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Zn exchangeability in soils Zinc speciation and isotopic exchangeability in soils polluted with heavy metals

A correct characterization of heavy metal availability is a prerequisite for the management of polluted soils. Our objective was to describe zinc (Zn) availability in polluted soils by measuring the isotopic exchangeability of Zn in soil/solution (E value) and in soil/plant systems (L value), by assessing the transfer of Zn and 65 Zn in the fractions of a six-step selective sequential extraction (SSE) in incubated soils and by identifying Zn forms in soils using extended X-ray absorption fine structure (EXAFS) spectroscopy. We distinguished 3 pools of exchangeable Zn: the pool of Zn exchangeable within 1 minute which is observed in all soils, Zn exchangeable on the medium term, and the slowly and not exchangeable Zn. The amount of Zn present in the 2 first pools was similar to the L value measured with T. caerulescens.

The 3 first steps of the SSE solubilized the 1 st pool and a fraction of the 2 nd pool.

Most of the 2 nd pool and a fraction of the 3 rd pool were extracted in the 4 th step of the SSE, while the rest of the 3 rd pool was extracted in the final steps of the SSE.

The EXAFS study conducted on two soils showed that more than half of the Zn was present in species weakly bound to organic compounds and/or outer sphere inorganic and organic complexes. Other species included strongly sorbed Zn species and Zn species in crystalline minerals. The EXAFS study of selected SSE residues showed that the specificity and the efficiency of the extractions depended on the properties of the soil studied.

Introduction

An accurate assessment of heavy metal availability is essential for the proper management of polluted soils. Young et al. (2006) reviewed the use of selective sequential extractions (SSE) and isotope exchange (IE) techniques to characterize heavy metals availability and speciation on the solid phase of soils. They concluded that although sequential extractions are rather easy to implement, their results are flawed because of the lack of specificity of the extractants for given metal species, and/or because of the adsorption or precipitation of metals occurring during the extraction. IE techniques conducted in soil/solution systems allow the quantification of ions located on the solid phase of the soil that can exchange with the same ion present in the soil solution within a given exchange time (E value) [START_REF] Sinaj | Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils[END_REF]. [START_REF] Ayoub | Phytoavailability of Cd and Zn in soil estimated by stable isotope exchange and chemical extraction[END_REF] and [START_REF] Sinaj | Soil isotopically exchangeable zinc: a comparison between E and L values[END_REF] showed that E values measured after a long IE time in acidic soils are identical to the amount of isotopically exchangeable Zn measured in pot experiments with different plant species (L values) demonstrating that Zn that is isotopically exchangeable within a time frame relevant for plant growth is the main source of Zn for plant nutrition. In most studies E values are only measured after a single time of exchange (for instance 24h; Young et al., 2000;[START_REF] Degryse | Soil solution concentration of Cd and Zn can be predicted with a CaCl 2 soil extract[END_REF][START_REF] Nolan | Prediction of Zinc, Cadmium, Lead, and Copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques[END_REF] although according to Young et al. (2006) the study of the kinetics of IE has a lot of potential for assessing Zn forms and availability in soils.

To assess whether a SSE could deliver relevant results on cadmium (Cd) availability, [START_REF] Ahnstrom | Cadmium reactivity in metal contaminatedsoils using a coupled stable isotope dilution-sequential extraction procedure[END_REF] carried out a sequential extraction on soils that had been labeled with a stable isotope of Cd ( 111 Cd). They measured in all extracts the total Cd content and the abundance of 111 Cd and then compared these results with the amount of soil isotopically exchangeable Cd. They concluded that no single fraction of the sequential extraction or a combination of fractions corresponded to the size of the isotopically labile Cd pool.

Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is also used to assess the forms of heavy metals in soils [START_REF] Manceau | Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques[END_REF]. [START_REF] Sarret | Zn speciation in the organic horizon of a contaminated soil by micro X-ray fluorescence, micro and powder EXAFS spectroscopy and isotopic dilution[END_REF] explained the high proportion of isotopically exchangeable Zn observed in a polluted soil by its high concentration in octahedral Zn weakly bound to organic compounds identified with EXAFS. The sensitivity of EXAFS spectroscopy for exchangeable species (bound to organics or weakly sorbed on minerals) is however relatively weak as compared to precipitated and crystalline phases. On the opposite, chemical extractions allow a better quantification of easily mobilized species as compared to more recalcitrant ones due to non-specific dissolution and possible formation of new species. Therefore, the combination of IE methods, SSE and EXAFS spectroscopy may provide a better picture of exchangeable and nonexchangeable metal species [START_REF] Scheinost | Combining selective sequential extractions, x-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil[END_REF][START_REF] Sarret | Zn speciation in the organic horizon of a contaminated soil by micro X-ray fluorescence, micro and powder EXAFS spectroscopy and isotopic dilution[END_REF].

We analyzed Zn exchangeability and speciation in six polluted soils with IE methods, both in soil/water systems (E values) and in soil/plant systems (L values), SSE and Zn K-edge EXAFS spectroscopy. Our purpose was to establish relationships between the Zn pools determined by the various techniques, and between these pools and soil parameters such as total Zn content and pH. Moreover, the specificity of SSE steps for extracting real Zn chemical species was tested by comparing the distribution of Zn species determined by EXAFS spectroscopy in the soil and in selected extraction residues. To test whether the extraction steps released Zn species with a specific exchangeability, soils were labeled with 65 Zn before the SSE, and the specific activity was measured in each residue.

Materials and methods

Soils

We studied six soils that had been polluted with heavy metals. The soil from the Institut National de la Recherche Agronomique (INRA soil) was sampled from a field experiment performed near Bordeaux, France (44° 51' N 00° 32' W). This soil had received 100 t of municipal digested and dehydrated sewage sludge per hectare every second year between 1974 and 1993. A description of the experiment can be found in [START_REF] Weissenhorn | Bioavailability of Heavy-Metals and Arbuscular Mycorrhiza in a Sewage-Sludge-Amended Sandy Soil[END_REF]. Two soils from the Institut für Umweltschutz und Landwirtschaft (IUL soils) were collected in a field experiment conducted near Bern, Switzerland (46° 55' N 07° 25' E). Aerobically digested and dehydrated sewage sludge had been applied to the IUL SS soil, while pig slurry had been applied to the IUL PS soil. The amendment-loading rate for both soils was 5 t ha -1 year -1 from 1976 to 1996. A description of this field experiment is given in [START_REF] Siegenthaler | Effect of high sewage sludge and pig slurry application[END_REF]. The three remaining soils were collected in the vicinity of industrial metal smelting facilities located close to Dornach, Switzerland (47° 25' N 07° 35' E), and in Evin (50° 25' N 03° 01' E) and Mortagne (50° 30' N 03° 27' E),

France. The Dornach soil has accumulated Cd, Cu, Ni and Zn from the deposition of about 700 t dust year -1 from brass smelting that began in 1895 and continued into the 1980s before the installation of emission filters and scrubbers [START_REF] Geiger | Reclamation of Heavy-Metal Contaminated Soils -Field Studies and Germination Experiments[END_REF]. The smelting facility in Evin began operations in 1894 and grew to become the largest Pb and Zn ore processing plant in Europe before its closure in 2003. Until 1970, the Evin facility emitted approximately 5 t smelter dust day -1 (LASIR, 2000).

The Mortagne soil is heavily polluted with metal dust and slag from a Pb and Zn smelter in operation between 1906 and 1968 [START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF]. [START_REF] Thiry | The industrial waste land of Mortagne-du-Nord (59) -I -Assesment, composition of the slags, hydrochemistry, hydrology and estimate of the outfluxes[END_REF] estimate that 15'000 t of metals have been dispersed over 25 hectares surrounding the smelter.

Approximately 100 subsamples of the INRA, IUL SS and IUL PS soils were collected at random intervals within the surface horizon (0-20 cm) to obtain a representative sample. For the Evin and Dornach soils, samples were randomly taken after having removed the litter layer to obtain the maximum contaminant concentration in the soil. The sample site in Mortagne is the so-called metallicolous meadow. The A horizon was characterized by a distinct layer (5 to 8 cm thick) starting at a 15 to 25 cm depth in which smelter ash and tailings had been spread out and buried at the time the smelter was closed. A representative sampling was obtained by collecting approximately 100 random subsamples between 5 and 40 cm to include the heavily polluted layer. The soil samples were well mixed, air-dried for at least one week and passed through a 2-mm sieve. Remaining plant debris was removed by hand prior to analysis. Relevant soil characteristics are listed in Table 1.

Isotopic exchange kinetics, compartmental analysis and determination of isotopically exchangeable Zn

IE kinetic experiments were carried out using a 1:10 soil solution ratio and 2 mM CaCl 2 as described by [START_REF] Sinaj | Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils[END_REF]. After shaking the soil solution suspension on an end-over-end shaker for three days, the samples were removed, placed on a magnetic stirring plate and stirred at 300 rpm. The soil suspension samples were spiked with 1.3 to 2.5 kBq of carrier-free 65 Zn added as ZnCl 2 (NEN Biosciences, Boston, USA; specific activity 2.0 GBq mg -1 Zn). Aliquots of the soil suspension filtered through a 0.2 μm porosity cellulose acetate membrane (Minisart, Sartorius) were removed at 1, 3, 10, 30 and 60 minutes, and at 1, 7 and 14 days. After the first 60 minutes of IE the flasks were left on the bench and they were put back on the stirring plate one hour before sampling at 1, 7 and 14 days so as to minimize the dispersion of soil aggregates that would have been caused by a continuous stirring.

The concentration of Zn in the solution (C Zn ) was measured after 60 minutes, 1, 7 and 14 days by ion chromatography as proposed by [START_REF] Sinaj | Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils[END_REF]. This method measures the oxalate complexable Zn in the filtered soil suspension which approximates the concentration of the hydrated and weakly complexed Zn species [START_REF] Cardellicchio | New strategies for determination of transition metals by complexation ion-exchange chromatography and post column reaction[END_REF] present in the solution. 65 Zn activity in the solution was measured at all sampling times by β liquid scintillation detection (Packard 2500) at an emission energy of 325 keV. We measured the β-counts using 1 ml of filtrate with 5 ml of scintillation liquid (Packard Ultima Gold) and corrected them for quenching effects.

The decrease of the fraction of radioactivity remaining in the solution (r t /R where r t is the radioactivity remaining in the solution expressed in Bq after t minutes, and R the total introduced radioactivity expressed in Bq) was analyzed in each soil with a compartmental analysis to assess the number of Zn containing compartments (a compartment is defined as an amount of material that acts as though it is well-mixed and kinetically homogeneous, [START_REF] Cobelli | Tracer Kinetics in Biomedical Research from Data to Model[END_REF]). We proceeded as proposed by [START_REF] Cobelli | Tracer Kinetics in Biomedical Research from Data to Model[END_REF]. If we consider that for a given soil an apparent isotopic equilibrium is reached before or at 14 days of exchange (i.e. that the fraction of radioactivity remaining in the solution has reached a constant value), we can subtract the fraction of radioactivity remaining at equilibrium from the r t /R values measured at earlier times during the experiment and analyze the resulting curve. If a finite number of compartments can be identified it is possible to separate the obtained curve in a sum of exponential terms that are a function of exchange time. The final equation describing the change of radioactivity in solution with time can then be written as follows:

t C N i i t i e B A R r × - - = ∑ × + = 1 1 (1)
Where r t /R is the fraction of 65 Zn remaining in solution at the time of sampling, A, B i and C i are constants, N is the total number of compartments.

The theory of the compartmental analysis states that when the system is closed, at a steady-state for the element studied, and when the tracer (here 65 Zn) is introduced in one injection within a very short time, then the number of total compartment (N) is equal to the number of exponential terms (N-1) plus 1 [START_REF] Cobelli | Tracer Kinetics in Biomedical Research from Data to Model[END_REF]. This analysis suggests the presence in all soils of a compartment of Zn exchangeable during the first minute of exchange while other compartments differed from soil to soil in their time limits and/or in their total numbers. To simplify the subsequent analysis of the results we decided to consider only three pools of Zn (a pool being defined as a group of compartments, [START_REF] Cobelli | Tracer Kinetics in Biomedical Research from Data to Model[END_REF] in the rest of the paper: the pool of Zn exchangeable within 1 minute which is observed in all soils (pool 1), the pool of Zn that is exchangeable between 1 minute and apparent isotopic equilibrium (pool 2) and the pool of Zn that can not be exchanged or that exchanges very slowly (pool 3). The amount of Zn isotopically exchangeable within a given time (E t value, mg kg -1 ) is calculated using the following equation:

t Zn t r R C m v E × ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ × ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = (2)
Where v/m is the solution to soil ratio (l kg -1 ), C Zn is the Zn concentration (mg l -1 ) in solution and r t /R is the fraction of 65 Zn remaining in solution at the time t of sampling. The amount of Zn present in the pool 1 (E pool1 ) is calculated considering an exchange time of 1 minute, the amount of Zn present in the pool 2 (E pool2 ) is the difference between the amount of Zn that has been exchanged at apparent isotopic equilibrium and the amount of Zn exchangeable within one minute. The amount of Zn present in the pool 3 (E pool3 ) is calculated as the difference between soil total Zn and the amount of Zn that has been exchanged at apparent isotopic equilibrium.

Pot experiment with Thlaspi caerulescens, calculation of the L value

The most readily exchangeable Zn pools were labeled with carrier-free 65 Zn (NEN Biosciences, Boston, USA; specific activity: 2.0 GBq mg -1 Zn). De-ionized water, nutrient solution and 65 Zn were mixed well in to the soils to bring the soil moisture content to 50% water holding capacity (WHC), to provide basal nutrients and to obtain an activity of 2.4 MBq kg -1 soil. The activity was raised to 4.7 MBq kg -1 soil in the Dornach soil due its high Zn fixing capacity. The nutrient solution provided 120 mg K kg -1 dry soil as K 2 SO 4 and KH 2 PO 4 , 30 mg Mg kg -1 dry soil as MgSO 4 , 140 mg N kg -1 dry soil as NH 4 NO 3 , 60 mg P kg -1 dry soil as KH 2 PO 4 and 58 mg S kg -1 dry soil as K 2 SO 4 and MgSO 4 . Incubation of the soils for 40 days at 21° C under aerobic conditions was performed to allow the 65 Zn to label the most readily exchangeable pools. Each pot was filled with 400 g dry mass soil and the water content was raised to 75% water holding capacity (WHC) before sowing the seeds.

The pot experiment consisted of a randomized block design of four replicates. Ten seeds of T. caerulescens (Ganges ecotype) were sown and after germination (~14 days) the plants were thinned to four plants per pot. Pots were watered daily with de-ionized water to maintain 75% soil WHC. The plants were grown under a controlled environment of 16°C /8 h night and 20°C /16 h day, at 70% relative humidity and a light intensity of 280 μmol m -2 s -1 .

After 80 days growth, the plants were harvested by cutting shoots at the soil surface. The plant aerial biomass was washed with de-ionized water, dried at 85° C for 24 hours and the dry mass was measured. Plant Zn concentrations were obtained by grinding the plant material with an agate ball mill and using a dry-ash digestion method adapted from [START_REF] Chapman | Methods of analysis for soils, plants, and waters[END_REF]. The method was performed by incinerating a 1 g sample at 500° C for 8 hours, dissolving the residual ashes with 2 ml of 5.8 M analytical grade HCl that was further diluted to 50 ml with de-ionized water before element and isotope measurements. Zn concentrations were determined by ICP-OES (Varian Liberty 220) and 65 Zn was measured using high purity Ge bore-hole gamma detector (EAWAG, Dübendorf, Switzerland). All 65 Zn measurements were corrected back to the date of soil labeling.

Calculation of the L value (mg Zn kg soil -1 ) was performed with the following equation proposed by [START_REF] Smith | Availability of soil phosphate to tropical pasture species[END_REF]:

introduced plant seed plant Zn Zn Zn Zn L 65 65 ) ( - = (3) 
where Zn plant (mg Zn plant -1 ) is the amount of Zn in the aerial parts of the plant, Zn seed (mg Zn plant -1 ) is the amount of Zn in the seed, 65 Zn plant (Bq plant -1 ) is the amount of 65 Zn in the aerial parts of the plant, and 65 Zn introduced the total amount of 65 Zn introduced to the soil (Bq kg -1 soil). This equation provides the most conservative calculation of L since it assumes that all the seed Zn was redistributed to the aerial portions of the plant. The concentration of Zn present in the seeds (Zn Seed ) was 34.0 ng Zn plant -1 (standard error: 0.1 ng Zn plant -1 ).

Selective Sequential Extraction and Total Digestion

Before conducting the selective sequential extraction (SSE), soils were labeled with 65 Zn and incubated for 20, 85 and 120 days at 21° C. At the time of labeling, a carrier-free 65 Zn solution (NEN Biosciences, Boston, USA; specific activity: 2.0 GBq mg -1 Zn) was added as ZnCl 2 to de-ionized water and mixed well with the soil samples at the rate of 22.5 to 86.0 MBq kg -1 soil. Soils were maintained at 50%

water holding capacity and well aerated during the incubation period.

The selective sequential extraction used in this study was a six-step procedure (F1-F6) developed by [START_REF] Salbu | Characterisation of radioactive particles in the environment[END_REF] and modified using a 1:10 soil to extractant ratio. A description of the analytical grade reagents, procedures and the proposed binding mechanisms are provided in Table 2. The extraction procedure is designed to extract metals in a step-wise fashion first from weak outer sphere bound forms (F1-F3), then from tightly bound outer and inner sphere complexes (F4 and F5) and finally from crystalline metal forms (F6). Prior to performing extractions, the soil samples were ground to a fine powder to homogenize and increase the surface area exposed to the extractants during the extraction process. For each extraction step the samples were shaken on a horizontal shaker at 100 rpm for the times listed in the procedure. Following each extraction, the samples were centrifuged at 11'000 g for 30 minutes, the solution was filtered through a 0.45 µm porosity filter and the filtrate was analyzed for Zn and 65 Zn. Measurements for Zn were performed on an ICP-OES (Varian Liberty 220) and 65 Zn was measured using high purity Ge bore-hole gamma detector (EAWAG, Dübendorf, Switzerland). All 65 Zn measurements were corrected back to the date of soil labeling.

As a final step (F7), the F6 residue was placed in an open-vessel microwave digester (MX 350 Prolabo, France) and the procedure of [START_REF] Lorentzen | Comparison of microwave-assisted and conventional leaching using EPA method 3050[END_REF] was used to extract the residual Zn. After digestion, the sample was cooled to room temperature filtered with a 0.45 µm porosity filter prior to ICP-OES (Varian Liberty 220) analysis. In addition, a single step total digestion was conducted on all soils to obtain total Zn and 65 Zn quantities as a comparison to the total quantities recovered by the SSE.

The fraction of Zn that had undergone isotopic exchange in each fraction of the SSE was assessed by calculating the specific activity (SA) of Zn in each fraction normalized by the quantity of isotopes introduced during labeling ( 65 Zn introduced Bq kg -1 soil) and the total soil Zn (Zn total mg Zn kg -1 soil) as shown in equation 4. Data analysis was done by linear combination fits (LCFs) without principal component analysis since this latter approach is not adapted to small sets of spectra.

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = total
The LCFs were conducted using a reference Zn K-edge reference spectra library described previously [START_REF] Manceau | Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin[END_REF][START_REF] Sarret | Zn speciation in the organic horizon of a contaminated soil by micro X-ray fluorescence, micro and powder EXAFS spectroscopy and isotopic dilution[END_REF]. The maximum number of components for the fit of the extraction residues and soil spectra was limited to four since the precision of the method does not enable a reliable quantification of more complex mixtures. From these four components, concentrations of Zn species (mg Zn kg -1 soil) in each sample were calculated by multiplying the percentage of each component by the total Zn concentration in the sample.

Results and discussion

Zn concentration in dilute CaCl 2 extracts (C Zn )

We present the average C Zn values measured during the IE kinetic experiments for each soil (Table 3). The highest values were observed in the Evin and Mortagne soils and the lowest values were observed in the IUL SS soil (Table 3). The logarithm of C Zn was highly significantly related to soil pH and to the logarithm of the total soil Zn content of the 6 soils. ln(C Zn )=4.81-3.06pH +1.86ln(Zn total ), n=6, R 2 =0.97, SEE=0.67

(5)

This result confirms that C Zn increases with Zn inputs and decreases when soil pH increases as noted by [START_REF] Arias | Adsorption and desorption of copper and zinc in the surface layer of acid soils[END_REF]. The very low C Zn values observed in the IUL SS soil can be explained by its high amorphous iron oxide content (Table 1) acting as a strong sorbent for Zn. The elevated amorphous iron oxide content of this soil is related to the repeated additions of FeCl 3 treated sewage sludge in this field experiment.

Decrease of radioactivity in dilute CaCl 2 extracts with time during the isotopic exchange kinetic experiments

The radioactivity found in the solution at a given time divided by the total amount of radioactivity added to the suspension (r t /R) decreased following the same pattern in all samples (Figure 1). In most soils the 2 last r t /R values were very similar showing that an apparent isotopic equilibrium had been reached after 14 days. Only in the IUL PS and in the Evin soils was the last r t /R value lower than the previous one indicating that the isotopic equilibrium might have not been reached after 14 days of IE.

It was possible to fit the curves describing the decrease of r t /R with exchange time by the equation 1 by a sum of two exponential terms and a constant for the Dornach soil and by a sum of three exponential terms and a constant for the other soils (data not shown). These results suggest that the 65 Zn added in the solution exchanged with Zn located in 3 compartments in the Dornach soil and in 4 compartments in the other soils. These compartments corresponded to the following exchange times: 0-1 min, 1-30 min, 30 min-7 days and > 7 days in INRA and IUL SS; 0-1 min, 1-10 min, 10 min to 14 days and >14 days in IUL PS; 0-1 min, 1-30 min, 30 min to 14 days and > 14 days in Evin; 0-1 min, 1 min to 1 day and > 1 day in Dornach; and 0-1 min, 1-30 min, 30 min to 7 days and > 7 days in Mortagne.

Models with two exponential terms and a constant were tried for all soils but gave a proper fit only for Dornach (results not shown). This analysis suggests the presence in all soils of a compartment of Zn exchangeable during the first minute, while other compartments differed from soil to soil.

This compartmental analysis has some limits and its results must be interpreted with caution. More sampling points might have resulted in the determination of more compartments [START_REF] Fardeau | Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments[END_REF]. Besides, it is extremely difficult to sample the suspension at exchange time shorter than 1 minute [START_REF] Fardeau | Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments[END_REF]. The stochastic approach used by [START_REF] Sinaj | Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils[END_REF] was tested with our soils.

This approach allowed modeling the changes of r t /R with time as well as the sum of exponentials for all soils except for IUL PS where it led to negative values of radioactivity as time tended towards the infinity (results not shown). Besides, this stochastic approach does not allow distinguishing compartments of exchangeable elements [START_REF] Fardeau | Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments[END_REF].

Calculation of the amount of isotopically exchangeable Zn (E values)

Because of the different number of compartments observed between soils we prefer to summarize the information given by the compartmental analysis by considering only three pools of exchangeable Zn for each soil: the amount of Zn exchangeable within 1 minute which is observed in all soils (pool 1), the amount of Zn exchangeable that is exchangeable on the medium term (pool 2), and the amount of Zn that is very slowly or not exchangeable (pool 3). The pool 2 corresponds to the fraction of soil Zn that is exchangeable between 1 minute and apparent isotopic equilibrium, i.e. between 1 minute and 1 day in Dornach, between 1 minute and 7 days in INRA, IUL SS and Mortagne, and between 1 minute and 14 days in IUL PS and Evin. The pool 3 corresponds to the amount of Zn that could not be isotopically exchanged within 1 day in Dornach, within 7 days in INRA, IUL SS and Mortagne and within 14 days in Evin and IUL PS.

The amounts of Zn present in the 1 st , 2 nd and 3 rd pools (E pool1 , E pool2 and E pool3 ) are presented in Table 3. Soils polluted with organic amendments (INRA, IUL SS, IUL PS) had between 3.5 and 11.9% of the total Zn in the pool 1 and between 68.1 and 78.9% of total Zn in the pool 3. The Evin and Mortagne smelterimpacted soils had between 42.3 and 46.8% of the total Zn in the pool 1 and between 39.1 and 39.9% of total Zn in the pool 3. The Dornach smelter-impacted soil showed an intermediate result with 10.7% of Zn in the pool 1 and 67.5% in the pool 3. Highly significant relationships were observed between the logarithm of the Zn content of pool 1 (E pool1 ) and pool 2 (E pool2 ) and the logarithm of total Zn and pH (equations 6 and 7).

ln(E pool1 )=-0.51-1.03pH+1.67ln(Zn total ), n=6, R 2 =0.98, SEE=0.39 (6)

ln(E pool2 )=-2.92+0.19pH+1.03ln(Zn total ), n=6, R 2 =0.98, SEE=0.23 (7)

These equations show that the amount of Zn present in the 1 st pool increases with Zn inputs and decreases with pH, while the amount of Zn present in the 2 nd pool increases with Zn inputs and pH.

Pot experiment with T. caerulescens, calculation of the L value

The results are presented in This result shows that pools 1 and 2 contain the soil Zn that can be accessed by T.

caerulescens through diffusion and desorption.

Selective sequential extraction of 65 Zn and Zn from incubated soil

No significant shifts in 65 Zn concentration between the extracted fractions were noted for all soils between 20, 85 and 120 days of incubation, with the exception of the Evin and Mortagne soils in which 65 Zn concentrations significantly decreased in F2 while the concentration of 65 Zn increased in F3 and F4. This coincides with the findings of [START_REF] Almås | Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter[END_REF][START_REF] Almås | Changes in partitioning of cadmium-109 and zinc-65 in soil as affected by organic matter addition and temperature[END_REF] in which measurable levels of 65 Zn were found among all fractions within 7 days of soil labeling.

The normalized specific activities observed for each fraction are presented in Table 6. A monotonous decrease down to null activities was expected from the most exchangeable (F1) to the residual (F7) fraction. However, the specific activities values obtained in F1 were often lower than in F2. We suggest that the relatively low Zn and 65 Zn concentrations extracted by the water (F1) and their high variability might explain the difficulties in calculating correct specific activities values. If we do not consider F1, a monotonous decrease is observed from F2 to F7, except for the F3 extraction for the Evin and Mortagne soils. The activity is very low in the F6 extract and close to 0 in the F7 residual, as expected. This 65 Zn tracing of the SSE confirms that the chosen extractants induced a progressive removal of Zn from highly exchangeable to recalcitrant species.

The average concentrations of Zn in the different fractions of the SSE are provided in Table 5. The total amount of Zn recovered from this sequential extraction ranged between 90.9 and 116% of the total Zn content measured after direct digestion. Between 41.0 and 49.6% of the total Zn was extracted in the 6 th step (F6) in INRA, IUL SS and IUL PS soils while in the Evin and Mortagne soils between 45.4 and 53.6% of the Zn was extracted in the 2 nd and 3 rd steps (F2-F3 fractions). This predominance of exchangeable species is most likely due to the dissolution of smelter-inherited primary minerals (franklinite, sphalerite, willemite)

and redistribution in the exchangeable fractions as described by various authors [START_REF] Juillot | Occurrence of Zn/Al hydrotalcite in smelterimpacted soils from northern France: Evidence from EXAFS spectroscopy and chemical extractions[END_REF][START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF][START_REF] Roberts | Zinc speciation in a smeltercontaminated soil profile using bulk and microspectroscopic techniques[END_REF].

Comparison between the amounts of Zn recovered in the different fractions of the SSE (Table 5) and the amount of isotopically exchangeable Zn (Table 3),

shows that the total amount of Zn extracted during the 3 first steps (Zn F1+F2+F3 ) is slightly higher than the amount of very rapidly exchangeable Zn (E pool1 ) (equations 10 and 11).

ln(Zn F1+F2+F3 )=0.78+0.92ln(E pool1 ), n=6, R 2 =0.97, SEE= 0.38 (10) ln(E pool1 )=-0.68+1.05ln(Zn F1+F2+F3 ), n=6, R 2 =0.97, SEE=0.40 (11) This suggests that these 3 first steps have extracted the entire quantity of Zn isotopically exchangeable within 1 minute, and that F3 extracted a fraction of the Zn exchangeable on the medium term. Highly significant correlations were also found between ln(Zn F5+F6+F7 ) and ln(E pool3 ) (equations 12 and 13).

ln(Zn F5+F6+F7 )=1.20+0.73ln(E pool3 ), n=6, R 2 =0.87, SEE=0.35 (12) ln(E pool3 )=-0.65+1.19ln(Zn F5+F6+F7 ), n=6, R 2 =0.87, SEE=0.44 (13)

The lower amount of Zn recovered in F5+F6+F7 compared to E pool3 suggests that a fraction of very slowly or not exchangeable Zn had already been extracted in F4.

Since F1+F2+F3 extracted the Zn present in the pool 1 and some of the Zn present in pool 2 and F5+F6+F7 extracted a fraction of the pool 3, we conclude that the 4 th step of the SSE solubilized both moderately and slowly exchangeable forms of Zn,

i.e. Zn from pools 2 and 3.

Zn K-edge EXAFS spectroscopy

Zinc K-edge EXAFS analysis was conducted on the Dornach and Mortagne untreated samples and on the F2 and F3 residues for the Mortagne soil, and the F3, F4 and F5 residues for the Dornach soil.

Figure 2 shows the Zn K-edge EXAFS spectra for some reference compounds used in the linear combination fits, including franklinite, Zn-sorbed birnessite (Mn oxide), Zn-substituted kerolite as a proxy for Zn-substituted phyllosilicate, Zn/Al hydrotalcite, a zinc-aluminum hydroxycarbonate, Zn-sorbed ferrihydrite, Zn-humic acid complexes (Zn-HA) at high and low Zn loading, and aqueous Zn 2+ as a proxy for outer sphere complexes. Franklinite is easily identified by the high amplitude and multiple frequencies of its spectrum. The spectra for Znkerolite and Zn/Al hydrotalcite present some similarities, which makes their distinction difficult in a mixture [START_REF] Panfili | The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis[END_REF]. In the LCFs, these two compounds and Zn-sorbed hectorite were grouped as "Zn-phyllosilicate". Similarly, the spectra for Zn-HA at low Zn loading and Zn-sorbed ferrihydrite look similar because Zn is 4-fold coordinated to oxygen atoms and the second shell contribution weak in the two references. Zn-HA at low Zn loading is a proxy for strongly bound inner sphere Zn-organic complexes in tetrahedral configuration [START_REF] Sarret | EXAFS study of the nature of zinc complexation sites in humic substances as a function of Zn concentration[END_REF].

In the LCFs, the two tetrahedral species were grouped as "tetrahedral Zn-HA and/or Zn-sorbed ferrihydrite". Another pair of similar spectra is Zn-HA at high Zn loading and aqueous Zn 2+ Because Zn is octahedrally coordinated, and the second shell contribution either weak (Zn-HA) or absent (aqueous Zn). These species are considered as representatives for less-strongly to weakly bound inner sphere Znorganic complexes and outer sphere organic and inorganic complexes [START_REF] Sarret | EXAFS study of the nature of zinc complexation sites in humic substances as a function of Zn concentration[END_REF]. In the LCFs, these species were grouped as "weakly bound octahedral Zn".

Figure 3a shows the EXAFS spectra for the untreated soil from Mortagne and the two residues, and their reconstructions with four component spectra. In the untreated soil (MRef), Zn is distributed as 60 ± 10 % weakly bound octahedral Zn complexes, 17 ± 10 % Zn-phyllosilicate, 16 ± 10 % tetrahedral Zn-HA and/or Znsorbed ferrihydrite and 7% franklinite (Figure 3b). The detection limit for this last species is less than 10% because its spectrum has a high amplitude. Zn-sorbed goethite and Zn-sorbed hematite spectra were tested, but neither of them are component species to the data. In a previous study on the same soil [START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF], Zn-phyllosilicate, Zn-sorbed birnessite and Zn sorbed on iron oxyhydroxides were identified as the main Zn species. Another study on a tilled soil near the Mortagne area concluded to the presence of Zn outer-sphere complexes, Zn-organic matter inner-sphere complexes, Zn/Al-hydrotalcite, Zn-phyllosilicate, and magnetite-franklinite solid solutions [START_REF] Juillot | Occurrence of Zn/Al hydrotalcite in smelterimpacted soils from northern France: Evidence from EXAFS spectroscopy and chemical extractions[END_REF]. The F2 extraction removed 41 % of the soil Zn, and most of the weakly bound octahedral Zn pool. The F3 extraction removed 15% of the initial soil Zn, the rest of the weakly bound pool, and some of the tetrahedral pool. The Zn-phyllosilicate and franklinite pools were marginally affected. The occurrence of 10-14% Zn as franklinite in the MF2 and MF3 samples is attested by the sharpening of the second oscillation centered at 6 Å - 1 . In this soil the F2 and F3 extractions are relatively specific, affecting mostly the weakly bound octahedral Zn pool.

In this soil the weakly bound octahedral Zn measured in the untreated sample (784 mg Zn kg -1 soil) was identical to the IE exchangeable Zn (E pool1 +E pool2 , 786 mg Zn kg -1 soil) and to the amount of Zn extracted by the three first steps of the SSE (F1+F2+F3, 729 mg Zn kg -1 soil) (Table 7). These observations suggest that weakly bound octahedral Zn is the main source of available Zn in this soil which is consistent with our previous EXAFS and isotopic exchange study [START_REF] Sarret | Zn speciation in the organic horizon of a contaminated soil by micro X-ray fluorescence, micro and powder EXAFS spectroscopy and isotopic dilution[END_REF].

A different behavior is observed for the Dornach soil (Figure 4). Satisfactory fits were obtained with three components for the untreated soil (DRef) and F3 and F4 residues (DF3 and DF4), and with four components for the F5 residue (DF5).

The weakly bound octahedral Zn are predominant in the Dornach soil (57 ± 10 %) followed by Zn-phyllosilicate (27 ± 10 %), and tetrahedral Zn-HA and/or Zn-sorbed ferrihydrite (16 ± 10 %). The proportions of Zn species did not change statistically in DF3 and DF4, which suggests that all species were affected to a similar extent by the F3 and F4 treatments (removal of 19 and 41 % of total soil Zn, respectively).

The F5 extraction (removal of 19% total soil Zn) targeted preferentially the "weakly bound octahedral Zn" pool. As a consequence, Zn-phyllosilicate was the major species in the DF5 residue. The DF5 spectrum was simulated with Zn-hectorite, whereas DRef, DF3 and DF4 were simulated with Zn-kerolite and/or Zn/Al hydrotalcite. Indeed, the third oscillation of the DF5 and Zn-hectorite spectra have the same shape, whereas the shoulder between 7.0 and 7.5 Å -1 in DRef corresponds to a high amplitude feature in Zn-kerolite and/or Zn/Al hydrotalcite spectra (Figures 2 and4a). Therefore, the local environment of Zn seems to have evolved during the selective sequential extraction. A finer description of the nature and structure of these species would require studying the < 2 µm or < 0.2 µm soil fractions by polarized EXAFS [START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF]. A new species is detected in DF5, Znsorbed birnessite. This species was probably present in the previous samples including those from Mortagne as shown by micro-EXAFS [START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF], In Dornach the weakly bound octahedral Zn measured in the untreated sample (962 mg Zn kg -1 soil) was similar to the Zn extracted by the four first steps of the SSE (F1+F2+F3+F4, 1023 mg Zn kg -1 soil), but was much higher than the IE exchangeable Zn (E pool1 +E pool2 , 549 mg Zn kg -1 soil), which itself was also higher than the amount of Zn extracted by the three first steps of the SSE (F1+F2+F3, 326 mg Zn kg -1 soil) (Table 7). Although Dornach exhibited a high proportion of weakly bound octahedral Zn, only a small proportion of it was extracted by the 3 first extractions of the SSE (22%). We suggest that the IE Zn and the Zn extracted by the 3 first steps of the SSE was indeed present as weakly bound octahedral Zn, but a large fraction of these so-called weakly bound species were neither IE exchangeable nor extractable by the three first steps of the SSE. The different behavior of Zn in Dornach and Mortagne may be explained by the difference in soil pH (6.7 for Dornach and 5.1 for Mortagne) and in soil organic matter content (11% for Dornach and 1% for Mortagne) because inner-sphere mineral surface complexes and organically-bound cationic species are more strongly retained at near neutral than at acidic pH. Altogether these results suggest that isotopically exchangeable Zn and therefore available Zn is present as weakly bound octahedral Zn species but that the proportion of weakly bound octahedral Zn that can exchange with Zn 2+ in the solution decreases when soil pH and organic matter content increase.

Conclusion

The combination of techniques used in this work (isotopic exchange kinetics, pot experiment with T. caerulescens on soil labeled with 65 Zn, selective sequential extraction carried out on 65 Zn labeled soils, and EXAFS spectroscopy) gave comprehensive information on the forms and availability of Zn in these heavy metal polluted soils. The main results of this study are summarized in the Table 7.

Our results allowed quantifying the number of compartments containing IE Zn in these soils. Three pools were derived from this analysis, the amount of Zn exchangeable within 1 minute (1 st pool), the amount of Zn exchangeable between 1 minute and apparent isotopic equilibrium (2 nd pool) and the amount of Zn that could not be exchanged during the IE kinetic experiment (3 rd pool). The experiment conducted with T. caerulescens confirmed that the amount of IE Zn measured in pot experiments was similar to the sum of Zn content present in the 1 st and 2 nd pools, i.e.

that this plant had only access the IE forms of Zn.

The use of the SSE on 65 Zn labeled soils showed that the 3 first extractions (F1, F2 and F3) solubilized the amount of Zn present in the 1 st pool and a slight fraction of the Zn present in the 2 nd pool. The three last fractions of the SSE (F5, F6 and F7) solubilized the Zn from the 3 rd pool. We deduced from these observations that the 4 th extraction of the SSE solubilized the Zn from the 2 nd pool and a fraction of the Zn from the 3 rd pool. Franklinite (ZnFe 2 O 4 ), Zn-sorbed birnessite (adsorption at pH 4, Zn/Mn = 0.134) [START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF], Zn-substituted phyllosilicate ((Zn, Mg) kerolite Zn 2.1 Mg 0.9 Si 4 O 10 (OH) 2 , nH 2 O, Schlegel and[START_REF] Schlegel | Evidence for the nucleation and epitaxial growth of Zn phyllosilicate on montmorillonite[END_REF]Zn-substituted hectorite, Schlegel et al., 2001), Zn/Al hydrotalcite (Zn 2 Al(OH) 6 (CO 3 ) 0.5 , n H 2 O), Zn-sorbed ferrihydrite containing 1500 mg kg -1 Zn [START_REF] Manceau | Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy[END_REF], Znhumic acid complexes at low (600 mg kg -1 Zn) and high (3.2 % Zn) Zn loading [START_REF] Sarret | EXAFS study of the nature of zinc complexation sites in humic substances as a function of Zn concentration[END_REF], and aqueous Zn (pH 4). [START_REF] Fal | Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, Band 1-4. Eidgenössischen Forschungsanstalten FAL[END_REF]. c CaCO 3 was quantified using concentrated HCl [START_REF] Fal | Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, Band 1-4. Eidgenössischen Forschungsanstalten FAL[END_REF]. d Oxalate extractable Fe was determined according to [START_REF] Loeppert | Iron. In: Methods of soil analysis[END_REF]. e EDTA-NH 4 Ac extractions were performed using 50ml of extractant added to 10g dry soil [START_REF] Fal | Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, Band 1-4. Eidgenössischen Forschungsanstalten FAL[END_REF]. f pH was measured using a 1:2.5 soil solution ratio of 0.01M CaCl 2 after 24 hours of gentle shaking. g CEC and base saturation were determined using BaCl 2 method (FAL, RAC & FAW, 1996). i Total Zn obtained after direct digestion (n=3) and standard error (in parentheses). 

  this equation the subscript F x is the extraction number,65 Zn Fx represents the radioisotope concentration (Bq kg -1 soil) in this extract and Zn Fx the total Zn concentration (mg Zn kg -1 soil) in the same extract.StatisticsAll soil analyses were conducted in triplicate while the plant analyses were made with four replicates. Mean values are presented with the standard errors. "Statgraphics plus for Windows" was used for both linear and nonlinear regressions.The standard error of estimate (SEE) and the coefficient of determination are given for each regression. The validity of regressions was evaluated by comparing the predicted and experimental values and by looking at the residuals.Extended X-ray Absorption Fine Structure (EXAFS) SpectroscopyUntreated reference samples of the Dornach and Mortagne soils and residues obtained from the selective sequential extraction were air-dried at 35° C ground and pressed into 5 mm diameter pellets for EXAFS analysis. Experiments were conducted in 2003 at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID-26. The electron storage ring was operating in 16 bunch mode at 6 GeV and current ranging from 70 to 90 mA. The monochromator was a pair of Si(220) flat crystals. Spectra were collected in fluorescence mode using a photo-diode detector and aluminum filters. For each sample 10-20 scans of 40 minutes were averaged. Data extraction was done using WinXAS (version 2.0, Ressler, 2000).

  but as a minor component masked by the predominant species. Chemical extractions lacked selectivity in the Dornach soil because the fractional amount of the major species remained unchanged in DF3 and DF4 despite a removal of 19 and 41% of the soil Zn. The weakly bound octahedral Zn complexes which were extracted completely after the third extraction step in Mortagne soil remained predominant in DF3 and DF4.

Finally,Figure 1
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 2 Figure 2 Zn K-edge EXAFS spectra (χ(k) k 3 , with k: wave number) of reference Zn
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 3 Figure 3 a) Zn K-edge EXAFS spectra (solid line) and linear combination fit
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 4 Figure 4 a) Zn K-edge EXAFS spectra (solid line) and linear combination fits

  Figure 1

  

  

Table 4 .

 4 The biomass production of T. caerulescens was similar in all soils, but the Zn content in the plant increased with soil total Zn content. The L values varied between 22.2 and 32.9% of the total soil Zn content in

	the three soils that had been polluted by organic amendments and between 33.4 and
	56.4% of the total soil Zn content in the three soils that had been polluted by smelter
	emissions. The L values were numerically very similar to the sum of the Zn content
	present in the 2 first pools of the isotope exchange kinetic analysis (equations 8 and
	9).	
	ln(L)=0.13+0.97ln(E pool1 +E pool2 ), n=6, R 2 =0.99, SEE=0.08	(8)
	ln(E pool1 +E pool2 )=-0.12+1.03ln(L), n=6, R 2 =0.99, SEE=0.08	(9)

Table 1

 1 Selected characteristics of the six soils polluted with heavy metals Soil texture was measured via sedimentation with (NaPO 4 ) 6 as a dispersion agent[START_REF] Fal | Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, Band 1-4. Eidgenössischen Forschungsanstalten FAL[END_REF].

	Zn-phyllosilicates
	Weakly bound octahedral
	Zn complexes
	Tetrahedral Zn-HA and/or
	Zn-sorbed ferrihydrite
	Zn-sorbed birnessite

a b Organic matter was measured by titration

Table 3

 3 Average Zn concentration in dilute CaCl 2 extracts (C Zn ) measured during the isotopic exchange experiments and amounts of Zn exchangeable within 1 minute (E pool1 ), moderately isotopically exchangeable Zn (E pool2 ) and slowly or not exchangeable Zn (E pool3 ) calculated for six soils polluted with heavy metals. The average data is followed by the standard error (se) given between parentheses.

	Soil	C Zn		E pool1		E pool2		E pool3	
		Average	Se	Average	se	Average	se	Average	se
		_____ /mg Zn l -1 ______	_______________________ /mg Zn kg -1 soil _______________________	
	INRA	0.50	0.030	50.7	(3.0)	167	(5.9)	463	(8.8)
	IUL SS	0.02	0.003	5.7	(0.6)	28.6	(2.5)	128	(3.1)
	IUL PS	0.38	0.006	10.5	(0.3)	12.6	(0.9)	64.8	(0.7)
	Evin	12.4	0.149	697	(11.6)	305	(14.4)	645 (10.6)
	Dornach	0.15	0.007	181	(1.9)	368	(18.5)	1138 (18.6)
	Mortagne	29.9	0.429	612	(10.2)	174	(4.1)	521	(7.0)

Table 4

 4 Average values for plant aerial dry matter, Zn content of aerial parts and L value measured with Thlaspi caerulescens in six soils polluted with heavy metals. The standard errors (se) are given between parentheses.

	Soil	Yield		Plant Zn content	L value	
		Average	se	Average	se	Average	se
		/ g DM kg -1 soil	/ g kg -1 DM	/ mg Zn kg -1 soil
	INRA	16.5	(0.5)	0.4	(0.1)	224	(14.0)
	IUL SS	23.4	(0.3)	1.2	(0.1)	36	(0.2)
	IUL PS	20.6	(1.1)	1	(0.1)	22.6	(0.7)
	Evin	21.7	(0.4)	4	(0.5)	828	(14.1)
	Dornach	20.4	(0.8)	2.2	(0.5)	564	(0.8)
	Mortagne	21.7	(0.7)	5.9	(0.3)	737	(4.7)

Table 5

 5 Average amount of Zn recovered in the different fractions of the selective sequential extraction after 20, 85 and 120 days of incubation in six soils polluted by heavy metals. The results are expressed in mg Zn kg -1 soil and the standard errors (se) are given between parentheses.

	Fractions	INRA		IUL SS		IUL PS		Evin		Dornach		Mortagne
		Average	se	Average	se	Average	se	Average	se	Average	se	Average	se
		_____________________________________________________________________ /mg Zn kg -1 soil _____________________________________________________________________
	F1	2	(0.5)	0.2	(0.1)	1.2	(0.5)	23.7	(6.8)	1.2	(0.5)	28.1	(3.8)
	F2	26.7	(1.8)	1.8	(0.2)	2.5	(0.2)	499	(27.9)	78.7	(4.2)	505	(26.0)
	F3	103	(11.7)	10.4	(1.6)	8	(0.9)	248	(2.9)	246	(23.4)	195	(4.8)
	F4	217	(10.0)	55.1	(3.5)	19.8	(1.0)	362	(22.1)	696	(44.8)	285	(20.1)
	F5	71.6	(21.5)	24.4	(2.3)	11.2	(1.6)	256	(18.1)	317	(48.9)	64	(11.0)
	F6	279	(38.6)	74.9	(10.6)	43.6	(4.9)	256	(36.8)	165	(37.6)	101	(11.9)
	F7	10.1	(2.2)	21.4	(2.7)	12.0	(2.9)	45.0	(10.9)	28.9	(5.1)	26.2	(4.8)
	Total extracted	709	(19.5)	188	(12.6)	98.2	(6.0)	1690	(42.3)	1533	(64.5)	1205	(51.2)

Table 6

 6 Mean specific activities calculated for each fraction of the selective sequential extraction over 120 days for 6 soils polluted with heavy metals. The values for each fraction are normalized by the 65 Zn introduced and the total soil Zn. Standard errors (se) are given between parentheses.

	Fraction	INRA		IUL SS		IUL PS		Evin		Dornach		Mortagne
		Average	se	Average	se	Average	se	Average	se	Average	se	Average	se
	F1	1.95	(0.21)	1.15	(0.16)	2.42	(0.86)	1.32	(0.38)	1.22	(0.43)	1.10	(0.16)
	F2	2.51	(0.05)	4.24	(0.12)	3.54	(0.28)	1.53	(0.12)	2.10	(0.29)	1.25	(0.05)
	F3	2.26	(0.11)	3.48	(0.26)	3.10	(0.17)	1.65	(0.10)	1.80	(0.06)	1.27	(0.05)
	F4	1.67	(0.10)	1.89	(0.19)	2.27	(0.17)	1.00	(0.11)	0.70	(0.04)	0.58	(0.08)
	F5	0.49	(0.06)	0.38	(0.01)	0.47	(0.02)	0.37	(0.06)	0.42	(0.06)	0.17	(0.03)
	F6	0.01	(0.01)	0.07	(0.02)	0.08	(0.02)	0.12	(0.03)	0.22	(0.08)	0.04	(0.01)
	F7	0.01	(0.01)	0.02	(0.01)	0.02	(0.01)	0.04	(0.02)	0.08	(0.02)	0.01	0.00)

Table 7

 7 Comparison of the data obtained by the various techniques Determined only for Dornach and Mortagne soils.

	Soil	INRA	IUL-SS	IUL-PS	Evin	Dornach	Mortagne
	Total Zn / mg Zn kg soil -1	680	162	87.9	1647	1687	1307
	pH	5.7	6.0	4.6	5.0	6.7	5.1
	Concentration of						
	/ mg Zn l -1 Zn in CaCl 2 ; C Zn	0.50	0.01	0.38	12.3	0.15	29.9
	E pool1 / E pool2 /E pool3 / mg Zn kg soil -1	50.7 / 167 / 463 5.7 / 28.6 / 128	10.5 / 12.6 / 64.8	697 / 305 / 645	181 / 368 / 1138	612 / 174 / 521
	L values / mg Zn kg soil -1	224	36	22.6	828	564	737
	Extraction steps, by decreasing order of Zn recovery	F6>F4>F3> F5>F2>F7>F1	F6>F4>F5> F7>F3>F2>F1	F6>F4>F7> F5>F3>F2>F1	F2>F4>F6-F3>F7>F1 F5>	F4>F5>F3> F6>F2>F7>F1	F2>F4>F3> F6>F5>F1>F7
						57% weakly bound	60% weakly bound
	Distribution of Zn species in the untreated soil / % a					octahedral Zn + 27% Zn-phyllosilicates + 16% tetrahedral Zn-HA and/or Zn-sorbed	octahedral Zn + 17% Zn-phyllosilicates + 16% tetrahedral Zn-HA and/or Zn-sorbed ferrihydrite + 7%
						ferrihydrite	franklinite
	Comparison of results obtained by the different methods / mg Zn kg soil -1					F1+F2+F3+F4 (1023) = weakly bound octahedral Zn (962) > E pool1 + E pool2 (549) > F1+F2+F3 (326)	F1+F2+F3+F4 (1014) > weakly bound octahedral Zn (784) = E pool1 + E pool2 (786) = F1+F2+F3 (729)

a
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Table 2 Selective sequential extraction used for the fractionation of Zn based on [START_REF] Salbu | Characterisation of radioactive particles in the environment[END_REF] and [START_REF] Lorentzen | Comparison of microwave-assisted and conventional leaching using EPA method 3050[END_REF]