~C0 can be interpreted as the secant modulus tensor
of the nonlinear composite, generalizing earlier interpretations for the isotropic
case by Suquet (1995).

A bound that is equivalent to (4.2) can be obtained by considering the stress
potential ~u and its variational representation (3.5). Thus, restricting the
optimization in (3.5) to piecewise constant compliances S

ðrÞ
0 in the variational

representation (3.5) leads to a lower bound for ~u. In addition, an estimate for the
stress–strain relation may be obtained by differentiation, which is completely
analogous to the estimate (4.8) in result 4.3.

Result 4.4. The effective stress potential ~u of the nonlinear composite is
bounded below by

~uKð�sÞZ sup
S
ðrÞ
0
R0

rZ1;.;N

~u 0ð�sÞK
XN
rZ1

cðrÞvðrÞ S
ðrÞ
0

� �( )
; ð4:9Þ
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where the functions v(r) have been defined by relations (2.24), and

~u 0ð�sÞZ
1

2
�s$ ~S0 S

ðsÞ
0

� �
�s; ð4:10Þ

is now the effective stress potential of a linear comparison composite (LCC) with
uniform compliance tensors S

ðrÞ
0 in each of the phases (rZ1,., N ) and the

effective compliance tensor ~S0. Moreover, the following estimate is obtained for
the effective stress–strain relation of the nonlinear composite

�3Z
v~uK
v�s

ð�sÞZ ~S0 Ŝ
ðsÞ
0

� �
�s; ð4:11Þ

where Ŝ
ðsÞ
0 are the optimal values of S

ðsÞ
0 in expression (4.9).

Remark 4.5. Expression (4.9) for the bound ~uK involves a concave
optimization problem for the compliance tensors S

ðrÞ
0 . This follows from the

facts that the functions v(r) are convex in the tensors S
ðrÞ
0 , while the term arising

from ~u0 is, on the other hand, concave in the tensors S
ðrÞ
0 . (This last observation

is easy to show making use of definition (3.6) and of the fact that the infimum of
the sum is greater than the sum of the infima.) Then, the analysis carried out in
the context of remarks 4.1 and 4.2 can be repeated step by step, with results
completely analogous to expressions (4.4), (4.6) and (4.7).
(a ) Special results for power-law materials

The above bounds for the effective potential may be given simpler, alternative
forms for power-law composites by exploiting the homogeneity of the relevant
potentials and error functions. Such results generalize earlier results for
composites with isotropic phases by Suquet (1993), who made use of Hölder’s
inequality for their derivation. Thus, when phase r is of the (incompressible)
power-law type with exponent m, such that 0%m%1, the strain potential w(r) is
positively homogeneous of degree mC1,

wðrÞðl3ÞZ lmC1wðrÞð3Þ; clR0: ð4:12Þ
Replacing 3 by l3 in expression (2.2), using property (4.12), and optimizing with
respect to l, the function v(r) can be written in the form

vðrÞðC0ÞZ
1Km

2ð1CmÞ sup
3

½ð1CmÞwðrÞð3Þ�2=ð1KmÞ

½3$C03�ð1CmÞ=ð1KmÞ

( )
; ð4:13Þ

where the optimization variables 3 can now be chosen to have magnitude 1 (and
therefore belong to a bounded space). Note that it follows from this expression
that v(r) is a homogeneous function of degree (mC1)/(mK1) in the variable C0.

When all the phases in a composite are made of (incompressible) power-law
materials with the same exponent m, the composite is itself an (incompressible)
power-law material (Ponte Castañeda & Suquet 1998). In other words, the
effective potential ~w is also homogeneous of degree mC1. Then, letting
C0ðxÞZ tC0ðxÞ, for arbitrary positive t, noting that ~w0 and v(r), as defined by
relations (4.3) and (4.13), are homogeneous functions of degrees 1 and (mC1)/
(mK1) in C0, respectively, and optimizing with respect to t, the following
alternative representation for the bound ~wC is obtained.
14



Result 4.5. The effective strain potential ~w for power-law composites is
bounded above by

~wCð�3ÞZ
2

mC1
inf

C
ðrÞ
0
O0

rZ1;.;N

~w0ð�3Þ½ �ðmC1Þ=2 1Cm

1Km

XN
rZ1

cðrÞvðrÞ C
ðrÞ
0

� �" #ð1KmÞ=2
8<
:

9=
;;

ð4:14Þ
where v(r) are given by (4.13).

A corresponding representation can be given for the lower bound ~uK when all
the individual phases are power-law materials with the same exponent nZ1/m.
The details are omitted here for brevity, but the result is as follows.

Result 4.6. The effective stress potential ~u for power-law composites is
bounded below by

~uKð�sÞZ
2

nC1
sup
S
ðrÞ
0
O0

rZ1;.;N

½~u0ð�sÞ�ðnC1Þ=2 nC1

nK1

XN
rZ1

cðrÞvðrÞ S
ðrÞ
0

� �" #ð1KnÞ=2
8<
:

9=
;; ð4:15Þ

where

vðrÞðS0ÞZ
nK1

2ðnC1Þ sup
s

½s$S0s�ðnC1Þ=ðnK1Þ

½ðnC1ÞuðrÞðsÞ�2=ðnK1Þ

( )
: ð4:16Þ

(b ) Special results for rigid–ideally plastic materials

Even though simpler than the general form of the bounds, the alternative
forms of the bounds (4.14) and (4.15) for power-law composites still require the
solution of difficult non-concave problems (4.13) and (4.16) for the functions v(r).
In the limiting case of ideal plasticity (n/N), however, this problem simplifies
considerably. This is because, in that case, the functions v(r), defined by (2.24),
can be written in the form

vðrÞðS0ÞZ sup
s2PðrÞ

1

2
s$S0s

� �
; ð4:17Þ

where P (r) is the strength domain of phase r, defined by the conditions u (r)(s)Z0

if s2P (r), and N otherwise. Note that P (r) is the closed, convex set of stress
tensors bounded by the yield surface of phase r. The advantage of rewriting the
functions v(r) in this way is that its computation reduces to the well-studied
problem of finding the maximum of a convex function relative to a convex set.
Indeed, it can be shown (see corollary 32.3.2 in Rockafellar 1970) that the
maximum in (4.17) is attained at one or more of the extreme points of the set
P (r), which means that the optimal ŝ

ðrÞ
ðmÞ are necessarily on the yield surface of

phase r. Furthermore, in many cases, such as that of crystalline phases
considered in part II of this work, the number of extreme points of P (r) is finite,
15



and so the function v(r) can be written as

vðrÞðS0ÞZ max
kZ1;.;K

ðrÞ
e

1

2
s
ðrÞ
ðkÞ$S0s

ðrÞ
ðkÞ

� �
; ð4:18Þ

where K
ðrÞ
e is the total number of extreme points of P (r), and s

ðrÞ
ðkÞ denotes the

stress vector associated with the kth extreme point. For a given S0, this
expression is very simple to evaluate. Finally, considering the limit as n/N in
expression (4.15) for ~uK, the following result is obtained for the effective strength
domain ~P of the ideally plastic composite, which is defined by the conditions
~uð�sÞZ0 if �s2 ~P, and N otherwise.

Result 4.7. The effective strength domain ~P of the ideally plastic composite is
bounded from the outside by

~PCZ �sj~u0ð�sÞ%
XN
rZ1

cðrÞvðrÞðSðrÞ
0 Þ; cS

ðrÞ
0 R0

( )
: ð4:19Þ

Note that this set corresponds to the intersection of all quadratic functions of the
average stress �s, which are defined by the conditions ~u0ð�sÞ%

PN
rZ1 c

ðrÞvðrÞðSðrÞ
0 Þ,

for each possible choice of the compliance tensors S
ðrÞ
0 R0 of the LCC.
5. Concluding remarks

In §4, bounds have been derived for nonlinear composites with anisotropic
phases, including special forms for power-law and ideally plastic composites,
making use of the variational representations derived in §3. As already noted
(remark 3.4), alternative forms for the variational representations have been
proposed by Ponte Castañeda & Suquet (1998). These alternative represen-
tations for ~w and ~u can be used to generate bounds that exhibit precisely the
same forms as bounds (4.2) and (4.9) for general square concave and square
convex phase potentials w(r) and u(r), respectively, except that the functions
v(r), as defined by relations (2.2) (or (2.24)), must be replaced by the functions

Kf
ðrÞ
� , as defined in expression (2.11). Similarly, special forms of the bounds

may be derived for power-law and ideally plastic composites that correspond
exactly to the forms (4.14), (4.15) and (4.19), but with the same caveat for the
functions v(r).

Now, it follows trivially from inequalities (2.15), vðrÞ%Kf
ðrÞ
� , that the bounds

proposed in this work are at least as good as the corresponding bounds given by
Ponte Castañeda & Suquet (1998). The question of interest, however, is
whether the bounds given in this work are actually better, in general, as
suggested by the above-mentioned inequality. This question will be partially
answered in part II of this work in the context of composites with crystalline
phases. In fact, for the specific class of crystalline materials, the bounds of
Ponte Castañeda & Suquet (1998) have already been shown to recover exactly
(for some appropriate choice of the ‘extension’ functions f (r)) the bounds of
deBotton & Ponte Castañeda (1995). In part II, it will be shown that the new
bounds derived in this work are sharper, in general, than the bounds of
16



deBotton & Ponte Castañeda (1995) for crystalline materials. This suggests
that the new bounds may also be sharper, in general, than the bounds of Ponte
Castañeda & Suquet (1998).

It should be emphasized, however, that the earlier bounds have a significant
advantage over the new bounds proposed in this work in terms of computational
efficiency. Indeed, the error functions v(r) needed in the computation of the new
bounds require solving a non-concave (non-convex) problem, while the
corresponding functions Kf

ðrÞ
� in the earlier bounds require the solution of a

concave problem (in an enlarged space). This additional structure, which makes
the problem for the bounds concave in one set of variables and convex in the
other, allows the use of the saddle point theorem to simplify the computation of
the earlier bounds. In particular, the form of the bounds corresponding to
expression (4.7) depends directly on the second moments of the strain in the
linear comparison composite. (On the other hand, the earlier bounds could
depend on the concave extension f (r) of the phase potentials w(r), while the new
ones, given in this work, depend only on the actual potentials w(r).) Thus, in
conclusion, the new bounds developed in this work can give improved results,
relative to the earlier bounds, but any improvement will come at an increased
computational cost.

This paper is based upon the work supported by the National Science Foundation under grants
CMS-02-01454 and OISE-02-31867.
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deBotton, G. & Ponte Castañeda, P. 1993 Elastoplastic constitutive relations for fiber-reinforced
solids. Int. J. Solids Struct. 30, 1865–1890. (doi:10.1016/0020-7683(93)90222-S)
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