Field statistics in nonlinear composites. II. Applications
Résumé
Part I of this work provided a methodology for extracting the statistics of the local fields in nonlinear composites, from the effective potential of suitably perturbed composites. In particular, exact relations were given for the first and even moments of the fields in each constituent phase. In this part, use is made of these exact relations in the context of the ‘variational’, ‘tangent second-order’ and ‘second-order’ nonlinear homogenization methods to generate estimates for the phase averages and second moments of the fields for two-phase, power-law composites with isotropic and transversely isotropic microstructures. The accuracy of these estimates is assessed by confronting them against corresponding exact results for sequentially laminated composites. Among the nonlinear homogenization estimates considered in this work, the second-order estimates are found to be, in general, the most accurate, especially for large heterogeneity contrast and nonlinearity. Thus, these estimates are able to capture, for example, the strong anisotropy in the strain fluctuations that can develop inside nonlinear porous and rigidly reinforced composites.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...