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Part I of this work provided a methodology for extracting the statistics of the local fields
in nonlinear composites, from the effective potential of suitably perturbed composites. In
particular, exact relations were given for the first and even moments of the fields in each
constituent phase. In this part, use is made of these exact relations in the context of the
‘variational’, ‘tangent second-order’ and ‘second-order’ nonlinear homogenization
methods to generate estimates for the phase averages and second moments of the fields
for two-phase, power-law composites with isotropic and transversely isotropic
microstructures. The accuracy of these estimates is assessed by confronting them
against corresponding exact results for sequentially laminated composites. Among the
nonlinear homogenization estimates considered in this work, the second-order estimates
are found to be, in general, the most accurate, especially for large heterogeneity contrast
and nonlinearity. Thus, these estimates are able to capture, for example, the strong
anisotropy in the strain fluctuations that can develop inside nonlinear porous and rigidly
reinforced composites.
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*A
1. Introduction

In part I of this work (Idiart & Ponte Castañeda in press), we presented a means
for extracting the statistics of the local fields in nonlinear composites, from the
effective potential of suitably perturbed composites. More precisely, the idea is to
perturb the local potentials by adding a term that contains a parameter,
generally a tensor, such that the derivative of the perturbed effective potential
with respect to that parameter, evaluated at the parameter equal to zero, yields
the average of the desired quantity in the unperturbed problem. The usefulness
of the resulting relations is that they allow the determination of rigorous
homogenization estimates for the field statistics, from corresponding estimates
for the effective potentials. Such relations were used in part I in the context of the
so-called variational, tangent second-order and second-order nonlinear hom-
ogenization methods (Ponte Castañeda 1991, 1996, 2002a) to generate estimates
uthor for correspondence (ponte@seas.upenn.edu).
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for the phase averages and second moments of the local fields. It is recalled that
these methods are based on suitably designed variational principles making use
of ‘optimally’ chosen, fictitious linear comparison composites (LCCs), which can
be homogenized using any appropriate linear homogenization estimate, so that
corresponding estimates are then generated for the effective behaviour of the
nonlinear composites.

Recently, several works have been concerned with the use of these nonlinear
homogenization methods to estimate the field fluctuations, i.e. higher-order
field statistics, in nonlinear random composites. Following Ponte Castañeda
(2002b), Idiart & Ponte Castañeda (2003) first made use of the second-order
homogenization method to generate estimates for the field fluctuations in two-
phase composites with ‘particulate’ microstructures. Field fluctuations in this
class of composites were also studied by Moulinec & Suquet (2003, 2004), by
means of the earlier variational homogenization method and full-field
numerical simulations. More recently, Idiart et al. (2006) have provided
comparisons between these numerical simulations and the more sophisticated
tangent second-order and second-order methods. Similar studies have also been
carried out by Lebensohn et al. (2004a,b) and Liu & Ponte Castañeda
(2004a,b) for two- and three-dimensional viscoplastic polycrystals. Brenner
et al. (2004) also studied field statistics in viscoplastic polycrystals by means
of the ‘affine’ method, which is a simplified, but less accurate version of the
tangent second-order method, as well as the ‘classical secant’ approach, which
is also known to become rather inaccurate at high nonlinearity. In all these
works, the homogenization estimates for the field statistics were obtained by
making use of various ad hoc assumptions based on the conjecture that the
first and second moments of the local fields in the relevant LCC constitute
reasonable approximations for the corresponding nonlinear quantities.
However, it has been shown in part I, by means of the rigorous procedure
described in the previous paragraph, that this conjecture is valid only in the
context of the variational method, but not in the context of the tangent
second order and second-order methods, where ‘correction’ terms arise due to
the lack of full stationarity of the relevant functionals with respect to the
properties of the LCC. Here, the more consistent homogenization estimates
proposed in part I for the field statistics are determined for the specific case of
two-phase, power-law random composites with isotropic and transversely
isotropic microstructures, and their accuracy is assessed by comparing them
with exact results available from the literature (deBotton & Hariton 2002).
2. Application to two-phase, power-law composites

In this work, the focus will be on two-phase composites with random particulate
microstructures, with clearly defined (1) ‘matrix’ and (2) ‘inclusion’ phases. Both
phases are assumed to be isotropic, incompressible materials characterized by
power-law potentials of the form

fðrÞð3eÞZ
30s

ðrÞ
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� �1Cm

; jðrÞðseÞZ
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where mZ1/n is the strain-rate sensitivity, such that 0%m%1, s
ðrÞ
0 is the flow

stress of phase r, and 30 is a reference strain. Note that the limiting values, mZ1
and mZ0, correspond to linear and rigid-ideally plastic behaviours, respectively.
For simplicity, both phases are assumed to have the same exponent m and
reference strain 30. Then, from the homogeneity of the local potentials (2.1), it
follows that the effective potentials can be written as

~W ð�3ÞZ 30~s0
1Cm

�3e
30

� �1Cm

; ~Uð�sÞZ 30~s0
1Cn

�se
~s0

� �1Cn

; ð2:2Þ

where ~s0 is the effective flow stress of the composite, and �3e and �se are the
equivalent macroscopic strain and stress.

Two different classes of composites are considered in this work. The first one
corresponds to fibrous composites with transversely isotropic microstructures,
subjected to isochoric in-plane loadings. In this case, the effective flow stress ~s0 is
a function of the strain-rate sensitivity, the heterogeneity contrast and the
inclusion concentration. The second one corresponds to isotropic composites, in
which case the flow stress ~s0 exhibits additional dependence on the macroscopic
strain invariant q, defined by cosð3qÞZ4 detð�3d=�3eÞ (Ponte Castañeda 1996).

In order to analyse the statistics of the local fields in these composites, it is
convenient to identify two ‘components’ of the deviatoric strain (resp. stress)
tensor which represents its projections ‘parallel’, 3s (resp. ss) and ‘perpen-
dicular’, 3t (resp. st), to the macroscopic strain (resp. stress). These
components can be determined (up to a sign) by the two orthogonal fourth-

order projection tensors E and F as given by expressions (4.52) of part I with

�3ðrÞZ�3, through the following relations: 32sZð2=3Þ ð3$E3Þ, 32tZð2=3Þ ð3$F3Þ,
s2sZð3=2Þ ðs$EsÞ and s2tZð3=2Þ ðs$FsÞ. They are such that 32eZ32sC32t and

s2eZs2sCs2t. In addition, it can be shown that the strain and stress fields are
homogeneous of degree one in �3e and �se, respectively, so that normalized

quantities such as ð�3ðrÞe =�3eÞ and ð�sðrÞe =�seÞ depend only on material and
microstructural parameters, and on q.

The nonlinear homogenization methods described in part I require the use of
estimates for the effective behaviour of linear elastic and linear thermoelastic

composites with phases characterized by a modulus tensor L
ðrÞ
0 , a ‘thermal stress’

t
ðrÞ
0 , and a ‘specific heat’ f

ðrÞ
0 (see expression (4.31) in part I). In this work, use is

made of the generalized Hashin–Shtrikman (HS) estimates of Willis (1981). For
two-phase, linear elastic composites, the effective modulus tensor can be written

as ~L0ZL
ð1Þ
0 Að1ÞCL

ð2Þ
0 Að2Þ, where A(r) are strain concentration tensors such that

cð1ÞAð1ÞCcð2ÞAð2ÞZ I. Defining DL0ZL
ð2Þ
0 KL

ð1Þ
0 , the HS estimates for the strain

concentration tensor in the inclusion phase A(2) can be written as

Að2Þ Z ICcð1ÞP
ð1Þ
0 DL0

h iK1
: ð2:3Þ

In this expression, the microstructural tensor P
ð1Þ
0 is given by

P
ð1Þ
0 Z

1

4p det Z

ð
jxjZ1

Hð1ÞðxÞjZK1xjK3dSðxÞ;
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whereH
ð1Þ
ijkl ðxÞZN

ð1Þ
ik xjxhjðijÞðkhÞ,Nð1ÞZKð1ÞK1

,K
ð1Þ
ik ZL

ð1Þ
0ijkh

xjxh, and the second-order
tensor Z serves to characterize the ‘shape’ of the assumed ‘ellipsoidal’ two-point
correlation functions, such thatZZdiag(1, 1, 1) andZZdiag(1, 1, 0) correspond to
isotropic and transversely isotropic microstructures, respectively. For two-phase,
linear thermoelastic composites, use canbemade of theLevin relations (Levin 1967)
to relate the ‘thermo-elastic’ quantities to the purely ‘elastic’ ones by means of
standard relations, which will not be included here for conciseness.

These linear HS estimates are known to be quite accurate for particulate
random systems like the ones of interest in this work, up to moderate
concentrations of inclusions.

In order to assess the accuracy of the nonlinear homogenization estimates, exact
results have been generated for power-law composites with a special type of
particulate microstructures called multiple-rank sequential laminates, following
the procedure described in deBotton & Hariton (2002). These authors showed that
there are two-dimensional lamination sequences for which the macroscopic
behaviour tends to be more transversely isotropic as the rank increases. In fact,
making use of a differential scheme as described by deBotton (2005), it can be
shown analytically that the macroscopic behaviour of these composites does
become transversely isotropic in the limit of infinite rank. Similarly, three-
dimensional lamination sequences can also be found so that in the limit of infinite
rank, the macroscopic behaviour becomes isotropic (Idiart in preparation). The
interest in composites with this class of (transversely) isotropic microstructures is
that, in the linear case, these reproduce exactly the effective behaviour of the
above-mentioned HS estimates, for any values of the modulus tensors of the phases
(Milton 2002). For this reason, homogenization estimates of the HS type, like the
ones considered here for the LCC, are particularly appropriate for nonlinear
composites with this class of microstructures, since the effective behaviour of the
LCC is being computed exactly in that case, and therefore there is only one level of
approximation involved, namely, at the linearization stage. In addition, since this
property holds for any type of linearization scheme, this class of nonlinear
composites provide an ideal test case to compare LCC-based homogenization
methods by making use of different linearization schemes. Furthermore, a
peculiarity of this class of nonlinear composites is that, by construction, the
local fields in the inclusion phase are uniform, independently of the behaviour of
the phases. In this connection, it is relevant to emphasize that the sequentially
laminated microstructures are intrinsically different from the ‘composite cylinder
assemblage’ (CCA) microstructures considered by Moulinec & Suquet (2003,
2004) also for two-phase, power-law composites with transversely isotropic
symmetry. While these two very different types of microstructures are found to
exhibit very similar in-plane behaviours when the phases are linear, their
behaviours become progressively more different as the nonlinearity increases,
the difference beingmost notable for the case of an ideally plasticmatrix containing
weaker inclusions. In this case, the most striking difference is the fact that the
strain fluctuations in the inclusion phase are infinite in CCA composites, but
identically zero in sequential laminates. As the HS-type nonlinear homogenization
estimates are consistent with zero fluctuations in the inclusion phase, in this
work, we have chosen to compare these nonlinear estimates with the
corresponding (infinite-rank) laminate results, instead of the CCA results, as in
Idiart et al. (2006).
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Figure 1. Effective flow stress ~s0, normalized by the flow stress of the matrix s
ð1Þ
0 , for power-law,

fibre-reinforced ðsð2Þ0 =s
ð1Þ
0 Z5Þ composites subjected to in-plane shear: (a) as a function of

the strain-rate sensitivity m, for a given concentration of fibres (c(2)Z0.21), (b) as a function of
fibre concentration c(2), for a given strain-rate sensitivity (mZ0.2). Comparisons between the
‘second-order’ (SO), ‘tangent second-order’ (TSO) and ‘variational’ (VAR) estimates of the
Hashin–Shtrikman type, and exact results for power-law laminates (LAM ).
In the sections to follow, comparisons are provided among the exact results for
power-law laminates (LAM ), and the variational (VAR), tangent second-order
(TSO) and second-order (SO) estimates described in part I, for fibre-reinforced
ðsð2Þ0 =s

ð1Þ
0 Z5Þ and fibre-weakened ðsð2Þ0 =s

ð1Þ
0 Z0:2Þ composites, as well as for

isotropic, rigidly reinforced and porous composites. It is recalled that the SO and
TSO estimates exhibit a duality gap, and therefore two sets of these estimates
corresponding to the strain (W ) and stress (U ) formulations are shown. It should
also be mentioned that the SO estimates provided in this work make use of
�3 and �s as the ‘reference’ strain and stress tensors (see part I). Finally, the
classical bounds of Voigt and Reuss for the effective behaviour are also included
for comparison purposes.
3. Transversely isotropic, fibre-reinforced composites

(a ) Effective behaviour

In figure 1, plots are provided for the effective flow stress ~s0 of a fibre-
reinforced composite, normalized by the flow stress of the matrix phase s

ð1Þ
0 .

Figure 1a shows plots as a function of the strain-rate sensitivity m. Several
observations are relevant in the context of this figure. First, all homogenization
estimates of the HS type coincide for mZ1 with the linear HS estimates and the
LAM results, but give different predictions for other values of m. The main
observation, however, is that both versions (W and U ) of the SO and TSO
estimates are in very good agreement with the exact LAM results, for all values
of the strain-rate sensitivity m. In particular, the agreement is excellent for the
5



SO(W ) estimates. In addition, all these estimates are found to tend to the Reuss
lower bound as m/0, which seems to be the case for the LAM results as well (for
numerical reasons, it was not possible to reach mZ0). The VAR estimates, on
the other hand, are seen to overestimate the LAM results for all values of m
different from 1, which is not suprising given the fact that the former are known
to provide rigorous bounds for the latter. It is also observed that the strain (W )
and stress (U ) versions of the SO and TSO estimates give slightly different
predictions, i.e. they exhibit a duality gap, as anticipated. However, this gap can
be shown to vanish not only in the linear case, but also in the ideally plastic limit
(mZ0). Figure 1b shows plots as a function of the fibre concentration for a
moderate nonlinearity (mZ0.2). The main observation is again the good accord
of the SO and TSO estimates with the LAM results, even at high-fibre
concentrations. It is also interesting to note that the SO(W ) estimates are more
accurate than the SO(U ) estimates for low-to-moderate values of c(2), while the
converse is true for high values of c(2).
(b ) First moments of the local fields

In figure 2, results are given for the corresponding first moments (phase
averages) of the local fields. Figure 2a,b shows plots for the equivalent part of the
average strains in each phase �3

ðrÞ
e , normalized by the equivalent macroscopic

strain �3e. It can be seen that all homogenization estimates are in excellent
agreement with the LAM results, for all values of m and c(2). Thus, it is found in
figure 2a that the strain in the fibres decreases with increasing nonlinearity
(decreasing m) until it vanishes in the ideally plastic limit, meaning that the
fibres behave like rigid inclusions in this strongly nonlinear limit, even though
they are not rigid, and all the macroscopic deformation is carried in the matrix
phase. Figure 2b shows that, for a moderate nonlinearity (mZ0.2), the strain in
the fibres remains very small for most values of c(2), and hence the average strain
in the matrix is �3

ð1Þ
e z�3e=c

ð1Þ.
The corresponding results for the average stresses in each phase �s

ðrÞ
e are shown in

figure 2c,d, normalized by the equivalent macroscopic stress �se. Figure 2c shows
plots as a function ofm. Once again, it is seen that the SO andTSO estimates are in
good agreement with the LAM results for all values ofm, while theVAR estimates
are rather inaccurate. In particular, the agreement is found to be excellent for the
SO(W ) estimates. Thus, these estimates predict a higher average stress in the
(stronger) fibres than in the matrix phase, as expected, but as the nonlinearity
increases, this difference becomes smaller and finally vanishes as m/0, so that

�s
ð1Þ
e Z �s

ð2Þ
e Z �se in this limit.This is consistentwith the stress field becominguniform

throughout the composite in the ideally plastic limit, which in turn is consistent
with the effective behaviour being given by the Reuss lower bound (see figure 1a).
Figure 2d shows that the relative merits of the different homogenization estimates
for the average stresses in fact change with fibre concentration. Thus, while the
SO(W ) estimates are seen to be the most accurate ones for fibre concentrations
below 0.5, they deteriorate significantly at higher concentrations. This deterio-
ration can be traced to the use of �3 as the reference strain, which suggests that this
choice is not good for very large concentrations. In contrast, the use of �s as the
reference stress in the context of the SO(U ) estimates is seen to lead to better
behaved, albeit sometimes less accurate, estimates for all values of c(2).
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Figure 2. First moments (phase averages) of the local fields in fibre-reinforced composites.
Equivalent average strain �3

ðrÞ
e and stress �s

ðrÞ
e in each phase, normalized by the macroscopic

equivalent strain �3e and stress �se, respectively.
(c ) Second moments of the local fields

Plots for the corresponding second moments of the strain field are given in
figure 3, normalized by �32e. Figure 3a shows plots for the second moments of the
parallel component of the strain in each phase, as a function ofm. It can be seen in
this figure that, in the matrix phase, the LAM results increase significantly with
increasing nonlinearity, and tend to become unbounded as m/0, unlike the first
moments of the strain, which remain finite in this limit (see figure 2a). This implies
that the spatial distribution of the strain in the matrix phase becomes significantly
more heterogeneous with increasing nonlinearity. On the other hand, figure
3c shows that the LAM results for the second moments of 3t in the matrix drop to
zero asm/0, meaning that in this limit the strain field becomes ‘aligned’ with the
macroscopic strain throughout the composite. In addition, for a finite value of m,
the second moments of both components in the matrix are seen in figure 3b,d to
increase monotonically with increasing concentration of fibres, becoming
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Figure 3. Second moments of the strain field in fibre-reinforced composites. ‘Parallel’ 3s and
‘perpendicular’ 3t components, normalized by �32e.
unbounded as c(2)/1. Both versions of the SO and TSO estimates are found to be
consistent with these observations, being in good qualitative agreement with the
LAM results for all values ofm and c(2). On the other hand, theVAR estimates are
found, once again, to be the least accurate among the nonlinear homogenization
estimates. Finally, it is recalled that the local fields in the inclusion phase of
the power-law laminates are uniform for any value of the material parameters.
Thus, the LAM results in the inclusion phase are such that �s

ð2Þ
e =s

ð2Þ
0 Zð�3ð2Þe =30Þm,

h32sið2ÞZð�3ð2Þe Þ2 and h32tið2ÞZ0. In this connection, it is noted that, while the SO
and VAR estimates satistfy these relations, thus being consistent with uniform
fields in the fibres, the TSO estimates do not satisfy the first two. In fact, the TSO
estimates for h32eið2Þ are found to be slightly less than those for ð�3ð2Þe Þ2, and therefore
violate the rigorous inequality h32eið2ÞRð�3ð2Þe Þ2. This inconsistency demonstrates
that the TSO estimates are less good than the SO estimates.
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Figure 4. Second moments of the strain field in fibre-reinforced composites. ‘Parallel’ ss and
‘perpendicular’ st components, normalized by �s2e.
Plots for the corresponding second moments of the parallel ss and
perpendicular st components of the stress, normalized by �s2e, are given in
figure 4. Figure 4a,c shows plots as a function of m. The LAM results show that
the second moments of the stress remain bounded as m/0, unlike those of the
strain and seem to be consistent with vanishing fluctuations in the ideally plastic
limit. It can be seen that SO and TSO estimates are in good qualitative agreement
with the LAM results for all values of m, and predict no stress fluctuations in the
ideally plastic limit, which is consistent with the fact that the corresponding
estimates for ~s0 attain the Reuss lower bound in this limit. In particular, the
agreement is seen to be excellent for the SO(W ) estimates, at least for this
moderate value of fibre concentration (c(2)Z0.21). Figure 4b,d shows that the
SO(W ) estimates remain the most accurate among the homogenization estimates
up to fairly large fibre concentrations. However, as c(2) becomes larger, the
SO(W ) estimates for the second moments of ss in the matrix deteriorate
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Figure 5. Effective flow stress ~s0, normalized by the flow stress of the matrix s
ð1Þ
0 , for power-law,

fibre-weakened ðsð2Þ0 =s
ð1Þ
0 Z0:2Þ composites subjected to in-plane shear: (a) as a function of the

strain-rate sensitivity m, for a given concentration of fibres (c(2)Z0.21), (b) as a function of fibre
concentration c(2), for a given strain-rate sensitivity (mZ0.1). Comparisons between the ‘second-
order’ (SO), ‘tangent second-order’ (TSO) and ‘variational’ (VAR) estimates of the
Hashin–Shtrikman type, and exact results for power-law laminates (LAM).
significantly, while the SO(U ) estimates remain well behaved, which is consistent
with the observations made in the context of figure 2d. Finally, as already noted
in the context of figure 3, it should be mentioned that, while the SO and VAR
estimates are consistent with uniform fields in the inclusion phase, in agreement
with the LAM results, both versions of the TSO estimates for the average and
second moments of the stress in the inclusion phase are not so and violate the
inequality hs2eið2ÞRð�sðrÞe Þð2Þ. Again, this suggests that the TSO estimates should
be less reliable, in general, than the SO estimates, as expected.
4. Transversely isotropic, fibre-weakened composites

(a ) Effective behaviour

In figure 5, plots are provided for the effective flow stress ~s0 of a fibre-
weakened composite, normalized by the flow stress of the matrix phase s

ð1Þ
0 .

Figure 5a shows plots as a function of the strain-rate sensitivity m. The main
observation in the context of this figure is that both versions of the SO estimates
are found to be in very good agreement with the LAM results, not only for weak
nonlinearities, but more importantly, also for strong nonlinearities. In contrast,
the TSO estimates are seen to be in very good agreement with the exact LAM
results for weak-to-moderate nonlinearities, but, unlike in the case of stronger
fibres, they are seen to deteriorate and deviate significantly from each other
(large duality gap) for strong nonlinearities. In this connection, it is observed
that, as m/0 the TSO(W ) estimates rapidly decrease to a finite value well
10
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Figure 6. First moments (phase averages) of the local fields in fibre-weakened composites.
Equivalent average strain �3

ðrÞ
e and stress �s

ðrÞ
e in each phase, normalized by the macroscopic

equivalent strain �3e and stress �se, respectively.
below the LAM results, while the TSO(U ) estimates tend to go to the Voigt
upper bound, violating the sharper bound provided by the VAR estimates.
Finally, it can be seen in part (b) that, for a strong nonlinearity (mZ0.1), the SO
estimates remain the most accurate for all values of the fibre concentration.
(b ) First moments of the local fields

Plots for the corresponding phase averages of the local fields are provided in

figure 6. Figure 6a shows the equivalent average strains �3
ðrÞ
e in each phase,

normalized by �3e, as a function of m. It can be seen in this figure that the LAM
results show an average deformation that is higher in the (weaker) fibres than in
the matrix, as expected, and that increases with increasing nonlinearity. The
SO(W ) estimates are found to be in excellent agreement with the LAM results for
11



all values of m, while the agreement is less good for the SO(U ) estimates, which
exhibit a peculiar, non-monotonic behaviour close to the ideally plastic limit. On
the other hand, the TSO estimates are in very good agreement with the LAM
results up to moderate nonlinearities, but deteriorate significantly as m/0. In
particular, the TSO(U ) estimates give �3

ð1Þ
e Z�3

ð2Þ
e Z�3e, which is consistent with the

TSO(U ) estimates for ~s0 being given by the Voigt bound (see figure 5a). Finally,
theVAR estimates are seen to capture the right trends, even if they underestimate
significantly the deformation of the inclusion phase for strong nonlinearities.
Figure 6b shows that the SO(W ) estimates remain the most accurate for all values
of the fibre concentration. These estimates agree with the LAM results in that the
deformation in the inclusion phase increases with decreasing fibre concentrations,
and that this trend is significantly enhanced by nonlinearity.

Figure 6c,d shows plots for the equivalent average stresses �s
ðrÞ
e in each phase.

We begin by noting that the LAM results show an average stress that is lower in
the (weaker) fibres than in the matrix, as expected, and that decreases with
increasing nonlinearity. The main observation in the context of these figures,
however, is that all homogenization estimates are in very good agreement with
the LAM results, for all values of m and c(2). This is not surprising, for in the
limit of void fibres ðsð2Þ0 Z0Þ all the estimates predict the correct ratios �s

ðrÞ
e =�se.

However, it is observed in part (c) that, as m/0, the TSO(W ) estimates exhibit
a peculiar behaviour, deviating from the exact LAM results and thus becoming
less accurate than the other estimates in this strongly nonlinear limit.
(c ) Second moments of the local fields

Figure 7 shows plots for the second moments of the parallel 3s and
perpendicular 3t components of the strain in each phase, as a function of m
(figure 7a,c) and fibre concentration (figure 7b,d). We begin by noting that the
general agreement between the exact LAM results and the different homogen-
ization estimates is worse than that found for the first moments of the strain (see
figure 6a,b). Of all the homogenization estimates, the SO(U ) estimates seem to
be the most consistent with the LAM results, in general, even though they
exhibit the peculiar behaviour for strong nonlinearities already observed in the
context of figure 6a. On the other hand, while better for the second moments of
the strain in the inclusion phase, in the matrix phase the SO(W ) estimates
underestimate considerably the second moments of 3t. However, both versions of
the SO estimates are consistent with uniform fields in the inclusion phase, in
agreement with the exact LAM results. In contrast, both versions of the TSO
estimates are relatively good for weak-to-moderate nonlinearities, but become
meaningless for sufficiently strong nonlinearities, violating once again, the

rigorous inequality h32eiðrÞRð�3ðrÞe Þ2 in the inclusion phase (rZ2) and sometimes
even in the matrix phase (rZ1). It should be noted that, in the limit m/0, the
TSO(U ) estimates for ~U deviate from the Voigt bound when the perturbation
parameters l(r) (see part I) are non-zero, and therefore the TSO(U ) estimates for
the second moments of the strain do not agree with uniform strain fields, unlike
those for the phase averages.

Figure 8 shows plots for the second moments of the parallel ss and
perpendicular st components of the stress in each phase, as a function of m
(figure 8a,c) and fibre concentration (figure 8b,d). Once again, it is noted that the
12
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Figure 7. Second moments of the strain field in fibre-weakened composites. ‘Parallel’ 3s and
‘perpendicular’ 3t components, normalized by �32e.
general agreement between the exact LAM results and the different homogen-
ization estimates is worse than that found for the first moments of the stress (see
figure 6c and d), even though the stress statistics are less sensitive than the
corresponding strain statistics in the case of weaker fibres. Of all homogenization
estimates, the SO(W ) seem to do best for the second moments of the stress,
as opposed to the SO(U ) estimates for the corresponding strain quantities,
the agreement with the LAM results being good for all values of m and c(2). In
contrast, both versions of the TSO estimates are found to be in good agreement
with the LAM results for weak-to-moderate nonlinearities, but deteriorate
significantly as m/0, where they violate the inequality hs2eið2ÞRð�sð2Þe Þ2.
In particular, the TSO estimates for the second moments of st in the matrix
phase are seen to blow up in this limit, which is at odds with the exact
LAM results.
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Noting that the plots for the stress statistics provided in figures 6 and 8 are
appropriately normalized by �se, which should be set equal to ~s0 in the ideally
plastic limit for the composite to flow, it is inferred that, as m/0, the exact
LAM results for the second moments of the equivalent stress in the matrix phaseffiffiffiffiffiffiffiffiffiffiffi

hs2eið1Þ
p

tend to the flow stress s
ð1Þ
0 , while those for �s

ð1Þ
e remain below s

ð1Þ
0 .

In addition, the LAM results for these quantities in the (weaker) inclusion phase
tend to the flow stress s

ð2Þ
0 in this limit. This means that in ideally plastic,

sequential laminates like those considered here, every point is at yield in both
phases. However, in the matrix phase, the ‘direction’ of the stress tensor
varies with position, thus giving rise to intraphase stress fluctuations even
though seZs

ð1Þ
0 everywhere. This is a very special behaviour that would not be

expected to happen in more realistic microstructures, as, for example, in those
14



considered by Idiart et al. (2006). It should be emphasized, nevertheless, that,
independently of the microstructure, the stress statistics in ideally plastic

composites are such that �s
ðrÞ
e %

ffiffiffiffiffiffiffiffiffiffiffi
hs2eiðrÞ

p
%s

ðrÞ
0 , and therefore accurate estimates

should satisfy these inequalities. Even though not shown here (see Idiart (in
preparation) for details), it is noted that the SO and VAR estimates do satisfy
these inequalities in the ideally plastic limit, but the TSO estimates sometimes
violate them. In this connection, it is recalled that the so-called affine method,
which amounts to obtaining the estimates directly from the LCC of the TSO
method and therefore delivers estimates even less accurate than the TSO
estimates, is already known to predict second moments of the ‘resolved’ shear
stresses that are larger than the flow stress of the slip system in the context of
viscoplastic polycrystals (see Brenner et al. 2004).
5. Isotropic, rigidly reinforced composites

In this section, results are provided for the effective behaviour and associated
average stresses in isotropic power-law composites with rigid inclusions,
subjected to axisymmetric shear (qZ0) and simple shear (qZp/6) loadings.
For the sake of brevity, only one value of the strain-rate sensitivity (mZ0.1) is
considered. However, it is worth emphasizing that, while the TSO and SO
estimates for simple shear are found to exhibit a dependence on m that is similar
to that observed in the context of fibre-reinforced composites under in-plane
shear, the corresponding estimates for axisymmetric shear predict a reinforce-
ment effect, as well as inhomogeneous stress fields, even in the ideally plastic
limit, which seems to be consistent with the exact LAM results (LAM results
could not be obtained for mZ0).

In figure 9, plots are given for the effective flow stress ~s0, normalized by the
flow stress of the matrix s

ð1Þ
0 , and the corresponding equivalent average stresses

�s
ðrÞ
e , normalized by the equivalent macroscopic stress �se, as a function of the

reinforcement concentration c(2). The main observation in the context of this
figure is that, among the nonlinear homogenization estimates for ~s0, the SO
estimates are found to be the most accurate for all values of the reinforcement
concentration under both types of loading conditions considered, as can be seen
in figure 9a,b. Thus, these estimates predict a lower ~s0 in simple shear than in
axisymmetric shear loading, in agreement with the trend found for the exact
LAM results. As for the case of fibre-reinforced composites (see figure 1b), it is
seen that for low-to-moderate values of c(2), the SO(W ) estimates are closer to
the exact LAM results than the SO(U ) estimates, while for large values of c(2) the
converse is true. It can be seen that, while the TSO estimates also capture the
right dependence on q, they are found to overestimate significantly the exact
LAM results. The TSO(U ) estimates for qZ0 even violate the rigorous bound
provided by the VAR estimates. Finally, the VAR estimates not only
overestimate the exact LAM results, but also they are unable to capture any
dependence on q.

It is recalled that, since the inclusions are rigid, the average strains are trivial in

this case, namely �3 ð2ÞZ0 and �3 ð1ÞZ�3=cð1Þ. The corresponding average stresses are
shown in figure 9c,d. It is seen that the LAM results exhibit an average stress in the

inclusion phase �s
ð2Þ
e that is larger in axisymmetric shear (qZ0) than in simple shear
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Figure 9. Estimates and exact results for power-law rigidly reinforced composites, as a function of
the reinforcement concentration c(2), for a given strain-rate sensitivity (mZ0.1). Effective flow
stress ~s0, normalized by the flow stress of the matrix s

ð1Þ
0 , for (a) axisymmetric shear (qZ0) and (b)

simple shear (qZp/6). Parts (c) and (d) show corresponding equivalent average stresses in each
phase �s

ðrÞ
e , normalized by the equivalent macroscopic stress �se. Comparisons between the ‘second-

order’ (SO), ‘tangent second-order’ (TSO) and ‘variational’ (VAR) estimates of the Hashin–
Shtrikman type, and exact results for power-law laminates (LAM).
(qZp/6), even though the difference is relatively small. The SO andTSO estimates
are able to capture this dependence on q, unlike the VAR estimates, but they are

seen to overestimate �s
ð2Þ
e for dilute reinforcement concentrations. Again, it is

observed that, for low-to-moderate values of c(2), the SO(W ) estimates are in
better agreement with the LAM results than the SO(U ) estimates, while the
opposite is true at large c(2). In this connection, the SO(W ) estimates for �s

ð1Þ
e

deteriorate significantly as c(2)/1, as already noted in the case of fibre-reinforced
composites. Results for the corresponding second moments of the fields are not
given here for brevity, and the reader is referred to Idiart (in preparation).
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Finally, it should be mentioned that the ‘optimal’ LCC associated with the
SO(W ) estimates for qZ0 was found to involve an L

ð1Þ
0 that is not strongly

elliptic at some moderate values of c(2), for small values of m (smaller than
mZ0.1). The fact that this negative feature is manifested in this ‘extreme’ case
is surely related to the non-optimal choice of the reference tensor �3(1), which has
been set equal to �3 in this work (see part I). However, in practice, it does not
seem to have a big effect on the predictions for the effective behaviour and
phase averages.
6. Isotropic porous materials

In this section, results are provided for the effective behaviour and associated
average strains in isotropic, ideally plastic (mZ0) composites with incompres-
sible pores, subjected to axisymmetric shear (qZ0) and simple shear (qZp/6)
loadings. In figure 10, plots are given for the effective flow stress ~s0, normalized
by the flow stress of the matrix s

ð1Þ
0 , as well as for the corresponding equivalent

average strains �3
ðrÞ
e , normalized by the equivalent macroscopic strain �3e, as a

function of the porosity c(2). The main observation in the context of this figure is
that both versions of the SO estimates for the effective flow stress ~s0 are in
excellent agreement with the exact LAM results, for all values of the porosity and
both types of loading conditions (see figure 10a,b), thus capturing the right
dependence on q, which happens to be subtle in this case. In contrast, the
TSO(W ) estimates for ~s0 are found to be accurate for axisymmetric shear, but
highly inaccurate for simple shear. In particular, the TSO(U ) estimates are
found to coincide with the Voigt upper bound, thus violating the sharper bound
provided by the VAR estimates. On the other hand, the VAR estimates, even
though insensitive to q, are in relatively good agreement with the LAM results in
this case.

It is recalled that, since the inclusions are incompressible pores, the devia-
toric parts of the average stresses are trivial in this case, namely �s

ð2Þ
d Z0 and

�s
ð1Þ
d Z �sd=c

ð1Þ. The corresponding average strains are shown in figure 10c,d. It
is seen that, among the various homogenization estimates, the SO estimates
are in general the most accurate, their agreement with the LAM results being
good for all values of the porosity, under both loading conditions. It is
interesting to note that, as c(2)/0, these estimates predict that the average
strain in the pores remains finite in axisymmetric shear (see figure 10c), but
blow up in simple shear (see figure 10d). Even though the available LAM
results are not conclusive in this respect, they strongly suggest that these
predictions are indeed correct, which, if true, would constitute a remarkable
result. In contrast, the TSO(W ) estimates, while relatively good in
axisymmetric shear, become meaningless in simple shear where they predict
a zero average strain in the matrix phase. In addition, the TSO(U ) estimates
predict a uniform strain field in the composite, i.e. �3 ð1ÞZ�3 ð2ÞZ�3, completely at
odds with the exact LAM results, but consistent with the fact that the
corresponding estimates for ~s0 coincide with the Voigt bound. Finally, the
VAR estimates are found to underestimate the average strain in the pores for
low values of the porosity, and are insensitive to q.
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Figure 10. Estimates and exact results for ideally plastic (mZ0) porous composites, as a function of
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axisymmetric shear (qZ0) and (b) simple shear (qZp/6). Parts (c) and (d) show corresponding
equivalent average strains in each phase �3
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Comparisons between the ‘second-order’ (SO), ‘tangent second-order’ (TSO) and ‘variational’
(VAR) estimates of the Hashin–Shtrikman type, and exact results for power-law laminates (LAM).
7. Concluding remarks

The nonlinear homogenization estimates for the effective behaviour and field
statistics proposed in part I of this work have been applied to the specific cases of
two-phase, power-law composites with isotropic and transversely isotropic
microstructures, and have been compared with available exact results for
composites with sequentially laminated microstructures. The main findings are
as follows.
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Globally, the second-order estimates are found to be superior to the tangent
second-order and variational estimates, which can lead to inconsistent
predictions in some cases. In particular, the TSO estimates have been found to
give predictions for the second moments of the stress that are inconsistent with
inequalities of the type hs2eiðrÞRð�sðrÞe Þ2, for sufficiently strong nonlinearities.

More specifically, in the case of reinforced composites, both versions of the
second-order and tangent second-order estimates for the effective behaviour, as
well as for the field statistics, were found to be in fairly good agreement with the
exact results for all values of the nonlinearity. All these estimates (SO and TSO)
are able to capture the anisotropic character of the field fluctuations and the fact
that certain components of the strain fluctuations in the matrix become
unbounded in the strongly nonlinear ideally plastic limit. In contrast, the
variational estimates were found to significantly overestimate the effective
behaviour, in agreement with their upper bound character, and to give
qualitatively incorrect predictions for the field statistics, failing to capture the
strong anisotropy of the strain fluctuations at high nonlinearities.

For the cases of fibre-weakened and porous composites, which are more
‘demanding’ than those of reinforced composites, the second-order estimates for
the effective behaviour and first moments of the local fields were found to be in
good agreement with the exact results even for strong nonlinearities. In general,
the accuracy of the corresponding estimates for the second moments of the fields
was found to be worse, which is not surprising in view of the fact that they
correspond to more sensitive information. However, these estimates agree with
the exact results in that, unlike in the case of reinforced composites, the second
moments of the strain remain bounded in the ideally plastic limit, thus capturing
the relative differences between the deformation patterns in the weaker- and
stronger-particle cases. On the other hand, the tangent second-order estimates
were found to be fairly accurate for weak-to-moderate nonlinearities, but
deteriorate significantly for strong nonlinearites. In turn, the variational
estimates were found to be relatively good for the effective behaviour, but
qualitatively incorrect for the field statistics.

It is worth mentioning (see Idiart (in preparation) for more details) that
accounting for the correction terms derived in part I in the context of the second-
order and tangent second-order, estimates for the field statistics always had a
beneficial effect, in that they improve the predictions arising from the sole use of
the LCC. This improvement can be quite significant at strong nonlinearities,
especially for the statistics of the dual field (i.e. the strain statistics arising from
the stress formulation of the methods, and vice versa). Finally, it is emphasized
that even though the ‘optimal’ choice of the ‘reference tensors’ in the context of
the second-order estimates remains an open question, the results provided in this
work show that accurate estimates can be obtained by making use of the simplest
possible prescriptions for these tensors, namely, the macroscopic fields
themselves. In addition, these choices have been shown (see part I) to lead to
relatively simple analytical estimates for the first and second moments of the
strain and stress fields.

This material is based upon the work supported by the National Science Foundation under Grants

CMS-02-01454 and OISE-02-31867.
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