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088Abstract14

Cell walls of roots have a great reactivity towards metals, and may act as a barrier limiting the 15

entry of metals, especially in non hyperaccumulating species. The aim of this study was to 16

determine the localization and speciation of Zn in roots of tobacco (Nicotiana tabacum) 17

grown in Zn-contaminated substrates. Chemical extractions and EXAFS spectroscopy were 18

applied on whole roots and on isolated cell walls of roots. Our results show that cell walls of 19

roots exhibited a distribution of Zn affinity sites, from water-soluble to non- exchangeable Zn. 20

In whole roots, Zn was bound with oxalate and other COOH/OH groups: the first species was 21

probably intracellular while the second was attributed to Zn bound to the cell walls and, to a 22

lesser extent, to intracellular organic acids. Moreover, Zn phosphate was also identified, and 23

this species was CuSO4-extractable. It probably resulted from chemical precipitation in the 24

apoplasm, and explained the steady increase in exchangeable root Zn observed in root of 25
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tobacco during the culture. This study shows the strength of combining EXAFS and chemical 26

extractions for studying localization and speciation of metals in plants.27

28
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Cation Exchange Capacity of Roots (CECR), Cell walls, chemical extractions, EXAFS, 30

pectin, cellulose31
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A1, control genotype of tobacco (wild-type genotype neutrally transformed 34

with a CAMV 35S promoter-GUS construct); 35
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CECR, cation exchange capacity of roots;37

C5, genotype of tobacco genetically transformed to over-accumulate the Fe 38

storage protein ferritin in the cytoplasm; 39

EDTA, ethylene-diamine-tetra-acetic acid; 40
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EXAFS, extended X-ray absorption fine structure; 42

Fe-EDTA, ethylene-diamine-tetra-acetic acid ironIII sodium salt;43

GUS, beta-D-glucuronidase (EC 3.2.1.31); 44

NSS, normalized sum-squares;45

TEM-EDX, Transmission electron microscopy and Energy dispersive X ray;46
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Introduction 51

Numerous authors (e.g. Haynes, 1980; Sattelmacher, 2001) have shown that the cell 52

walls of plant roots are involved in the acquisition of mineral elements. This compartment 53

also plays a role in metal tolerance by acting as a barrier for some elements (Ernst et al., 54

1992). Main components of plant cell walls are cellulose, hemicellulose, pectin and 55

glycoproteins. The cation exchange capacity of roots (CECR) arises mostly from carboxyl 56

and hydroxyl groups, and to a minor extent from phenolic and amine groups (Meychik et al., 57

2001). The structure and the composition of the cell walls (and consequently the CECR) vary 58

as a function of the plant species, of its nutrition and of the age of the plant tissues. 59

Particularly, the development of secondary cell walls in older tissues induces a decrease in 60

CECR because of the lower pectin and higher lignin content of this structure. The CECR 61

ranges between 10 and 20 cmolc kg-1 (or meq 100 g-1) for monocot species and between 20 62

and 50 cmolc kg-1 for dicot species (Dufey et al., 2001). The affinity of cations for 63

exchangeable sites on root cell walls decreases in the order H > Cu > Ca > Zn according to 64

Nishizono et al. (1987), and H > Cu > Zn > Ca according to Ernst et al. (1992). A similar 65

order of affinity was found for pectin (Franco et al., 2002). Based on the high affinity of Cu 66

for the cell walls, Dufey and Braun (1986) showed that saturating the cell walls with Cu, and 67

then extracting it using HCl, was an easy and reliable way to measure the CECR because they 68

obtained comparable CECR values by this method and by acid-base titration of roots. 69

An overview of the literature shows a great variability in Zn localization and70

exchangeability in plants roots: exchangeable Zn represented 10% of total root Zn in Silene 71

vulgaris (Harmens et al., 1993), 16% in wheat (Triticum aestivum) and 46% in soybean 72

(Glycine max) (Steveninck et al., 1993), 27% in barley (Hordeum vulgare) (Wu et al., 2005), 73

60% in the hyperaccumulator Thlaspi caerulescens (Lasat et al., 1998), and 67 to 87% in the 74

Zn-tolerant fern Athyrium yokoscense (Nishizono et al., 1987). This wide range of responses 75
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may result from actual differences between species, but also from the techniques used for 76

measuring the so called "exchangeable" Zn (isolation of cell walls, chemical extractions, 77

isotopic exchange, transmission electron microscopy coupled with energy dispersive X-ray 78

microanalysis, etc…). Other possible sources of differences include the duration and intensity 79

of Zn exposure (Vasquez et al., 1994), and the age of the plants. 80

Although zinc has a high affinity for cell walls, there is no consensus on the stability of 81

Zn-root cell wall complexes. Nishizono et al. (1987) showed that Zn associated to isolated 82

root cell walls of Athyrium yokoscence was totally exchangeable. Lasat et al. (1998) found 83

that exchangeable Zn represented the majority (but not all) of apoplasmic Zn in the roots of 84

Thlaspi caerulescens. Similarly, Hart et al. (1998) found a small proportion of strongly bound 85

Zn (i.e., non exchangeable) on cell walls of wheat roots. 86

Extended X-ray absorption fine structure (EXAFS) spectroscopy is well adapted for the 87

study of metal speciation in plant samples because it is an element-specific probe sensitive to 88

the short-range order (Salt et al., 2002). The main limitation of bulk EXAFS is that it provides 89

averaged information. For instance, the spectrum for whole roots would contain averaged 90

contribution of the different cell compartments (apoplasm, symplasm, etc…), and it may be 91

difficult to isolate them and to obtain structural information on each one. Combining this 92

spectroscopic method with chemical extractions could be a way to overcome this limitation.93

In this study, the distribution and the speciation of Zn in roots of tobacco was studied by 94

a purely chemical approach and a purely (Zn K-edge EXAFS) spectroscopic approach which 95

was conducted on whole roots and on isolated cell walls of roots, and a combination of 96

chemical approach and EXAFS spectroscopic approach on whole roots.97

98

Material and methods99

Plant material and preculture of tobacco100
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The plant materials were two genotypes of tobacco (Nicotiana tabacum cv SR1). A control 101

genotype (A1) was a wild-type genotype transformed with a CAMV 35S promoter-GUS 102

construct without any gene insert. The other genotype (C5) was genetically transformed to 103

over-accumulate ferritin in the cytosol (van Wuytswinkel et al., 1999). Ferritin is an iron 104

storage protein naturally present in plants. Animal ferritins are known to bind Zn (Briat and 105

Lebrun, 1999), whereas this has not been demonstrated for plant ferritins. 106

Seeds were surface sterilised with NaOCl for 25 min, then carefully washed with sterile 107

water. Plants were cultivated in a cropping device designed to easily separate the roots from 108

the growing soil at harvest (Niebes et al., 1993). The plant container was made of a PVC 109

cylinder (inner diameter 40 mm) closed at the bottom by a fine polyamide mesh (30 µm pore 110

diameter, Sefar Nytel/Fyltis). For the preculture, plant containers were placed on a nutrient 111

gel in sterile and capped cropping boxes (150150135 mm, MERCK eurolab, Polylabo). 112

The nutrient gel was prepared by adding 1.0 g L gelrite (Sigma G1910) and 0.6 g L113

phytagel (Sigma P8169) to a Hoagland solution containing 5 mM KNO, 5 mM Ca(NO), 2 114

mM MgSO, 1 mM KHPO, 50 µM HBO, 50 µM MnSO, 50 µM Fe-EDTA, 15 µM 115

ZnSO, 3 µM (NH)MoO, 2.5 µM KI, 50 nM CoCl, and 50 nM CuSO. Five seeds were put 116

in each plant container, and each cropping box contained 9 containers. Boxes were placed in a 117

growth chamber with a 16/8 h day/night cycle, light intensity of 250 µmol photons m s, 118

temperature of 23/20°C and 75/80% relative humidity. After two weeks, the cropping boxes 119

were progressively opened for 3 days so that plants could adapt to ambient culture conditions. 120

The containers were then transferred in a nutrient solution containing 1 mM KNO, 1 mM 121

Ca(NO), 0.5 mM MgSO, 20 µM Fe-EDTA, 10 µM HBO, 5 µM KHPO, 2 µM MnCl, 122

0.5 µM MoNaO, 0.5 µM ZnSOand 0.2 µM CuCl (10 plant containers per 5 L bucket). The 123

solution was renewed weekly. After two weeks, the plants were then 4-week old, and each 124
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container presented a homogeneous root mat formed by the roots of 5 plants. The pH of the 125

nutrient solution was between 5.5 and 6.1.126

127

Culture of tobacco in hydroponics128

All culture conditions are summarized in Table 1. For the measurement of the CECR (culture 129

n°1), plant containers containing 4-week old plants (A1 and C5 genotype) were transferred in 130

a nutrient solution devoid of Fe, and containing 100 µM ZnSO4, 1 mM KNO, 1 mM 131

Ca(NO), 0.5 mM MgSO, 10 µM HBO, 5 µM KHPO, 2 µM MnCl, 0.5 µM MoNaO, 132

and 0.2 µM CuCl. Note that P concentration was low (5 µM) to avoid precipitations with Zn, 133

as predicted by the SOILCHEM speciation code (Sposito and Coves, 1988). Plants were 134

grown for 2, 4, 7 and 14 days (8 plant containers per 5 L bucket). The pH of the solution was 135

5.5 at the beginning of culture. 136

For the comparison of the sequential extraction procedures, 4-week old plants (A1 137

genotype) were grown in the same conditions for 4 days (culture n°2). For the EXAFS 138

analyses, 4-week old plants (C5 genotype) were grown in the same conditions except Zn 139

concentration (200 µM instead of 100 µM ZnSO4) for 4 days (culture n°3). No toxicity 140

symptoms were observed in any culture, probably due to the presence of Ca in the nutrient 141

medium which partially alleviates Zn toxicity in tobacco (Sarret et al., 2006).142

143

Culture of tobacco on artificial substrates (culture n°4)144

Artificial substrates were made of agarose nutrient gel containing various Zn-bearing minerals 145

to provide a range of Zn availabilities with in spite of an identical total Zn content in the 146

substrates. The nutrient solution contained 1 mM KNO3, 0.625 mM Ca(NO3)2, 0.5 mM 147

MgSO4, 0.375 mM (NH4)2SO4, 10 µM H3BO3, 5 µM KH2PO4, 2 µM MnCl2.H2O, 0.5 µM 148

MoNaO4.2H2O, and 0.2 µM CuCl2. Zn-bearing minerals included Zn-sorbed synthetic 149
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ferrihydrite and Zn-sorbed hectorite containing 0.2% dry weight Zn. Ferrihydrite is a poorly 150

crystalline iron oxyhydroxide with a high sorption capacity, and hectorite (SHCa-1 from the 151

Source Clay Repository of the Clay Minerals Society) is a magnesian smectite composed of 152

an octahedral sheet of magnesium sandwiched between two tetrahedral sheets of silicon. The 153

substrates contained 49 g Lof Zn-sorbed ferrihydrite or hectorite, and 10 g L of agarose. 154

A control culture substrate was made with agarose only, the nutrient solution being 155

supplemented with 1500 µM ZnSO4. Note that a fraction of added Zn is finally adsorbed on 156

agarose gel (Calba et al, 1999). Four-week old plants (A1 and C5 genotypes) were grown for 157

4 days on Zn-ferrihydrite, Zn-hectorite and Zn-agarose substrates (Table 1). Table 2 shows 158

that Zn root concentrations increased in the order hectorite < ferrihydrite < agarose. At the 159

end of the culture, shoots and roots were harvested separately and stored for further chemical 160

and EXAFS analyses.161

162

Extraction of cell walls of roots of tobacco163

Fresh roots of 4-week old A1 genotype tobacco were harvested and then immersed in a 1% 164

v:v Triton X100 detergent solution with 1 mM CaCl2 to dissolve the cell content (Calba et al., 165

1999). The detergent solution was renewed periodically for 28 days. The detergent was then 166

removed by washing the material for 15 days with a 1 mM CaCl2 solution. The entire 167

treatment was carried out at 4°C. 168

Zinc-cell wall complexes were conditioned prior to sequential extractions as follows. 169

Three g of cell walls were placed in 1 L of nutrient solution (the same as the one used for the 170

hydroponic culture without Fe-EDTA) containing 100 µM ZnSO4, then shaken end over end 171

for 24 hours. Other Zn-cell wall complexes were prepared for EXAFS analysis (see the 172

EXAFS section).173

174
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Sequential extractions of whole roots and isolated cell walls of roots of tobacco175

The CECR was determined by sequential extractions by adapting the procedure of Dufey and 176

Braun (1986). Roots of A1 and C5 genotype tobacco plants from culture n°1 were harvested. 177

Each root sample was made of the roots of 5 plants grown in the same container. An aliquot 178

was oven dried at 105°C, digested and analyzed for total Zn. The remainder (25 mg  8 mg 179

dry weight) was shaken end over end in 5 mL of 10 mM CuSO4 during 30 min. The initial pH 180

of the solution was 4.8. The suspension was then filtered, and Ca and Zn concentration in the 181

filtrate were measured. Copper is supposed to displace all cations associated to the cell walls 182

and to saturate the CECR. The roots were then briefly rinsed with a solution containing 183

0.1mM CuSO4 to reduce the excess Cu in the interstitial volume of roots before to be shaken 184

end over end in 50 mL of 100 mM HCl during 20 min to extract Cu, the suspension was 185

filtered, and Cu concentration in the filtrate was measured. The acidic extraction is supposed 186

to desorb Cu from the cell walls. The CECR was thus estimated from the amount of desorbed 187

Cu, by considering Cu as a divalent cation. 188

Sequential extractions were performed on whole roots of A1 tobacco from culture n°2 189

(Table 1) and on isolated cell walls. Samples (22 mg  7 mg dry weight for roots and 32 mg 190

5 mg dry weight for cell walls) were treated with 10 mM CuSO4, then 100 mM HCl as 191

described above. This procedure was realized at 25°C and at 4°C. Other extraction procedures 192

were tested at both temperatures. The first one involved three successive extractions in 10 193

mM CuSO4 during 30 min, and then an extraction in 50 mL of 100 mM HCl during 20 min. 194

The second one involved an extraction in 5 mL ultra pure water during 2 hours, followed by 195

an extraction in 5 mL of 10 mM CaCl during 2 hours. The third one involved an extraction in 196

50 mL of 10 mM EDTA pH 7 during 2 hours. For all procedures, after each extraction, the 197

root suspension was filtered over an ashless filter paper (Whatman 40), and elemental 198

concentrations were determined in the filtrate and in the extracted roots. 199



Page 14 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

9

Roots of C5 genotype tobacco from culture n°3 (Table 1) were treated at 25°C 200

following the CuSO4/HCl procedure, and aliquots of non-extracted, CuSO4-extracted and 201

CuSO4/HCl-extracted roots were kept for EXAFS analyses.202

203

Chemical analyses of plants and solutions 204

Samples (shoots, whole roots, isolated cell walls of roots and root residues after extractions 205

depending on the experiment) were weighed, oven-dried at 105°C and digested in a 1:1 206

mixture of hot concentrated HNO3 and HClO4 (A.O.A.C., 1975). Ca, Zn and Cu 207

concentrations were determined in the digests and in the filtrates of the chemical extractions 208

by flame atomic absorption spectrometry (Varian SpectrAA-600, Australia). Malate, citrate 209

and oxalate concentrations were measured in the roots of A1 genotype tobacco at the end of 210

the preculture (4-week old plants). One g of fresh roots was put in 10 mL of HCl 100 mM at 211

60°C. After 20 min, solution was filtered over an ashless filter paper (Whatman 40) and the 212

supernatant was analyzed by High Pressure Ionic Chromatography (Dionex 4,000) using an 213

AS11 column. The elution was performed with a NaOH gradient, and the signal was detected 214

by conductimetry, and analyzed with a integrator Chromjet (Spectra-Physics) integrator.215

For each analysis, four replicates were prepared and analyzed. All results are expressed 216

relative to dry weight. Statistical analysis was performed using the ANOVA procedure with 217

the test of least significant difference (LSD, p=0.05) of the Statistica Software (Statsoft Inc.). 218

219

Zn K-edge EXAFS spectroscopy220

Zn model compounds221

A variety of Zn-model compounds were used for the EXAFS data analysis. Zn-oxalate 222

dihydrate and Zn-citrate dihydrate were purchased from Alfa (Berkshire, UK). The 223

preparation of Zn-malate and Zn-sorbed hydroxylapatite were described previously (Sarret et 224
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al., 2002; Panfili et al., 2005). The Zn-cysteine spectrum was provided by S. Beauchemin 225

(Beauchemin et al. 2004). The Zn-cell wall complexes containing 0.75, 1.4, 12.7 and 69.6 226

mmol kg-1 d.w. Zn were prepared by placing 100 mg (dry weight) of isolated cell walls of 227

roots in 50 mL of 1.5, 6.1, 30.3 and 303 µM Zn(NO3)2 at pH 5.0, respectively, and shaking 228

end over end for 24 hours. Final pH values were 5.0, 5.4, 5.4, and 5.4, respectively. The229

suspensions were then centrifuged, and the Zn loading was determined by difference between 230

initial and supernatant Zn concentrations. 231

For the Zn-cellulose complexes, 200 mg of cellulose (Sigma-Aldrich) were suspended in 60 232

mL of water and the pH was adjusted to 5.0. Two samples were prepared : after addition of 1 233

and 2 mL of 1.53 mM Zn(NO3)2 at pH 5.0, respectively, the suspensions were stirred during 3 234

hours at fixed pH 5.0 by adding 0.5M NaOH or HNO3, then centrifuged. The Zn content in 235

the Zn-cellulose complexes was calculated as the difference between the amount of Zn 236

introduced and the amount of Zn measured in the supernatant: they were 1.27 and 3.82 mmol 237

kg-1 d.w. Zn. For each Zn concentration, half of the Zn-cellulose samples was freeze-dried, 238

and half was kept in wet state for EXAFS analysis. For the Zn-pectin complexes, 166 mg of 239

pectin extracted from apples esterified at 70 to 75% (Fluka) were dissolved in 30 mL of 240

water, and the pH was adjusted to 5.0. Two samples were prepared : after addition of 0.4 and 241

0.9 mL of 4.31 mM Zn(NO3)2 at pH 5.0, respectively, the suspensions were stirred during 3 242

hours at fixed pH 5.0 by adding 0.5M NaOH or HNO3. The Zn-pectin complexes were 243

directly freeze-dried because they could not be concentrated by centrifugation. Zn 244

concentrations were 15.29 and 7.65 mmol kg-1 d.w. of pectin, respectively. 245

246

EXAFS data acquisition and treatment247

Zinc K-edge EXAFS analyses were performed on untreated whole roots of A1 and C5 248

genotype tobacco grown for 4 days on artificial substrates as described above (culture n°4), 249
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and on whole roots of C5 genotype tobacco grown for 4 days in 200 µM Zn, untreated and 250

treated by chemical extractions (culture n°3). After harvesting, root samples were freeze-251

dried, ground and pressed as pellets. EXAFS experiments were performed on beamlines 252

BM32 and FAME at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) 253

in transmission mode for the references, and in fluorescence mode using a 30-element solid-254

state Ge detector (Canberra) for the root samples. The great sensitivity of the spectrometer 255

made it possible to study samples containing down to 0.76 mmol Zn kg dry weight. EXAFS 256

data extraction was performed according to standard methods. Spectra were simulated by 257

linear combination fits using a library of Zn reference compounds, including Zn complexed to 258

simple organic acids and amino acids, cellulose, pectin, and isolated cell walls of roots, and 259

mineral and organic Zn-phosphate compounds (Guiné et al., 2006). For the first shell 260

simulation, EXAFS spectra were Fourier transformed, and the contribution of the first 261

coordination shell was simulated in k and R space. Theoretical functions for the Zn-O and Zn-262

S pair were calculated by FEFF7 (Rehr et al., 1991) from the structure of Zn-malate dihydrate 263

(Reed and Karipides, 1976) and sphalerite (Jumpertz, 1955) respectively.264

265

Results 266

267

Accumulation of Zn in tobacco268

In culture n°1, A1 and C5 genotypes of tobacco were cultivated in hydroponics without Fe 269

and with 100 µM Zn. After 14 days of culture, total Zn uptake and Zn shoot content were 270

comparable for both genotypes: total uptakes were 1.1  0.2 and 1.3  0.2 µmol Zn per A1 271

and C5 plants, and shoot contents were 15.1  1.7 and 15.9  1.6 µmol Zn per g, respectively. 272

At the opposite, the Zn concentration of roots was larger for the ferritin overexpressor (98.8 273

5.2 µmol g-1) than for the wild type (73.5  5.8 µmol g-1). For both genotypes, the pH of the 274
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nutrient solution increased from 5.5 at the beginning, to 6.0  0.1 after two days and to 7.0 275

0.1 after 14 days of culture. The calculation of Zn speciation with SOILCHEM (Sposito and 276

Coves, 1988) suggests a minor precipitation at pH 7.0: At pH 5.5, calculated Zn species are 277

93% free Zn2+ and 6% ZnSO4. At pH 7.0, they are 86% free Zn2+, 6% ZnSO4, 1% ZnB(OH)4) 278

and 6% precipitated Zn-phosphate.279

280

Changes in cation exchange capacity of roots (CECR) of tobacco281

The cation exchange capacity of the roots (CECR) was determined at different times of the 282

culture. It did not vary significantly between 0 and 14 days, and was comparable for the two 283

genotypes (Figure 1a). The mean value for the two genotypes and all exposure durations was 284

32  3 cmolckg. The ratio of Ca extractable by CuSO4 to the CECR (“Ca:CECR”), which  285

corresponds to the fraction of the CECR occupied by Ca, did not vary significantly (Fig. 1b). 286

The concentration of Ca(NO3)2 being kept the same (1.02  0.05 mM) in the preculture and 287

culture solutions during the 14 days of culture, this steady-state was expected. Again, there 288

was no significant difference between the two genotypes. Calcium accounted for 52  10% of 289

the CECR (mean value for the two genotypes and all exposure durations). On the contrary, an 290

increase in the fraction of the CECR occupied by Zn (“Zn:CECR”) was expected because Zn 291

concentration increased from 0.5 µM in the preculture to 100 µM in the culture solution.292

Cations exchange between the solution and roots is supposed to reach equilibrium within 48h 293

(Meychik et al., 2001). In our experiment, we observed a continuous increase in Zn:CECR 294

during the 14 days of culture (Fig. 1b). At the end of the culture, the sum of Ca:CECR and 295

Zn:CECR accounted for 90±5% of the CECR for A1, and 110±5% of the CECR for C5 296

tobacco. 297

298

Comparison of different sequential extractions of Zn accumulated in roots of tobacco299
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The accumulation compartments of Zn in A1 tobacco roots exposed to 100 µM Zn for 4 days 300

(culture n°2) were studied by chemical extractions (Fig. 2). Various procedures were 301

compared : (i) 10 mM CuSO4, then 100 mM HCl, (ii) three successive extractions with 10 302

mM CuSO4, then 100 mM HCl, (iii)  pure water, then 10 mM CaCl, and (iv) 10 mM EDTA. 303

Each procedure was done at 4°C and 25°C to evaluate the role of active Zn transport during 304

the treatments. Chemical extractions on whole roots and isolated cell walls of roots were 305

compared to distinguish the intra- and extra-cellular contributions.306

On whole roots, water extracted about 20% of total Zn, and the CaCl2 solution removed 307

another 20%. The one-step extraction with CuSO4 yielded similar results as the water + CaCl2308

extraction (40  8 % and 39  5 respectively). The three-step CuSO4 and the EDTA extraction 309

were slightly more efficient (52  4 % and 55  9% of total Zn, respectively). These data are 310

consistent with the occurrence of a distribution of affinity sites. The results obtained at 4°C 311

and 25°C were roughly similar except for the HCl treatment (extraction doubled at 25°C 312

compared to 4°C). This suggests that Zn transport through the cell membranes during the 313

water, CaCl2, CuSO4, and EDTA extractions was insignificant. This result also suggests that 314

cation diffusion within the roots is not significantly different at 4°C and at 25°C. In contrast, 315

HCl extractant is likely resulting in some damage of the integrity of cell membranes and 316

thereby in the release of intracellular Zn, as suggested for Cu by Iwasaki et al. (1990).317

318

Results obtained on the isolated cell walls also suggested a distribution of affinity sites. 319

Zn extractability was higher for the isolated cell walls than for the whole roots (73 to 96% 320

compared to 39 to 55%). 321

322

Determination of Zn speciation in tobacco roots323
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First, in order to give an idea of the sensitivity of EXAFS spectroscopy, Figure 3 shows the 324

spectra for various Zn reference compounds of interest for this study. The spectrum for Zn-325

oxalate dihydrate presents a characteristic shoulder between 6.1 and 6.6 Å-1. It is due to the 326

well ordered structure of this organic compound, Zn being bound to four carboxyl groups in a 327

planar configuration (Fig. 3). Citrate, malate and pectin contain hydroxyl and carboxyl 328

functional groups. The spectrum for Zn-citrate exhibits a weakly pronounced shoulder around 329

6.5 Å-1, and the spectrum for Zn-malate is even smoother. This reflects an increase in disorder 330

from Zn-oxalate to Zn-citrate, and from Zn-citrate to Zn-malate. The spectra for Zn-pectin 331

and for Zn-cell walls at various Zn concentrations present strong similarities with Zn-malate, 332

which suggests a similar Zn local structure. Thus, in the cell walls and in Zn-pectin, the metal 333

is probably bound to hydroxyl and carboxyl groups. The spectra for Zn-cellulose (recorded in 334

freeze-dried and hydrated state) have a markedly higher frequency relative to Zn-pectin, and 335

present some similarities with aqueous Zn2+. This suggests an outer-sphere configuration, i.e., 336

Zn being fully hydrated and bound to cellulose through weak interactions. This is consistent 337

with the fact that cellulose contains hydroxyl groups only, and that these groups are fully 338

protonated at pH 5.0, and deprotonate in alkaline conditions (pH > 10) (Smith and Martell, 339

1982). The structural parameters for Zn first coordination shell in these compounds were 340

determined. For Zn-cell walls and Zn-pectin, Zn-O distances were 1.99 and 2.00 Å, 341

respectively (Table 2). Considering typical Zn-O distances for tetrahedral and octahedral 342

coordination (1.95 to 2.0 and 2.0 to 2.2 Å, respectively, Sarret et al., 1998), this suggests that 343

the metal occupies both types of coordination sites in these samples. For Zn-cellulose, a Zn-O 344

distance of 2.07 Å was found, indicating an octahedral coordination. Figure 3 also shows the 345

spectra for an inorganic and organic Zn-phosphate, Zn-sorbed hydroxylapatite and Zn-346

phytate, respectively. Zn is in tetrahedral coordination in both compounds (Table 2). The 347

similarity between the two spectra suggests that it may be difficult to distinguish between 348
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mineral and organic Zn-phosphate, especially in case of a mixture of Zn species. Finally, 349

figure 3 shows the spectrum for Zn-sorbed ferrihydrite, which is used as a proxy for Zn in 350

ferritin (Briat and Lebrun, 1999). 351

Figure 4 presents the spectra for the whole roots of A1 and C5 genotype tobacco grown 352

on agarose, ferrihydrite and hectorite substrates (culture n°4). They present slight differences 353

in frequency and shape of the oscillations. For instance, some of them exhibit a shoulder on 354

the second oscillation similar to (but less pronounced than) Zn-oxalate dihydrate. This feature 355

suggests that Zn-oxalate might be present as a minor species. Because of the limited number 356

of spectra, principal component analysis could not be used, and spectra were simulated by 357

linear combinations of reference spectra (Table 2). A combination of two to three components 358

was sufficient to provide satisfactory fits, and four-component fits did not decrease 359

normalized sum-squares (NSS, formula given in Table 2) significantly (< 5%). As anticipated, 360

Zn-oxalate was identified, and represented up to 30 % of total Zn in some whole roots. For 361

these samples, unsatisfactory fits were obtained if Zn-oxalate was removed from the set of 362

references (NSS increased by more than 10%). For technical reasons, oxalate concentration 363

was not measured in the roots studied by EXAFS, but in the whole roots of A1 genotype 364

tobacco grown on a Zn-free medium (Table 3). This concentration (497 mmol kg-1) was by far 365

sufficient to explain the highest Zn-oxalate concentration determined by EXAFS (8.2 mmol 366

kg-1 for the A1 genotype tobacco grown in the agarose medium, value obtained by 367

multiplying the molar percentage of Zn oxalate determined by EXAFS with the total Zn 368

concentration in the roots).369

The second (and most represented) Zn species identified was Zn-pectin and/or Zn-370

malate. The similarity between the two EXAFS spectra prevents the positive identification of 371

one or the other compound (see above). Whole roots do contain malate (Table 3). However, 372

they are richer in oxalate and citrate (Table 3), and these two organic acids have a higher 373
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affinity for Zn than malate (log K = 4.0 for Zn oxalate, and 4.9 for Zn citrate, compared to 2.9 374

for Zn malate, Smith and Martell, 1982). Therefore, the presence of Zn-malate as major Zn 375

species is unlikely in these root samples. Zn-pectin which can be used as a proxy for Zn-cell 376

walls (see above) is more likely. Because of the similarity between Zn-pectin, Zn-malate and 377

Zn-citrate, this pool may contain a minor proportion of complexes of Zn with simple organic 378

acids complexes: it is referred to as "Zn-COOH/OH" in Table 2. 379

The third species identified was Zn-phosphate. Depending on the samples, this pool was 380

simulated by mineral (Zn-sorbed hydroxylapatite and parahopeite) or organic (Zn-phytate) 381

references. Although this species was the least abundant in the whole roots, unsatisfactory fits 382

were obtained if Zn-phosphate references were removed from the set of references (NSS383

increased by more than 10%). As explained above, it was not possible to conclude on the 384

exact nature of Zn-phosphate. Finally, the Zn-sorbed ferrihydrite reference, used as a proxy 385

for Zn incorporated in ferritin, did not show up it the simulations, suggesting that this species 386

was insignificant. 387

Table 2 summarizes the results of EXAFS analyses and shows that the "Zn-COOH/OH" 388

pool was the major species (43 to 80% of total Zn depending on the root sample), followed by 389

Zn-oxalate (0 to 30%) and Zn-phosphate (0 to 16%). 390

391

In order to get some insights on the localization of these three Zn species, whole roots 392

before and after extraction with CuSO4 and CuSO4 / HCl were studied by EXAFS 393

spectroscopy (Fig. 4 and Table 2). For this purpose, whole roots of C5 genotype tobacco were 394

grown in hydroponics containing 200 µM Zn were used (culture n° 3, chemical extraction 395

experiment in Table 2). The speciation of Zn in this nutrient solution was similar to the one 396

calculated for the 100 µM Zn solution, with 92% free Zn2+ and 6% ZnSO4 at pH 5.5, and 88% 397

free Zn2+, 7% ZnSO4, 1% ZnB(OH)4) and 3.5% of precipitated Zn-phosphate at pH 7.0. For 398
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the untreated roots, the distribution of Zn species was comparable to what was found for 399

plants grown in solid substrates. Roots contained 81  4 % Zn-COOH/OH, 6  4 % Zn-400

oxalate, and 6  4 % Zn-phosphate. By multiplying these percentages with Zn total root 401

concentration, one obtains the molar concentration of Zn for each species, i.e., 39.9  1.9, 3.0 402

 2.0 and 3.0  2.0 mmol Zn kg-1, respectively. In the CuSO4–extracted roots, the proportion 403

of Zn-COOH/OH species was decreased to 72  10% (23.3  3.2 mmol Zn kg-1). The Zn-404

phosphate species identified in the untreated roots was absent, and the change in Zn-oxalate 405

concentration was within experimental error. These results indicate that the CuSO4 extraction 406

removed all of the Zn-phosphate pool, about half of the Zn-COOH/OH pool, but did not alter 407

the Zn-oxalate pool.408

The spectrum for the residues after the HCl extractions strongly differed from the other 409

root spectra, and could not be simulated by the three reference spectra used before. Its 410

frequency was intermediate between the untreated root spectrum and the Zn-cysteine, in 411

which Zn is bound to sulfur atoms. The first shell simulation showed that Zn was bound to 4.5 412

sulfur atoms at 2.28 Å, and 1.3 oxygen atoms at 2.13 Å (Figure 5 and Table 2). The presence 413

of sulfur atomic neighbours might suggest the binding of Zn by glutathione, phytochelatins or 414

metallothioneins. However, considering Zn concentration in the HCl-extracted roots (14.00 415

mmol kg-1) and the CuSO4-extracted roots (32.31 mmol kg-1), S neighbours should have been 416

detected in the CuSO4-extracted roots. As this was not the case, it is concluded that some 417

redistribution of Zn occurred during the HCl extraction. Thus, this acidic treatment, which 418

was supposed to desorb Cu from the cell walls, probably damaged a breakage of cellular 419

membranes and induced the subsequent release of intracellular proteins, leading to the 420

formation of Zn-S bonds. Note that this artefact was not observed for CuSO4–extracted roots.421

422

Discussion 423
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Concentrations of Zn in shoots and roots of crop species exposed to high Zn 424

concentration are highly variable (Table 4). In crop species grown in similar conditions of Zn 425

exposure, Zn shoots concentration ranged between 1 and 19 mmol kg-1 and Zn roots426

concentration ranged between 5 and 150 mmol kg-1 (Fargasova et al., 2001; van Steveninck et 427

al., 1993; Fontes and Cox, 1998; Brune et al., 1994). With a concentration of 15-16 mmol kg-1428

and 74-99 mmol kg-1, tobacco appears as a crop species with high Zn uptake capacity. Similar 429

Zn concentrations were observed in shoots and roots of the wild species Silene vulgaris430

(Harmens et al., 1993; Chardonnens et al., 1998) and of the hyperaccumulator Arabidopsis 431

halleri (Zhao et al., 2000). Higher Zn concentrations were measured in the shoots of the 432

hyperaccumulator Thlaspi caerulescens and of the non hyperaccumulator Thlaspi 433

ochroleucum regardless of Zn exposure (Shen et al., 1997). 434

The roots of the C5 genotype of tobacco accumulated more Zn than those of the A1 435

genotype, as shown by Vansuyt et al. (2000) in a pot culture. In the C5 genotype, the 436

overexpression of ferritin induced a decrease in physiologically available iron, and an 437

activation of the mechanisms of iron uptake. Ferritin was thus a possible candidate for Zn 438

storage in the C5 genotype plants. However, no Zn-ferrihydrite association was found in C5 439

roots.440

Results of CECR showed a continuous increase in Zn:CECR during the culture, the sum 441

of Ca:CECR and Zn:CECR being close to 100% of the CECR after 14 days of culture. Three 442

interpretations can be proposed. Firstly, all cations originally occupying the CECR except Ca 443

might be progressively replaced by Zn. This seems unlikely. Secondly, part of intracellular Zn 444

might be released, either by active transport or by damage of the membrane during the CuSO4445

extraction. The temperature had no effect on Zn extraction by CuSO4, thus invalidating the 446

possible role of an active transport. The efficiency of the CuSO4 extraction was comparable to 447

the extraction with water and then CaCl2, which are supposed to preserve the membrane 448
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integrity. Moreover, EXAFS did evidence a damage of the membranes for the HCl-treated 449

roots, not for the CuSO4-extracted ones. Therefore, the second hypothesis can be ruled out. 450

Thirdly, CuSO4 may solubilize some Zn precipitated in the apoplasm. This hypothesis is 451

supported by EXAFS results. In order to avoid (or at least to limit) this precipitation of Zn, 452

next experiments were performed on roots after only 4 days of exposure to Zn (i.e., when Zn 453

occupies about 10 % of the CECR). 454

Results of the chemical extractions on whole roots and on isolated cell walls evidenced 455

a distribution of Zn affinity sites, from the least to the most strongly bound Zn: (i) soluble in 456

water,  (ii) extractable by CaCl2 or by CuSO4 in one step, (iii) extractable by EDTA or by 457

CuSO4 in three steps, and finally (iv) non-exchangeable Zn. In whole roots, this latter pool 458

represented 45 to 48% of total root Zn and may include intracellular Zn, and extracellular Zn 459

bound to high affinity sites or precipitated. In isolated cell walls, strongly bound Zn accounted 460

for a small fraction (4 to 5%) of Zn, as observed for Thlaspi caerulescens (Lasat et al., 1998) 461

and wheat (Hart et al., 1998).462

463

The EXAFS analyses of tobacco roots showed that zinc was predominantly bound to 464

COOH/OH groups (40 to 80% of total root Zn). Only half of this pool was CuSO4-465

exchangeable. The second half might correspond to strong Zn-cell wall complexes and/or to 466

intracellular complexes with organic acids such as citrate and malate. Zn oxalate was found as 467

a minor component (0 to 30% of total Zn). It was not affected by the CuSO4 treatment, which 468

suggests an intracellular localization. Oxalate was observed as free anion and as Ca-oxalate 469

crystals in the vacuoles of tobacco leaves (Wang et al., 1992, Bouropoulos et al., 2001). Ca-470

oxalate crystals are also excreted through the trichomes of tobacco (Sarret et al., 2006). The 471

role of oxalate in the detoxification of Zn in fungi and lichens is well known (Dutton and 472

Evans, 1996, Adamo and Violante, 2000). In higher plants, oxalate has been shown to 473
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detoxify Al, Sr, Pb and Cu (Franceschi and Nakata, 2005). The present study suggests a role 474

in Zn detoxification. Zn-phosphate was present as a minor component in whole roots (0 to 475

16% of total Zn). This species has been observed on the surface roots in hydroponics (Küpper 476

et al., 2000, Sarret et al., 2002), and inside the root cells of several crop species (Van 477

Steveninck et al., 1994). In the present case, Zn-phosphate was removed by CuSO4 thus 478

suggesting an extracellular location. No relationship could be drawn between the distribution 479

of Zn species and Zn total concentration, plant genotype or to the composition of the growing 480

medium. Moreover, a relatively large dispersion in the percentages of Zn species was 481

observed between the samples. Further investigations are necessary to better interpret these 482

observations. 483

Because of the low Zn concentration of the roots EXAFS spectra could not be recorded 484

on hydrated samples, but on freeze-dried materials. The structure of the Zn-cell wall 485

complexes and Zn-phosphate precipitates should not be affected by this dehydrating treatment 486

(Guiné et al., 2006). At the opposite, Zn-organic acid complexes present in solution are likely 487

to be precipitated by the freeze-drying treatment. Considering the one identified in this study 488

(Zn-oxalate), results should not be affected though: indeed the spectra for solid Zn-oxalate 489

dihydrate and Zn-oxalate in solution are similar (Sarret et al., 1998). The occurrence of free 490

Zn2+ may be overlooked due to the freeze-drying treatment. However, Zn2+ is unlikely to be 491

present in significant amount in the cell walls and inside the cells because of the high492

concentration of ligands in these compartments. Free Zn2+ was observed in the xylem sap of a 493

hyperaccumulating plant (Salt et al., 1999). However, xylem sap certainly accounts for a 494

minor fraction of total root Zn. Therefore, the freeze-drying treatment should not modify 495

significantly the distribution of Zn species in the roots. 496

In conclusion, the combination of chemical extractions and EXAFS spectroscopy, 497

generally used for the study of soils and sediments, proved as an interesting approach for 498
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plants. It overcame the relatively low sensitivity of EXAFS for organic complexes and for 499

mixed species, and enabled the identification of intracellular and extracellular Zn species. 500

Among our findings, Zn-phosphate was found in the apoplasm of the tobacco roots although 501

the P concentration in culture solution was 5 µM only, and intracellular Zn oxalate was 502

identified in these roots. 503

504

Acknowledgments505

This work was supported in part by the “Programme National de Recherche Sols et 506

Erosion” funded by CNRS and INRA, France. We would like to thank the ESRF for the 507

provision of beamtime. Zn cysteine reference spectrum was provided by S. Beauchemin. We 508

thank also Nicole Balsera, Denis Loisel and Michaël Clairotte from the UMR Rhizosphère & 509

Symbiose team, and Nicolas Geoffroy, Martine Lanson and Delphine Tisserand from the 510

LGIT for their technical help. 511

512

References 513

Adamo, P., Violante, P., 2000. Weathering of rocks ad neogenesis of minerals associated with 514

lichen activity. Appl. Clay Sci. 16, 229-256.515

AOAC, 1975. Official methods of analysis. Washington DC, USA Association of official 516

analytical chemists517

Beauchemin, S., Hesterberg, D., Nadeau, J. McGeer, J.C. 2004. Speciation of hepatic Zn in 518

trout exposed to elevated waterborne Zn using X-ray absorption spectroscopy. Environ. 519

Sci. and Technol. 38, 1288-1295.520

Bouropoulos, N., Weiner, S., Addadi, L. 2001. Calcium oxalate crystals in tomato and 521

tobacco plants: Morphology and in vitro interactions of crystal-associated macromolecules. 522

Chem. Eur. J. 7(9), 1881-1888.523



Page 27 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

2
2

Briat, J.F., Lebrun, M., 1999. Plant responses to metal toxicity. Comptes Rendus de 524

L'Academie des Sciences Serie III Sciences de la Vie 322, 43-54.525

Brune, A., Urbach, W., Dietz, K.J. 1994. Compartmentation and transport of zinc in barley 526

primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ. 17,527

153-162.528

Calba, H., Cazevieille, P. Jaillard, B., 1999. Modelling of the dynamics of Al and protons in 529

the rhizosphere of maize cultivated in acid substrate. Plant Soil. 209, 57-69.530

Chardonnens, A.N., Ten Bookum, W.M., Vellinga, S., Schat, H., Verkleij, J.A.C., Ernst,531

W.H.O., 1999. Allocation patterns of zinc and cadmium in heavy metal tolerant and 532

sensitive Silene vulgaris. J. Plant Physiol. 155, 778-787.533

Dufey, J.E. Braun, R. 1986. Cation exchange capacity of roots: titration, sum of exchangeable 534

cations, copper adsorption. J. Plant Nutr. 9, 1147-1155.535

Dufey, J.E., Genon, J.G., Jaillard, B., Calba, H., Rufyikiri, G. Delvaux, B. 2001. Cation 536

exchange on plant roots involving aluminium: experimental data and modeling. In: Trace 537

Elements in the Rhizosphere. (Eds). Gobran, G.R., Wenzel, W.W.,  Lombi, E..,  pp. 228-538

252. CRC Press LCC, Boca Raton, Florida, USA539

Dutton, M.V. Evans, C.S. 1996. Oxalate production by fungi: Its role in pathogenicity and 540

ecology in the soil environment. Can. J. Microbiol. 42, 881-895541

Ernst, W.H.O., Verkleij, J.A.C. Schat, H. 1992. Metal tolerance in plants. Acta Bot. Neerl. 41, 542

229-248.543

Fargasova, A. 2001. Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings 544

and their accumulation in roots and shoots. Biol. Plant. 44, 471-473.545

Franceschi, V. Nakata, P. 2005. Calcium oxalate in plants: Formation and function. Annu. 546

Rev. Plant. Biol. 56, 41-71.547



Page 28 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

2
3

Franco, C.R., Chagas, A.P. Jorge, R.A. 2002. Ion-exchange equilibria with aluminium 548

pectinates. Colloids Surface A 204, 183-192.549

Fontes, R.L.F., Cox, F.R. 1998. Zinc toxicity in soybean grown at high iron concentration in 550

nutrient solution. J. Plant Nutr. 21,1723-1730.551

Guiné, V., Spadini, L., Sarret, G., Muris, M., Delolme, C., Gaudet, J.P., Martins, J., 2006. 552

Zinc sorption to three gram-negative bacteria: Combined titration, modeling and EXAFS 553

study. Environ Sci. Technol. ASAP. 554

Harmens, H., Gusmao, N.G.C.P.B., Hartog, P.R.d, Verkleij, J.A.C., Ernst, W.H.O., 1993. 555

Uptake and transport of zinc in zinc-sensitive and zinc tolerant Silene vulgaris. J. Plant 556

Physiol. 141, 309-315.557

Hart, J.J., Norvell, W.A., Welch, R.M., Sullivan, L.A., Kochian, L.V., 1998. Characterization 558

of zinc uptake, binding, and translocation in non extracted seedlings of bread and durum 559

wheat cultivars. Plant Physiol. 118, 219-226.560

Haynes, R.J., 1980. Ion exchange properties of roots and ionic interactions within the root 561

apoplasm: their role in ion accumulation by plants. Bot. Review  46, 75-99.562

Iwasaki, K., Sakurai, K., Takahashi, E., 1990. Copper binding by the root cell walls of Italian 563

ryegrass and red clover. Soil Sci. Plant. Nutr. 36,431–439.564

Jumpertz, E. A. 1955. Über die Elektronendichteverteilung in der Zinkblende. Zeit. für 565

Elektrochemie 59, 419-425.566

Küpper, H., Lombi, E., Zhao, F., McGrath, S.P., 2000. Cellular compartmentation of 567

cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis 568

halleri. Planta 212, 75-84.569

Lasat, M.M., Baker, A.J.M. Kochian, L.V., 1998. Altered Zn compartmentation in the root 570

symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn 571

hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 118, 875-883.572



Page 29 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

2
4

Meychik, N., Yermakov, I.P., 2001. Ion exchange properties of plant root cell walls. Plant 573

Soil 234, 181-193.574

Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H., Hitmi, A. 2001. Relationship 575

between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne 576

under zinc stress, J. Plant Physiol. 158, 1137-1144.577

Niebes, J.F., Hinsinger, P., Jaillard, B., Dufey, J.E., 1993. Release of nonexchangeable 578

potassium from different size fractions of two highly K-fertilized soils in the rhizosphere 579

of rape Brassica napus cv Drakkar. Plant Soil 155/156.580

Nishizono, H., Ichikawa, H., Suziki, S. Ishii, F., 1987. The role of the root cell wall in the 581

heavy metal tolerance of Athyrium yokoscense. Plant Soil 101, 15-20.582

Panfili, F., Manceau, A., Sarret, G., Spadini, L., Kirpichtchikova, T., Bert, V., Laboudigue,583

A., Marcus, M., Ahamdach, N., Libert, M., 2005. The effect of phytostabilization on Zn 584

speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray 585

fluorescence, EXAFS spectroscopy and principal components analysis. Geochim. 586

Cosmochim. Acta 69, 2265-2284.587

Reed, A.T., Karipides, A., 1976. The crystal structure of S-Malatodiaquozinc(II) hydrate. 588

Acta Crystallogr. B32, 2085.589

Rehr, J.J., Mustre de Leon, J., Zabinsky, S.I. Albers, R.C., 1991. Theoretical X-ray absorption 590

fine structure standards. J. Am. Chem. Soc. 113, 5135-5145.591

Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I., Pickering, I.J., 1999. Zinc ligands in the 592

metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption 593

spectroscopy. Environ. Sci. Technol. 33, 713-717.594

Salt, D.E., Prince, R.C., Pickering, I.J., 2002. Chemical speciation of accumulated metals in 595

plants: evidence from X-ray absorption spectroscopy. Microchem. J. 71, 255-259. 596



Page 30 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

2
5

Sarret, G., Harada, E., Choi, Y.E., Isaure, M.P., Geoffroy, N., Birschwilks, M., Clemens, S., 597

Fakra, S., Marcus, M. A., Manceau, A., 2006. Trichomes of tobacco excrete zinc as Zn-598

substituted calcium carbonate and other Zn-containing compounds. Plant Physiol. 141, 599

1021-1034.600

Sarret, G., Manceau, A., Spadini, L., Roux, J.C., Hazemann, J.L., Soldo, Y., Eybert-Bérard,601

L., Menthonnex, J.J., 1998. EXAFS determination of Pb, Zn complexing sites of 602

Penicillium chrysogenum cell walls. Environ. Sci. Technol. 32, 1648-1655.603

Sarret, G., Saumitou-Laprade, P., Bert, V., Proux, O., Hazemann, J.L., Traverse, A., Marcus 604

M.A., Manceau, A., 2002. Forms of zinc accumulated in the hyperaccumulator 605

Arabidopsis halleri. Plant Physiol. 130, 1815-1826.606

Sattelmacher, B., 2001. Tansley review no. 22. The apoplast and its significance for plant 607

mineral nutrition. New Phytol.149,167-192.608

Shen, Z.G., Zhao, F.J., McGrath, S.P.1997. Uptake and transport of zinc in the 609

hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi 610

ochroleucum, Plant Cell and Environ. 20, 898-906.611

Smith, R.M., Martell, A.E., 1982, Critical Stability Constants. Plenum Press612

Sposito, G., Coves, J., 1988. Soilchem: a computer program for the calculation of chemical 613

speciation in soils. The University of California.614

Statistica édition 98, Kernel Version 5.1 M, StatSoft France 1984-1998, StatSoft Inc., Tulsa, 615

Oklahoma.616

van Steveninck, R.F.M., Babare, A., Fernando D.R., van Steveninck, M.E. 1993. The binding 617

of zinc in root cells of crop plants by phytic acid. In: Plant nutrition - from genetic 618

engineering to field practice, Proceedings of the Twelfth International Plant Nutrition 619

Colloquium, 21-26 September 1993, 775-778, Perth, Western Australia. Kluwer 620

Academic Publishers, Dordrecht, Netherlands. 621



Page 31 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

2
6

Van Steveninck R. F. M., Barbare A., Fernando D. R., and Van Steveninck M. E. (1994) The 622

binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Plant and Soil623

167, 157-164.624

Vansuyt, G., Mench, M., Briat, J.F., 2000. Soil dependent variability of leaf iron 625

accumulation in transgenic tobacco over expressing ferritin. Plant Physiol. Biochemi. 38, 626

499-506.627

Vasquez, M.D., Poschenrieder, C., Barcelo, J., Baker, A.J.M., Hatton, P., Cope, G.H., 1994.628

Compartmentation of zinc in roots ans leaves of the zinc hyperaccumulator Thlaspi 629

caerulescens J&C Presl. Bot. Acta 107, 243-250.630

van Wuytswinkel, O., Vansuyt, G., Grignon, N., Fourcroy, P., Briat, J.F., 1999. Iron 631

homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J. 17, 93-97.632

Wang, J., Evangelou, B.P., Nielsen, M.T., Wagner, G.J., 1992. Computer, simulated 633

evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles. II. 634

Zinc. Plant Physiol. 99, 621-626.635

Wu, F.B., Dong, J., Qian, Q.Q., Zhang, G.P., 2005. Subcellular distribution and chemical 636

form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60, 1437-637

1446.638

Zhao, F.J., Lombi, E., Breedon T., Mc Grath, S.P., 2000. Zn hyperaccumulation and cellular 639

distribution in Arabidopsis halleri. Plant Cell Environ. 23, 507-514. 640



Page 32 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

Table 1: Culture conditions and investigations 641
Culture 
number

Growing medium Zn concentration
in the medium

Duration of Zn 
exposure (days)

Genotype Investigations

1 Hydroponic 100 µM ZnSO4 2, 4, 7, 14 A1, C5 CECR, CuSO4-extractable Ca, CuSO4-extractable Zn
2 100 µM ZnSO4 4 A1 Chemical extractions
3 200 µM ZnSO4 4 C5 Zn K-edge EXAFS on non-extracted roots and 

residues after extraction
Solid substrates

4 Agarose
 + Zn- ferrihydrite

49 g L-1 of ferrihydrite 
containing 0.2% Zn

4 A1, C5 Zn K-edge EXAFS on non-extracted roots

4 Agarose
 + Zn- hectorite

49 g L-1 of hectorite 
containing 0.2% Zn

4 A1, C5 Zn K-edge EXAFS on non-extracted roots

4 Agarose 1500 µM ZnSO4 4 A1, C5 Zn K-edge EXAFS on non-extracted roots
Table 2: EXAFS results obtained for the tobacco roots and for Zn references

Linear Combination Fits First shell simulation
Samples Distribution of Zn species (molar 

% of total Zn)a
Structural parametersZn conc. (mmol kg-1, 

d.w.)
Zn 

oxalate
Zn-COOH/ 

OH 
Zn

phosphate
NSS b Atom R (Å) c CN d 2 (Å2) 

e
NSS a

Zn oxalate dihydrate O 2.07 6.0 0.007 1.7
Zn citrate dihydrate O 2.03 5.5 0.010 0.5
Zn malate O 2.01 4.2 0.001 1.6
Zn-pectin 7.65 and 15.29 O 2.00 4.6 0.009 1.3
Zn-isolated cell walls 0.76 to 69.58 O 1.99 4.3 0.009 0.4
Aqueous Zn2+ O 2.07 6.0 0.009 1.4
Zn-cellulose 1.27 to 3.82 O 2.07 6.0 0006 1.9
Zn-sorbed hydroxylapatite 152.9 O 1.97 4.0 0.008 0.2
Zn phytate O 1.96 3.9 0.008 0.3
Zn cysteine S 2.35 4.5 0.007 1.2

Genotype and growth medium
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A1, agarose 35.70 23  3 69  4 0 4.1 O 2.04 5.7 0.011 0.1
C5, agarose 21.20 0 80  2 16  2 4.1 O 2.01 5.0 0.010 0.3

A1, ferrihydrite 7.95 31  3 51  11 6  10 8.7 O 2.05 6.0 0.011 1.1
C5, ferrihydrite 5.21 30  4 43  8 13  6 4.9 O 2.05 5.9 0.011 1.1

A1, hectorite 2.11 23  3 68  12 14  19 3.0 O 2.02 5.3 0.010 0.3
C5, hectorite 2.05 17  3 80  8 12  5 4.5 O 2.02 5.3 0.010 0.2

Chemical extraction experiment
C5, hydroponics 49.23 6  4 81  4 6  4 2.4 O 2.01 4.2 0.010 0.7
Same root, CuSO4-extracted 32.31 20  6 72  10 0 3.7 O 2.02 4.7 0.010 1.3
Same root, CuSO4/HCl-
extracted e

14.00 {
O
S

2.11
2.29

1.4
4.7

0.006
0.006

0.8
a Values expressed as mean ± SD over the best fits, defined by a normalized sum-squares (NSS) value comprised between the value obtained for the best simulation 
(NSSbest) and 1.1  NSSbest. 

b NSS = [k3 (k)exp - k3 (k)fit ]
 2/ [k3 (k)exp]

2*100.  c Interatomic distance (Å). d  Coordination number. e Debye-Waller disorder factor (Å2). f

No satisfactory linear combination fit was obtained with the three components for this spectrum.

Table 3: Concentration of malate, oxalate and citrate in root of A1 genotype of tobacco.642
Organic anion Concentration in roots 

(mmol kg DW)
Malate 154  46
Oxalate 497  56
Citrate 187  37

643
Table 4: Concentration of Zn in shoot and root of other plant species grown in hydroponics644

645
Plant species Exposure 

duration, days
Zn Concentration 
in solution, µM

Zn Concentration in 
shoots, mmol kg -1 DW

Zn Concentration in 
roots, mmol kg -1 DW

References

White Mustard 8 105 0.8 5 from Fargosova, 2001
Wheat 8 100 4 59 from van Steveninck et al., 

1993
Soybean 14 40 14 79 from Fontes and Cox, 1998
Rye grass 15 1000 22 132 from Monnet et al., 2001
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Barley 10 10 1 10 from Brune et al., 1994
Barley 10 400 19 145 from Brune et al., 1994
Silene vulgaris Zn 
sensitive / tolerant

7 100 19 / 13 150 /120 after Harmens et al., 1993*

Silene vulgaris Zn 
sensitive / tolerant

14 150 23 / 10 - after Chardonnens et al., 
1999*

Thlaspi caerulescens 16 10 46 <15 after Shen et al., 1997*
Thlaspi caerulescens 16 500 431 185 after Shen et al., 1997*
Thlaspi ochroleucum 16 10 31 46 after Shen et al., 1997*
Thlaspi ochroleucum 16 500 215 431 after Shen et al., 1997*
Arabidopsis halleri 28 100 31 77 after Zhao et al., 2000*
Tobacco A1 / C5 14 100 15 / 16 74 / 99 this study
* Values of Zn concentration were read on graphs646
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3

Figure 1a. Variation of the cation exchange capacity of roots (CECR) for A1 and C5 647
genotype tobaccos. The horizontal  line corresponds to the average CECR for A1 and C5. b.648
Variation of the CuSO4-extracted Ca : CECR ratio (white bars) and of the CuSO4-extracted 649
Zn : CECR ratio (hatched bars). For both graphs, tobacco were cultivated for 14 days in 650
hydroponics with 100 µM ZnSO4, and errors bars represent standard deviations.651

652
Figure 2. Comparison of four types of sequential extractions at 4 and 25°C on roots of 653
tobacco cultivated for 4 days in hydroponics with 100 µM ZnSO4 (R), and at 25°C on isolated 654
root cell walls of tobacco incubated for 24 hours in hydroponics with 100 µM ZnSO4 (CW). 655
Res: residual Zn. Values are normalized to Zn total content, which ranges between 45 and 69 656
mmol kg-1 for the roots, and between 39 and 96 mmol kg-1 for the cell walls. Errors bars 657
represent standard deviations.658

659
Figure 3. Zn K-edge EXAFS spectra for Zn reference compounds. Values in parentheses 660
indicate the Zn content, in mmol kg-1, dry weight.661

662
Figure 4. Zn K-edge EXAFS spectra for some Zn reference compounds (Zn content, in mmol 663
kg-1, dry weight in parentheses), and for roots of A1 and C5 genotype tobacco grown on 664
artificial substrates and on hydroponics, and for the residues after the CuSO4 and HCl 665
treatment. Dashed lines are linear combination fits using reference spectra (proportions of the 666
species given in Table 2). 667

668
Figure 5. Fourier transformed EXAFS spectra for the untreated C5 root and for the residues 669
after chemical extraction and their first shell simulation (dotted lines, structural parameters 670
given in Table 2).671

672

673

674

675
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Figure 5




