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A History of Markov Chain Monte Carlo * -Subjective Recollections from Incomplete Data

In this note we attempt to trace the history and development of Markov chain Monte Carlo (MCMC) from its early inception in the late 1940's through its use today.

We see how the earlier stages of the Monte Carlo (MC, not MCMC) research have led to the algorithms currently in use. More importantly, we see how the development of this methodology has not only changed our solutions to problems, but has changed the way we think about problems.

Introduction

Markov Chain Monte Carlo (MCMC) methods have been around for almost as long as Monte Carlo techniques, even though their impact on Statistics has not been truly felt until the very early 1990s, except in the specialized fields of spatial Statistics and image analysis where those methods appeared earlier.

(The emergence of Markov based techniques in Physics

What can be reasonably seen as the first MCMC algorithm is what we now call the Metropolis algorithm, published by [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF]. It emanates from the same group of scientists who produced the Monte Carlo method, namely the research scientists of Los Alamos, mostly physicists working on mathematical physics and the atomic bomb.2 MCMC algorithms therefore date back to the same time as the development of regular (MC only) Monte Carlo methods, which are usually traced to Ulam and von Neumann in the late 1940s. Stanislaw Ulam associates the original idea with an intractable combinatorial computation he attempted in 1946 (calculating the probability of winning at the card game "solitaire"). This idea was enthusiastically adopted by John von Neumann for implementation with direct applications to neutron diffusion, the name "Monte Carlo" being suggested by Nicholas Metropolis. [START_REF] Eckhardt | Stan ulam, john von neumann, and the monte carlo method[END_REF] describes these early Monte Carlo developments, and Hitchcock 2003 gives a brief history of the Metropolis algorithm.)

These occurrences very closely coincide with the appearance of the very first computer, the ENIAC, which came to life in February 1946, after three years of construction. The Monte Carlo method was set up by von Neumann, who was using it on thermonuclear and fission problems as early as 1947. At the same time, that is, 1947, Ulam and von Neumann invented inversion and accept-reject techniques (also recounted in [START_REF] Eckhardt | Stan ulam, john von neumann, and the monte carlo method[END_REF] to simulate from non-uniform distributions. Without computers, a rudimentary version invented by Fermi in the 1930s did not get any recognition [START_REF] Metropolis | The beginning of the Monte Carlo method[END_REF]. Note also that, as early as 1949, a symposium on Monte Carlo was supported by Rand, NBS and the Oak Ridge laboratory and that [START_REF] Metropolis | The Monte Carlo method[END_REF] published the very first paper about the Monte Carlo method.

2.1 The [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] 

paper

The first MCMC algorithm is associated with a second computer, called MANIAC(!), built 3 in Los Alamos under the direction of Metropolis in early 1952. Both a physicist and a mathematician, Nicolas Metropolis, who died in Los Alamos in 1999, came to this place in April 1943 . The other members of the team also came to Los Alamos during those years, with Edward Teller being the most controversial character of the group. As early as 1942, he was one of the first scientists to work on the Manhattan Project that led to the production of the A bomb. Almost as early, he became obsessed with the hydrogen (H) bomb, which he eventually managed to design with Stanislaw Ulam using the better computer facilities in the early 1950s. 4Published in June 1953 in the Journal of Chemical Physics, the primary focus of [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] is the computation of integrals of the form I = F (p, q) exp{-E(p, q)/kT }dpdq exp{-E(p, q)/kT }dpdq , with the energy E being defined as

E(p, q) = 1 2 N i=1 N j=1 j =i V (d ij ),
where N is the number of particles, V a potential function and d ij the distance between particles i and j. The Boltzmann distribution exp{-E(p, q)/kT } is parameterized by the temperature T , k being the Boltzmann constant, with a normalization factor Z(T ) = exp{-E(p, q)/kT }dpdq that is not available in closed form. Since p and q are 2N-dimensional vectors, numerical integration is impossible. Given the large dimension of the problem, even standard Monte Carlo techniques fail to correctly approximate I, since exp{-E(p, q)/kT } is very small for most realizations of the random configurations of the particle system (uniformly in the 2N or 4N square). In order to improve the efficiency of the Monte Carlo method, [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] propose a random walk modification of the N particles. That is, for each particle i

(1 ≤ i ≤ N), values x ′ i = x i + αξ 1i and y ′ i = y i + αξ 2i
are proposed, where both ξ 1i and ξ 2i are uniform U(-1, 1). The energy difference ∆E between the new configuration and the previous one is then computed and the new configuration is accepted with probability min {1, exp(-∆E/kT )} ,

and otherwise the previous configuration is replicated (in the sense that it will count one more time in the final average of the F (p t , p t )'s over the τ moves of the random walk, 1 ≤ t ≤ τ )).

Note that [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] move one particle at a time, rather than moving all of them together, which makes the initial algorithm appear as a primitive kind of Gibbs sampler (!).

The authors of [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] demonstrate the validity of the algorithm by first establishing irreducibility (that they call ergodicity) and second proving ergodicity, that is, convergence to the stationary distribution. The second part is obtained via a discretization of the space: They first note that the proposal move is reversible, then establish that exp{-E/kT } is invariant. The result is therefore proven in its full generality (modulo the discretization). The remainder of the paper is concerned with the specific problem of the rigid-sphere collision model. The number of iterations of the Metropolis algorithm seems to be limited: 16 steps for burn-in and 48 to 64 subsequent iterations (which still required four to five hours on the Los Alamos MANIAC).

An interesting variation of (1) is the Simulated Annealing algorithm, developed by [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF], who connected optimization with annealing, the cooling of a metal.

Their variation is to allow T of (1) to change as the algorithm runs, according to a "cooling schedule", and the Simulated Annealing algorithm can be shown to find the global maximum with probability 1, although the analysis is quite complex due to the fact that, with varying T , the algorithm is no longer a time-homogeneous Markov chain.

The Hastings (1970) paper

The Metropolis algorithm was later generalized by [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their application[END_REF] and [START_REF] Peskun | Optimum Monte Carlo sampling using Markov chains[END_REF][START_REF] Peskun | Guidelines for chosing the transition matrix in Monte Carlo methods using Markov chains[END_REF] as a statistical simulation tool that could overcome the curse of dimensionality met by regular Monte Carlo methods (already emphasized in [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF]).5 

In his Biometrika paper, 6 Hastings (1970) also defines his methodology on finite and reversible Markov chains, treating the continuous case by using a discretization analogy.

The generic probability of acceptance for a move from state i to state j is

α ij = s ij 1 + π i π j q ij q ji
, where s ij is a symmetric function. This generic form of probability encompasses the forms of both [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] and [START_REF] Barker | Monte Carlo calculations of the radial distribution functions for a proton electron plasma[END_REF]. At this stage, Peskun's ordering is not yet discovered and Hastings thus mentions that little is known about the relative merits of those two choices (even though) Metropolis's method may be preferable. He also warns against high rejection rates as indicative of a poor choice of transition matrix, but does not mention the opposite pitfall of low rejection rates, associated with a slow exploration of the target.

The examples given in the paper are a Poisson target with a ±1 random walk proposal, a normal target with a uniform random walk proposal mixed with its reflection (i.e. centered at -X(t) rather than X(t)), and then a multivariate target where Hastings introduces a Gibbs sampling strategy, updating one component at a time and defining the composed transition as satisfying the stationary condition because each component does leave the target invariant! [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their application[END_REF] actually refers to [START_REF] Erhman | Computation of order parameters in an ising lattice by the monte carlo method[END_REF] as a preliminary if specific instance of this sampler. More precisely, this is Metropolis-within-Gibbs except for the name. It is quite amazing that this first introduction of the Gibbs sampler has been completely overlooked, even though the proof of convergence is completely general, based on a composition argument as in [START_REF] Tierney | Markov chains for exploring posterior distributions (with discussion)[END_REF]! The remainder of the paper deals with (a) an importance sampling version of MCMC, (b) general remarks about assessment of the error, and (c) an application to random orthogonal matrices (with yet again an example of Gibbs sampling).

Three years later, again in Biometrika, [START_REF] Peskun | Optimum Monte Carlo sampling using Markov chains[END_REF] published a comparison of Metropolis' and Barker's forms of acceptance probabilities and shows (in a discrete setup) that the optimal choice (in terms of the asymptotic variance of any empirical average) is that of Metropolis. The proof is a direct consequence of a result by [START_REF] Kemeny | Finite Markov Chains[END_REF] on the asymptotic variance. Peskun also establishes that this asymptotic variance can improve upon the iid case if and only if the eigenvalues of P -A are all negative, when A is the transition matrix corresponding to the iid simulation and P the transition matrix corresponding to the Metropolis algorithm, but he concludes that the trace of P -A is always positive.

Seeds of the Revolution

A number of earlier pioneers had brought forward the seeds of Gibbs sampling; in particular, Hammersley and Clifford had produced a constructive argument in 1970 to recover a joint distribution from its conditionals, a result later called the Hammersley-Clifford theorem by [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF][START_REF] Besag | On the statistical analysis of dirty pictures[END_REF]. Besides [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their application[END_REF] and [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF], already mentioned, other papers that contained the germs of Gibbs sampling are [START_REF] Besag | Generalized Monte Carlo significance tests[END_REF], [START_REF] Broniatowski | Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste[END_REF], [START_REF] Qian | Parameter estimation for hidden Gibbs chains[END_REF], and [START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF].

Besag's Early Work and the Fundamental (Missing) Theorem

In the early 1970's, Hammersley, Clifford, and Besag were working on the specification of joint distributions from conditional distributions and on necessary and sufficient conditions for the conditional distributions to be compatible with a joint distribution. What is now known as the Hammersley-Clifford theorem states that a joint distribution for a vector associated with a dependence graph (edge meaning dependence and absence of edge conditional independence) must be represented as a product of functions over the cliques of the graphs, that is, of functions depending only on the components indexed by the labels in the clique (which is a subset of the nodes of the graphs such that every node is connected by an edge to every other node in the subset). See [START_REF] Cressie | Spatial Statistics[END_REF] or [START_REF] Lauritzen | Graphical Models[END_REF] for detailed treatments.

From an historical point of view, [START_REF] Hammersley | Discussion of Mr Besag's paper[END_REF] explains why the Hammersley-Clifford theorem was never published as such, but only through [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF]. The reason is that Clifford and Hammersley were dissatisfied with the positivity constraint: The joint density could be recovered from the full conditionals only when the support of the joint was made of the product of the supports of the full conditionals (with obvious counter-examples, as in [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]. While they strived to make the theorem independent of any positivity condition, their graduate student published [START_REF] Moussouris | Gibbs and Markov random systems with constraints[END_REF], a counter-example that put a full stop to their endeavors.

While Julian Besag can certainly be credited to some extent of the (re-)discovery of the Gibbs sampler (as in [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF], [START_REF] Besag | Statistical analysis of non-lattice data[END_REF] has the curious and anticlimactic following comment:

The simulation procedure is to consider the sites cyclically and, at each stage, to amend or leave unaltered the particular site value in question, according to a probability distribution whose elements depend upon the current value at neighboring sites (...) However, the technique is unlikely to be particularly helpful in many other than binary situations and the Markov chain itself has no practical interpretation. So, while stating the basic version of the Gibbs sampler on a graph with discrete variables, Besag dismisses it as unpractical.

On the other hand, Hammersley, together with Handscomb, wrote a textbook on Monte Carlo methods, (the first?) [START_REF] Hammersley | Monte Carlo Methods[END_REF]. There they cover such topics as "Crude Monte Carlo" (which is (3)); importance sampling; control variates; and "Conditional Monte Carlo", which looks surprisingly like a missing-data completion approach. Of course, they do not cover the Hammersley-Clifford theorem but, in contrast to [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF], they state in the Preface We are convinced nevertheless that Monte Carlo methods will one day reach an impressive maturity.

Well said!

EM and its Simulated Versions as Precursors

Besides a possible difficult computation in the E-step, problems with the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] do occur in the case of multimodal likelihoods. The increase of the likelihood function at each step of the algorithm ensures its convergence to the maximum likelihood estimator in the case of unimodal likelihoods but it implies a dependence on initial conditions for multimodal likelihoods. Several proposals can be found in the literature to overcome this problem, one of which we now describe because of its connection with Gibbs sampling. [START_REF] Broniatowski | Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste[END_REF] and Celeux andDiebolt (1985, 1992) have tried to overcome the dependence of EM methods on the starting value by replacing the E step with a simulation step, the missing data z being generated conditionally on the observation x and on the current value of the parameter θ m . The maximization in the M step is then done on the (simulated) complete-data log-likelihood, H(x, z m |θ). The appeal of this approach is that it allows for a more systematic exploration of the likelihood surface by partially avoiding the fatal attraction of the closest mode. Unfortunately, the theoretical convergence results for these methods are limited. [START_REF] Celeux | Une version de type recuit simulé de l'algorithme EM[END_REF] have, however, solved the convergence problem of SEM by devising a hybrid version called SAEM (for Simulated Annealing EM), where the amount of randomness in the simulations decreases with the iterations, ending up with an EM algorithm. This version actually relates to simulated annealing methods.

Gibbs, and Beyond

Although somewhat removed from statistical inference in the classical sense and based on earlier techniques used in Statistical Physics, the landmark paper by [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF] brought Gibbs sampling into the arena of statistical application. This paper is also responsible for the name Gibbs sampling, because it implemented this method for the Bayesian study of Gibbs random fields which, in turn, derive their name from the physicist Josiah Willard Gibbs . This original implementation of the Gibbs sampler was applied to a discrete image processing problem and did not involve completion. But this was one more spark that led to the explosion, as it had a clear influence on Green, Smith, Spiegelhalter and others.

The extent to which Gibbs sampling and Metropolis algorithms were in use within the image analysis and point process communities is actually quite large, as illustrated in [START_REF] Ripley | Stochastic Simulation[END_REF] where Section §4.7 is entitled "Metropolis' method and random fields" and describes the implementation and the validation of the Metropolis algorithm in a finite setting with an application to Markov random fields and the corresponding issue of bypassing the normalizing constant. [START_REF] Besag | Bayesian image restoration, with two applications in spatial statistics (with discussion)[END_REF] is another striking example of the activity in the spatial statistics community at the end of the 1980's (the paper was submitted in 1989).

The Revolution

The gap of more than 30 years between [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] and Gelfand and Smith (1990) can still be partially attributed to the lack of appropriate computing power, as most of the examples now processed by MCMC algorithms could not have been treated previously, even though the hundreds of dimensions processed in [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] were quite formidable. However, by the mid-1980s, the pieces were all in place. After Peskun, MCMC in the statistical world was dormant for about 10 years, and then several papers appeared that highlighted its usefulness in specific settings like pattern recognition, image analysis or spatial statistics (see, for example, [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF][START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF][START_REF] Besag | Towards Bayesian image analysis[END_REF]). In particular, [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF] building on [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF], [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their application[END_REF] , and [START_REF] Peskun | Optimum Monte Carlo sampling using Markov chains[END_REF], influenced Gelfand and Smith (1990) to write a paper that is the genuine starting point for an intensive use of MCMC methods by the (mainstream) statistical community. It sparked new interest in Bayesian methods, statistical computing, algorithms, and stochastic processes through the use of computing algorithms such as the Gibbs sampler and the Metropolis-Hastings algorithm.

(See Casella and George 1992 for an elementary introduction to the Gibbs sampler 7 .) Interestingly, the earlier paper by [START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF] had essentially the same ingredients as Gelfand and Smith (1990), namely the fact that simulating from the conditional distributions is sufficient to simulate (in the limiting sense) from the joint. This paper was considered important enough to be a discussion paper in the Journal of the American Statistical Association, but its impact was somehow limited, compared with the one of Gelfand and Smith (1990). There are several reasons for this; one being that the method seemed to only apply to missing data problems (hence the name data augmentation), and another is that the authors were more focused on approximating the posterior distribution. They suggested a (Markov chain) Monte Carlo approximation to the target π(θ|x) at each iteration 7 On a humorous note, the original Technical Report of this paper was called Gibbs for Kids, which was changed because a referee did not appreciate the humor. However, our colleague Dan Gianola, an Animal Breeder at Wisconsin, liked the title. In using Gibbs sampling in his work, he gave a presentation in 1993 at the 44th Annual Meeting of the European Association for Animal Production, Arhus, Denmark. The title: Gibbs for Pigs. Looking at these meetings, we can see the paths that Gibbs sampling would lead us down. In the next two sections we will summarize some of the advances from the early to mid 1990s.

Advances in MCMC Theory

Perhaps the most influential MCMC theory paper of the 1990s is [START_REF] Tierney | Markov chains for exploring posterior distributions (with discussion)[END_REF], who carefully laid out all of the assumptions needed to analyze the Markov chains and then developed their properties, in particular, convergence of ergodic averages and central limit theorems.

In one of the discussions of that paper, [START_REF] Chan | Discussion of "Markov chains for exploring posterior distribution[END_REF] were able to relax a condition on Tierney's Central Limit Theorem, and this new condition plays an important role in research today (see Section 5.4). A pair of very influential, and innovative, papers is the work of [START_REF] Liu | Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and sampling schemes[END_REF]Liu et al. ( , 1995)), who very carefully analyzed the covariance structure of Gibbs sampling, and were able to formally establish the validity of Rao-Blackwellization in Gibbs sampling. Gelfand and Smith (1990) had used Rao-Blackwellization, but it was not justified at that time, as the original theorem was only applicable to iid sampling, which is not the case in MCMC. Other early theoretical developments include the Duality Theorem of [START_REF] Diebolt | Estimation of finite mixture distributions by Bayesian sampling[END_REF], who showed that in the two-stage Gibbs sampler (which is equivalent to the Data Augmentation algorithm of [START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF], convergence properties of one chain can be transferred to other chains, a fact also found in [START_REF] Liu | Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and sampling schemes[END_REF]Liu et al. ( , 1995)). This turns out to be particularly important in mixture models, where it is typical that one part of the Gibbs chain is discrete and finite, and the other is continuous.

The convergence properties of the finite chain carry over to the continuous chain.

Another paper must be singled out, namely [START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF], for setting the tone for the study of the speed of convergence of MCMC algorithms to the target distribution.

Subsequent works in this area by Richard Tweedie, Gareth Roberts, Jeff Rosenthal and coauthors are too numerous to be mentioned here, even though the paper by Roberts et al.

(1997) must be cited for setting explicit targets on the acceptance rate of the random walk Metropolis-Hastings algorithm, as well as [START_REF] Roberts | Convergence of slice sampler Markov chains[END_REF] for getting an upper bound on the number of iterations (523) needed to approximate the target up to 1% by a slice sampler. The untimely death of Richard Tweedie in 2001 alas had a major impact on the book about MCMC convergence he was contemplating with Gareth Roberts.

One pitfall arising from the widespread use of Gibbs sampling was the tendency to spec-ify models only through their conditional distributions, almost always without referring to the positivity conditions in Section 3. Unfortunately, it is possible to specify a perfectly legitimate-looking set of conditionals that do not correspond to any joint distribution, and the resulting Gibbs chain cannot converge. [START_REF] Hobert | The effect of improper priors on Gibbs sampling in hierarchical linear models[END_REF] were able to document the conditions needed for a convergent Gibbs chain, and alerted the Gibbs community to this problem (which only arises if improper priors are used, but this is a frequent occurrence).

Much other work followed, and continues to grow today. [START_REF] Geyer | Annealing Markov chain Monte Carlo with applications to ancestral inference[END_REF] describe how to put a "ladder" of chains together to have both "hot" and "cold" exploration, followed by Neal's 1996 introduction of tempering; [START_REF] Athreya | On the convergence of the Markov chain simulation method[END_REF] gave more easily verifiable conditions for convergence; [START_REF] Meng | Seeking efficient data augmentation schemes via conditional and marginal augmentation[END_REF] and [START_REF] Liu | Parameter expansion for data augmentation[END_REF] developed the theory of parameter expansion in the Data Augmentation algorithm, leading to construction of chains with faster convergence, and to the work of [START_REF] Hobert | A theoretical comparison of the data augmentation, marginal augmentation and px-da algorithms[END_REF], who give precise constructions and theorems to show how parameter expansion can uniformly improve over the original chain.

Advances in MCMC Applications

The real reason for the explosion of MCMC methods was the fact that an enormous number of problems that were deemed to be computational nightmares now cracked open like eggs.

As an example, consider this very simple random effects model from Gelfand and Smith (1990). Observe

Y ij = θ i + ε ij , i = 1, . . . , K, j = 1, . . . , J, (2) 
where

θ i ∼ N(µ, σ 2 θ ) ε ij ∼ N(0, σ 2 ε ), independent of θ i
Estimation of the variance components can be difficult for a frequentist (REML is typically preferred) but it indeed was a nightmare for a Bayesian, as the integrals were intractable.

However, with the usual priors on µ, σ 2 θ , and σ 2 ε , the full conditionals are trivial to sample from and the problem is easily solved via Gibbs sampling. Moreover, we can increase the number of variance components and the Gibbs solution remains easy to implement. During the early 1990s, researchers found that Gibbs, or Metropolis-Hastings, algorithms would crack almost any problem that they looked at, and there was a veritable flood of papers applying MCMC to previously intractable models, and getting good solutions. For example, building on (2), it was quickly realized that Gibbs sampling was an easy route to getting estimates in the linear mixed models [START_REF] Wang | Marginal inferences about variancecomponents in a mixed linear model using gibbs sampling[END_REF][START_REF] Wang | Bayesian analysis of mixed limear models via Gibbs sampling with an application to litter size in Iberian pigs[END_REF], and even generalized linear mixed models [START_REF] Zeger | Generalized linear models with random effects; a Gibbs sampling approach[END_REF]. Demarginalization (the introduction of latent variables) arguments made it possible to analyze probit models using a latent variable approach in a linear mixed model [START_REF] Albert | Bayesian analysis of binary and polychotomous response data[END_REF], and demarginalization was also a route to estimation in mixture models with Gibbs sampling (see, for example, [START_REF] Robert | Inference in mixture models[END_REF].

It progressively dawned on the community that latent variables could be artificially introduced to run the Gibbs sampler in about every situation, as eventually published in [START_REF] Damien | Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables[END_REF], the main example being the slice sampler [START_REF] Neal | Slice sampling (with discussion)[END_REF]. A (very incomplete) list of some other applications include changepoint analysis [START_REF] Carlin | Hierarchical Bayesian analysis of change point problems[END_REF][START_REF] Stephens | Bayesian retrospective multiple-changepoint identification[END_REF]; Genomics [START_REF] Lawrence | Detecting subtle sequence signals -a Gibbs sampling strategy for multiple alignment[END_REF][START_REF] Stephens | Bayesian inference in multipoint gene mapping[END_REF][START_REF] Churchill | Accurate restoration of DNA sequences (with discussion)[END_REF]; capturerecapture (George andRobert 1992, Dupuis 1995); variable selection in regression [START_REF] George | Variable Selection Via Gibbbs Sampling[END_REF]; spatial statistics [START_REF] Raftery | Stopping the Gibbs sampler, the use of morphology, and other issues in spatial statistics[END_REF], and longitudinal studies [START_REF] Lange | Hierarchal bayes models for the progression of hiv infection using longitudinal cd4 t-cell numbers[END_REF]).

Many of these applications were advanced though other developments such as the Adaptive Rejection Sampling of [START_REF] Gilks | Derivative-free adaptive rejection sampling for Gibbs sampling[END_REF], [START_REF] Gilks | Adaptive rejection Metropolis sampling within Gibbs sampling[END_REF], and the simulated tempering approaches of [START_REF] Geyer | Annealing Markov chain Monte Carlo with applications to ancestral inference[END_REF] or [START_REF] Neal | Sampling from multimodal distributions using tempered transitions[END_REF].

After the Revolution

After the revolution comes the "second" revolution, but now we have a more mature field.

The revolution has slowed, and the problems are being solved in, perhaps, deeper and more sophisticated ways (even though Gibbs sampling also offers to the amateur the possibility to handle Bayesian analysis in complex models at little cost, as exhibited by the widespread use of BUGS). But, as before, the methodology continues to expand the set of problems that statisticians can provide meaningful solutions, and thus continues to further the impact of Statistics.

A Brief Glimpse at Particle Systems

The realization of the possibilities of iterating importance sampling is not new: in fact, it is about as old as Monte Carlo methods themselves! It can be found in the molecular simulation literature of the 50's, as in [START_REF] Hammersley | Poor man's Monte Carlo[END_REF], [START_REF] Rosenbluth | Monte Carlo calculation of the average extension of molecular chains[END_REF] and [START_REF] Marshall | The use of multi-stage sampling schemes in Monte Carlo computations[END_REF]. Hammersley and colleagues proposed such a method to simulate a self-avoiding random walk [START_REF] Madras | The Self-Avoiding Random Walk. Probability and its Applications[END_REF] on a grid, due to huge inefficiency in regular importance sampling and rejection techniques. Although this early implementation occurred in particle physics, the use of the term "particle" only dates back to [START_REF] Kitagawa | Monte Carlo filter and smoother for non-Gaussian non-linear state space models[END_REF], while [START_REF] Carpenter | Building robust simulation-based filters for evolving datasets[END_REF] coined the term "particle filter". In signal processing, early occurrences of a "particle filter" can be traced back to [START_REF] Handschin | Monte Carlo techniques to estimate the conditional expectation in multi-stage nonlinear filtering[END_REF].

More in connection with our theme, the landmark paper of [START_REF] Gordon | A novel approach to non-linear/non-Gaussian Bayesian state estimation[END_REF] introduced the bootstrap filter which, while formally connected with importance sampling, involves past simulations and possible MCMC steps [START_REF] Gilks | Following a moving target-Monte Carlo inference for Bayesian models[END_REF]. As described in the volume edited by [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], particle filters are simulation methods adapted to sequential settings where data are collected progressively in time as in radar detection, telecommunication correction or financial volatility estimation. Taking advantage of state-space representations of those dynamic models, particle filter methods produce Monte Carlo approximations to the posterior distributions by propagating simulated samples whose weights are actualized against the in-coming observations. Since the importance weights have a tendency to degenerate (that is, all weights but one are close to zero), additional MCMC steps can be introduced at times to recover the variety and representativeness of the sample.

Modern connections with MCMC in the construction of the proposal kernel are to be found, for instance, in [START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian filtering[END_REF] and in Del [START_REF] Del Moral | The sequential Monte Carlo samplers[END_REF]. In parallel, sequential imputation was developed in [START_REF] Kong | Sequential imputations and Bayesian missing data problems[END_REF], while [START_REF] Liu | Blind deconvolution via sequential imputations[END_REF] first formally pointed out the importance of resampling in sequential Monte Carlo, a term coined by them.

The recent literature on the topic more closely bridges the gap between sequential Monte Carlo and MCMC methods by making adaptive MCMC a possibility (see, for example, Andrieu et al. 2004 or Roberts and[START_REF] Roberts | Coupling and ergodicity of adaptive mcmc[END_REF].

Perfect sampling

Introduced in the seminal paper of [START_REF] Propp | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF], perfect sampling, namely the ability to use MCMC methods to produce an exact (or perfect) simulation from the target, maintains a unique place in the history of MCMC methods. Although this exciting discovery led to an outburst of papers, in particular in the large body of work of Møller and coauthors, including the book by [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF], as well as many reviews and introductory materials, like [START_REF] Casella | Explaining the perfect sampler[END_REF], [START_REF] Fismen | Exact simulation using Markov chains[END_REF][START_REF] Dimakos | A guide to exact simulation[END_REF], the excitement quickly dried out. The major reason for this ephemeral lifespan is that the construction of perfect samplers is most often close to impossible or impractical [START_REF] Foss | Perfect simulation and backward coupling[END_REF], despite some advances in the implementation (Fill 1998a,b).

There is, however, ongoing activity in the area of point processes and stochastic geometry, much from the work of Møller and Kendall. In particular, [START_REF] Kendall | Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes[END_REF] developed an alternative to the Coupling From The Past (CFPT) algorithm of [START_REF] Propp | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF], called horizontal CFTP, which mainly applies to point processes and is based on continuous time birth-and-death processes. See also [START_REF] Fernández | Perfect simulation for interacting point processes, loss networks and Ising models[END_REF] for another horizontal CFTP algorithm for point processes. [START_REF] Berthelsen | Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling[END_REF] exhibited a use of these algorithms for nonparametric Bayesian inference on point processes.

Reversible jump and variable dimensions

From many viewpoints, the invention of the reversible jump algorithm in [START_REF] Green | Reversible jump MCMC computation and Bayesian model determination[END_REF] can be seen as the second MCMC revolution: the formalization of a Markov chain that moves across models and parameters spaces allowed for the Bayesian processing of a wide variety of new models and contributed to the success of Bayesian model choice and subsequently to its adoption in other fields. There exist earlier alternative Monte Carlo solutions like [START_REF] Gelfand | Bayesian model choice: asymptotics and exact calculations[END_REF] and [START_REF] Carlin | Bayesian model choice through Markov chain Monte Carlo[END_REF], the later being very close in spirit to reversible jump MCMC (as shown by the completion scheme of [START_REF] Brooks | Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)[END_REF], but the definition of a proper balance condition on cross-model Markov kernels in [START_REF] Green | Reversible jump MCMC computation and Bayesian model determination[END_REF] gives a generic setup for exploring variable dimension spaces, even when the number of models under comparison is infinite. The impact of this new idea was clearly perceived when looking at the First European Conference on Highly Structured Stochastic Systems that took place in Rebild, Denmark, the next year, organized by Stephen Lauritzen and Jesper Møller: a large majority of the talks were aimed at direct implementations of RJMCMC to various inference problems. The application of RJMCMC to mixture order estimation in the discussion paper of [START_REF] Richardson | On Bayesian analysis of mixtures with an unknown number of components (with discussion)[END_REF] ensured further dissemination of the technique. More recently, [START_REF] Stephens | Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods[END_REF] proposed a continuous time version of RJMCMC, based on earlier ideas of [START_REF] Geyer | Simulation procedures and likelihood inference for point processes[END_REF], but with similar properties [START_REF] Cappé | Reversible jump, birth-and-death, and more general continuous time MCMC samplers[END_REF], while [START_REF] Brooks | Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)[END_REF] made proposals for increasing the efficiency of the moves.

In retrospect, while reversible jump is somehow unavoidable in the processing of very large numbers of models under comparison, as for instance in variable selection [START_REF] Marin | Bayesian Core[END_REF], the implementation of a complex algorithm like RJMCMC for the comparison of a few models is somewhat of an overkill since there exist alternative solutions based on model specific MCMC chains, for example [START_REF] Chen | Monte Carlo Methods in Bayesian Computation[END_REF].

Regeneration and the CLT

The Ergodic Theorem (see, for example, Robert and Casella 2004, Theorem 6.63) is essentially the Strong Law of Large Numbers rewritten for Markov chains. If X 1 , X 2 , • • • X n is a Markov chain with stationary distribution π, and h(•) is a function with finite variance, then under fairly mild conditions,

lim n→∞ hn = h(x)π(x) dx = E π h(X), (3) 
almost everywhere, where hn = (1/n) n i=1 h(X i ) . To monitor this convergence, we would like to appeal to a Central Limit Theorem (CLT) and use the fact that √ n( hn -E π h(X))

Varh(X) → N(0, 1), ( 4) but there are two roadblocks to this. First, convergence to normality is strongly affected by the lack of independence. To get CLTs for Markov chains, we can use a result of [START_REF] Kipnis | Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions[END_REF], which requires the chain to be reversible (a fact that holds for Metropolis-Hastings chains), or we must delve into "mixing conditions" (Billingsley 1995, Section 27), which are typically not easy to verify. However, [START_REF] Chan | Discussion of "Markov chains for exploring posterior distribution[END_REF] showed how the condition of geometric ergodicity could be used to establish CLTs for Markov chains. But getting the convergence is only half of the problem. In order to use (4), we must be able to consistently estimate the variance, which turns out to be another difficult endeavor. The "naïve" estimate of the usual standard error is not consistent in the dependent case (try the simple calculation where the X i are equicorrelated), and the most promising paths for consistent variance estimates seems to be through regeneration and batch means.

The theory of regeneration uses the concept of a split chain (Athreya andNey 1978, Robert andCasella 2004, Chapter 6), and allows us to independently restart the chain while preserving the stationary distribution. These independent "tours" then allow the calculation of consistent variance estimates and honest monitoring of convergence through (4). Early work on applying regeneration to MCMC chains was done by [START_REF] Mykland | Regeneration in Markov chain samplers[END_REF] and [START_REF] Robert | Convergence control techniques for MCMC algorithms[END_REF], who showed how to construct the chains and use them for variance calculations and diagnostics (see also [START_REF] Guihenneuc-Jouyaux | Finite Markov chain convergence results and MCMC convergence assessments[END_REF], as well as deriving adaptive MCMC algorithms [START_REF] Gilks | Adaptive Markov chain Monte Carlo[END_REF]. [START_REF] Rosenthal | Minorization conditions and convergence rates for Markov chain Monte Carlo[END_REF] also showed how to construct and use regenerative chains, and much of this work is reviewed in [START_REF] Jones | Honest exploration of intractable probability distributions via Markov chain Monte Carlo[END_REF]. The most interesting and practical developments, however, are in [START_REF] Hobert | On the applicability of regenerative simulation in Markov chain Monte Carlo[END_REF] and [START_REF] Jones | Fixed-width output analysis for markov chain monte carlo[END_REF], where consistent estimators are constructed for Varh(X), allowing valid monitoring of convergence in chains that satisfy the CLT. Interestingly, although [START_REF] Hobert | On the applicability of regenerative simulation in Markov chain Monte Carlo[END_REF] uses regeneration, [START_REF] Jones | Fixed-width output analysis for markov chain monte carlo[END_REF] get their consistent estimators thorough another technique, that of cumulative batch means.

Conclusion

The impact of Gibbs sampling and MCMC was to, almost instantaneously, change our entire method of thinking and attacking problems, representing a paradigm shift in the words of the historian of science Thomas Kuhn [START_REF] Kuhn | The Structure of scientific Revolutions, Third Edition[END_REF]. Now, the collection of real problems that we could solve grew almost without bound. Markov chain Monte Carlo changed our emphasis from "closed form" solutions to algorithms, expanded our impact to solving "real" applied problems, expanded our impact to improving numerical algorithms using statistical ideas, and led us into a world where "exact" now means "simulated"! This has truly been a quantum leap in the evolution of the field of statistics, and the evidence is that there are no signs of slowing down. Although the "explosion" is over, the current work is going deeper into theory and applications, and continues to expand our horizons and influence by increasing our ability to solve even bigger and more important problems. The size of the data sets, and of the models (for example in genomics or climatology) is something that could not have been conceived 60 years ago, when Ulam and von

Neumann invented the Monte Carlo method. Now we continue to plod on, and hope that the advances that we make here will, in some way, help our colleagues 60 years in the future solve the problems that we cannot yet conceive!

A Appendix: Workshop on Bayesian Computation 

  , z t,k ) , z t,k ∼ πt-1 (z|x) , k = 1, . . . , m, that is, by replicating m times the simulations from the current approximation πt-1 (z|x) of the marginal posterior distribution of the missing data. This focus on estimation of the posterior distribution connected the original Data Augmentation algorithm to EM, as pointed out by Dempster in the discussion. Although the discussion by Morris gets very close to the two-stage Gibbs sampler for hierarchical models, he is still concerned about doing m iterations, and worries about how costly that would be. Tanner and Wong mention taking m = 1 at the end of the paper, referring to this as an "extreme case".In a sense,[START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF] was still too close to Rubin's 1978 multiple imputation to start a (new) revolution. Yet another reason for this may be that the theoretical background was based on functional analysis rather than Markov chain theory, which needed, in particular, for the Markov kernel to be uniformly bounded and equicontinuous. This may have discouraged potential applicants as requiring too much math! The authors of this review were fortunate enough to attend many focused conferences during this time, where we were able to witness the explosion of Gibbs sampling. In the summer of 1986 in Bowling Green, Ohio, Adrian Smith gave a series of ten lectures on hierarchical models. Although there was a lot of computing mentioned, the Gibbs sampler was not fully developed yet. In another lecture by Adrian Smith in June 1989 at a Bayesian workshop in Sherbrooke, Québec, Adrian revealed for the first time (?) the generic features of Gibbs sampler, and we still remember vividly the shock induced on ourselves and on the whole audience by the sheer breadth of the method! This development of Gibbs sampling, MCMC, and the resulting seminal paper of Gelfand andSmith (1990) was an epiphany in the world of Statistics.Definition: epiphany n. A spiritual event in which the essence of a given object of manifestation appears to the subject, as in a sudden flash of recognition.The explosion had begun, and just two years later, at an MCMC conference at Ohio State University organized by Alan Gelfand, Prem Goel, and Adrian Smith, there were three full days of talks. The presenters at the conference read like a Who's Who of MCMC, and the level, intensity and impact of that conference, and the subsequent research, is immeasurable.The program of the conference is reproduced in Appendix A. Approximately one year later, in May of 1992, there was a meeting of the Royal Statistical Society on "The Gibbs sampler and other Markov chain Monte Carlo methods", where four papers were presented followed by much discussion. The papers appear in the first volume of JRSSB in 1993, together with 49 (!) pages of discussion, again by the Who's Who of MCMC, and the excitement is clearly evident in the writings (even though the theory and implementation were not always perfectly understood).

  a) Theoretical Aspect of Iterative Sampling, Chair: Adrian Smith 1) Martin Tanner, University of Rochester: EM, MCEM, DA and PMDA 2) Nick Polson, Carnegie Mellon University: On the Convergence of the Gibbs Sampler and its Rate 3) Wing-Hung Wong, Augustin Kong, and Jun Liu, University of Chicago: Correlation Structure and Convergence of the Gibbs Sampler and Related Algorithms (b) Applications -I, Chair: Prem Goel 1) Nick Lange, Brown University, Brad Carlin, Carnegie Mellon University and Alan Gelfand, University of Connecticut : Hierarchical Bayes Models for Progression of HIV Infection 2) Cliff Litton, Nottingham University, England: Archaeological Applications of Gibbs Sampling 3) Jonas Mockus, Lithuanian Academy of Sciences, Vilnius: Bayesian Approach to Global and Stochastic Optimization • Saturday, Feb. 16, 1991 (a) Posterior Simulation and Markov Sampling, Chair: Alan Gelfand 1) Luke Tierney, University of Minnesota: Exploring Posterior Distributions Using Markov Chains 2) Peter Mueller, Purdue University: A Generic Approach to Posterior Integration and Bayesian Sampling 3) Andrew Gelman, University of California, Berkeley and Donald P. Rubin, Harvard University: On the Routine Use of Markov Chains for Simulations 4) Jon Wakefield, Imperial College, London: Parameterization Issues in Gibbs Sampling 5) Panickos Palettas, Virginia Polytechnic Institute: Acceptance-Rejection Method in Posterior Computations (b) Applications -II, Chair: Mark Berliner 1) David Stephens, Imperial College, London: Gene Mapping Via Gibbs Sampling 2) Constantine Gatsonis, Harvard University: Random Effects Model for Ordinal Categorical Data with an application to ROC Analysis 3) Arnold Zellner, University of Chicago, Luc Bauwens, Université de Louvainla-Neuve, and Herman Van Dijk, Rotterdam University: Bayesian Specification Analysis and Estimation of Simultaneous Equation Models using Monte Carlo Methods (c) Adaptive Sampling, Chair: Carl Morris 1) Mike Evans, University of Toronto and Carnegie Mellon University: Some Uses of Adaptive Importance Sampling and Chaining 2) Wally Gilks, Medical Research Council, Cambridge, England: Adaptive Rejection Sampling 3) Mike West, Duke University: Mixture Model Approximations, Sequential Updating and Dynamic Models • Sunday, Feb. 17, 1991 (a) Generalized Linear and Nonlinear Models, Chair: Rob Kass 1) Ruey Tsay, and Robert McCulloch, University of Chicago: Bayesian Analysis of Autoregressive Time Series 2) Christian Ritter, University of Wisconsin: Sampling Based Inference in Non Linear Regression 3) William DuMouchel, BBN Software, Boston: Application of the Gibbs Sampler to Variance Component Modeling 4) James Albert, Bowling Green University and Sidhartha Chib, Washington University, St. Louis: Bayesian Regression Analysis of Binary Data 5) Edwin Green and William Strawderman, Rutgers University: Bayes Estimates for the Linear Model with Unequal Variances (b) Maximum Likelihood and Weighted Bootstrapping, Chair: George Casella 1) Adrian Raftery, and Michael Newton, University of Washington: Approximate Bayesian Inference by the Weighted Bootstrap 2) Charles Geyer, Universlty of Chicago: Monte Carlo Maximum Likelihood via Gibbs Sampling 3) Elizabeth Thompson, University of Washington: Stochastic Simulation for Complex Genetic Analysis (c) Panel Discussion -Future of Bayesian Inference using Stochastic Simulation, Chair: Prem Gael • Panel -Jim Berger, Alan Gelfand, and Adrian Smith

  This section contains the program of the Workshop on Bayesian Computation via Stochastic Simulation, held at Ohio State University, February 15-17, 1991. The organizers were Alan Gelfand, University of Connecticut, Prem Goel, Ohio State University, and Adrian Smith,

	Imperial College, London.

•

Friday, Feb. 15, 1991 

The atomic bomb construction did not involve simulation techniques, even though the subsequent development of the hydrogen bomb did

.3 MANIAC stands for Mathematical Analyzer, Numerical Integrator and Computer.

On a somber note, Edward Teller later testified against Robert Oppenheimer in the McCarthy trials and, much later, was a fervent proponent of the "Star Wars" defense system under the Reagan administration.

In fact, Hastings starts by mentioning a decomposition of the target distribution into a product of one-dimensional conditional distributions but this falls short of an early Gibbs sampler!

[START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their application[END_REF] is one of the ten papers reproduced in the Biometrika 100th anniversary volume by[START_REF] Titterington | Biometrika: One Hundred Years[END_REF].
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