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Density estimates and concentration inequalities

with Malliavin calculus

Ivan Nourdin∗ and Frederi G. Viens†

Université Paris 6 and Purdue University

Abstract

We show how to use the Malliavin calculus to obtain density estimates of the

law of general centered random variables. In particular, under a non-degeneracy

condition, we prove and use a new formula for the density ρ of a random variable Z

which is measurable and differentiable with respect to a given isonormal Gaussian

process. Among other results, we apply our techniques to bound the density of the

maximum of a general Gaussian process from above and below; several new results

ensue, including improvements on the so-called Borell-Sudakov inequality. We then

explain what can be done when one is only interested in or capable of deriving

concentration inequalities, i.e. tail bounds from above or below but not necessarily

both simultaneously.

Key words: Malliavin calculus; density estimates; concentration inequalities; fractional Brown-

ian motion; Borell-Sudakov inequality; suprema of Gaussian processes.

2000 Mathematics Subject Classification: 60G15; 60H07.

1 Introduction

Let N be a zero-mean Gaussian random vector, with covariance matrix K ∈ S +
n (R). Set

σ2
max := maxiKii, and consider

Z = max
16i6n

Ni − E
(

max
16i6n

Ni

)

. (1.1)
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It is well-known, see e.g. Vitale [16], that for all z > 0,

P
(

Z > z
)

6 exp

(

− z2

2 σ2
max

)

if z > 0. (1.2)

The corresponding left-tail probability bound analogue of (1.2) also holds, see e.g. Borell
[2]:

P
(

Z 6 −z
)

6 exp

(

− z2

2 σ2
max

)

if z < 0. (1.3)

Of course, we can combine (1.2) and (1.3) to get,

P
(

|Z| > z
)

6 2 exp

(

− z2

2 σ2
max

)

if z > 0. (1.4)

Inequality (1.4) is a special case of bounds for more general Gaussian fields. Such bounds
are often collectively known as Borell-Sudakov inequalities. These can be extended much
beyond the Gaussian realm; see for instance the book of Ledoux and Talagrand [10]. Yet
these Borell-Sudakov inequalities can still be improved, even in the Gaussian framework;
this is one of the things we will illustrate in this paper.

Inequality (1.4) is also a special case of results based on almost sure bounds on a random
field’s Malliavin derivatives, see Viens and Vizcarra [15]. While that paper uncovered a
new way to relate scales of regularity and fractional exponential moment conditions with
iterated Malliavin derivatives, it failed to realize how best to use these derivatives when
seeking basic estimates such as (1.4). In the present paper, our aim is to explain how to
use Malliavin calculus more efficiently than in [15] in order to obtain bounds like (1.2) or
(1.3), and even often much better. For instance, by applying our machinery to Z defined
by (1.1), we obtain the following.

Proposition 1.1 With N and Z as above, if σ2
min := mini,j Kij > 0, with σ2

max :=
maxiKii, the density ρ of Z exists and satisfies, for almost all z ∈ R,

E|Z|
2σ2

max

exp

(

− z2

2 σ2
min

)

6 ρ(z) 6
E|Z|
2σ2

min

exp

(

− z2

2 σ2
max

)

. (1.5)

This proposition generalizes immediately (see Proposition 3.11 in Section 3 below) to
the case of processes defined on an interval [a, b] ⊂ R. To our knowledge, that result is the
first instance where the density of the maximum of a general Gaussian process is estimated
from above and below. As an explicit application, let us mention the following result,
concerning the centered maximum of a fractional Brownian motion (fBm), which is proved
at the end of Section 3.
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Proposition 1.2 Let b > a > 0, and B = (Bt, t > 0) be a fractional Brownian motion
with Hurst index H ∈ (1/2, 1). Then the random variable Z = sup[a,b]B − E

(

sup[a,b]B
)

has a density ρ satisfying, for almost all z ∈ R:

E|Z|
2b2H

e−
z2

2 a2H 6 ρ(z) 6
E|Z|
2a2H

e−
z2

2 b2H . (1.6)

Of course, the interest of this result lies in the fact that the exact distribution of
sup[a,b]B is still an open problem when H 6= 1/2. Moreover, note that introducing a
degeneracy in the covariances for stochastic processes such as fBm has dire consequences
on their supremas’ tails; for instance, with a = 0, Z has no left hand tail, since Z >

−E
(

sup[0,b]B
)

a.s., and therefore ρ is zero for z small enough.

Density estimates of the type (1.5) may be used immediately to derive tail estimates
by combining simple integration with the following classical inequalities:

z

1 + z2
e−

z2

2 6

∫ ∞

z

e−
y2

2 dy 6
1

z
e−

z2

2 for all z > 0.

The two tails of the supremum of a Gaussian vector or process are typically not symmetric,
and neither are the methods for estimating them; this poses a problem for the techniques
used in [16] and [2], and for ours. Let us therefore first derive some results by hand. For
a lower bound on the right-hand tail of Z, no heavy machinery is necessary. Indeed let
i0 = arg maxiKii and µ = E

(

maxNi

)

> 0. Then, for z > 0,

P
(

Z > z
)

> P
(

Ni0 > µ+ z
)

>
1√
2π

(µ+ z)2

σ2
max + (µ+ z)2

e
− (µ+z)2

2 σ2
max . (1.7)

A nearly identical argument leads to the following upper bound on the left-hand tail of Z:
for z > 0,

P (Z 6 −z) 6
mini

√
Kii√

2π(z − µ)
exp

(

− (z − µ)2

2 miniKii

)

. (1.8)

This improves Borell’s inequality (1.3) asymptotically.
By using the techniques in our article, the density estimates in (1.5) allow us to obtain

a new lower bound result on Z’s left hand tail, and to improve the classical right-hand tail
result of (1.2). We have for the right-hand tail

E|Z| σ2
min

2 σ2
max

z

σ2
min + z2

exp

(

− z2

2 σ2
min

)

6 P
(

Z > z
)

6
E|Z| σ2

max

2 σ2
min

1

z
exp

(

− z2

2 σ2
max

)

(1.9)

if z > 0, and one notes that the above right-hand side goes (slightly) faster to zero than
(1.4), because of the presence of the factor z−1; yet the lower bound is less sharp than
(1.7) for large z. The first and last expressions in (1.9) are also lower and upper bounds
for the left-hand tail P

(

Z 6 −z
)

. To the best of our knowledge, the lower bound is new;
the upper bound is less sharp than (1.8) for large z.
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Let us now cite some works which are related to ours, insofar as some of the pre-
occupations and techniques are similar. In [6], Houdré and Privault prove concentration
inequalities for functionals of Wiener and Poisson spaces: they have discovered almost-sure
conditions on expressions involving Malliavin derivatives which guarantee upper bounds
on the tails of their functionals. This is similar to the upper bound portion of our work
in Section 4, and closer yet to the first-chaos portion of the work in [15]; they do not,
however, address lower bound issues, nor do they have any claims regarding densities.

Decreusefond and Nualart [5] obtain, by means of the Malliavin calculus, estimates for
the Laplace transform of the hitting times of any general Gaussian process; they define
a monotonicity condition on the covariance function of such a process under which this
Laplace transform is bounded above by that of standard Brownian motion; similarly to how
we derive upper tail estimates of Gaussian type from our analysis, they derive the finiteness
of some moments by comparison to the Brownian case. However, as in [6], reference [5]
does not address issues of densities or of lower bounds.

General lower bound results on densities are few and far between. The case of uniformly
elliptic diffusions was treated in a series of papers by Kusuoka and Stroock: see [9]. This
was generalized by Kohatsu-Higa [8] in Wiener space via the concept of uniformly elliptic
random variables; these random variables proved to be well-adapted to studying diffusion
equations. E. Nualart [13] showed that fractional exponential moments for a divergence-
integral quantity known to be useful for bounding densities from above (see formula (1.10)
below), can also be useful for deriving a scale of exponential lower bounds on densities;
the scale includes Gaussian lower bounds. However, in all these works, the applications
are largely restricted to diffusions.

We now introduce our general setting which will allow to prove (1.5)-(1.6) and several
other results. We consider a centered isonormal Gaussian process X = {X(h) : h ∈ H}
defined on a real separable Hilbert space H. This just means that X is a collection of
centered and jointly Gaussian random variables indexed by the elements of H, defined on
some probability space (Ω,F , P ) and such that, for every h, g ∈ H,

E
(

X(h)X(g)
)

= 〈h, g〉H.

As usual in Malliavin calculus, we use the following notation (see Section 2 for precise
definitions):

• L2(Ω,F , P ) is the space of square-integrable functionals of X. This means in par-
ticular that F is the σ-field generated by X;

• D
1,2 is the domain of the Malliavin derivative operator D with respect to X. Roughly

speaking, it is the subset of random variables in L2(Ω,F , P ) whose Malliavin deriva-
tive is also in L2(Ω,F , P );

• Domδ is the domain of the divergence operator δ. This operator will really only
play a marginal role in our study; it is simply used in order to simplify some proof
arguments, and for comparison purposes.
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From now on, Z will always denote a random variable of D
1,2 with zero mean. Recall

that its derivative DZ is a random element with values in H. The following result on the
density of a random variable is a well-known fact of the Malliavin calculus: if DZ/‖DZ‖2

H

belongs to Domδ, then Z has a continuous and bounded density ρ given, for all z ∈ R, by

ρ(z) = E

[

1(z,+∞](Z) δ

(

DZ

‖DZ‖2
H

)]

. (1.10)

From this expression, it is sometimes possible to deduce upper bounds for ρ. Several
examples are detailed in Section 2.1.1 of Nualart’s book [12]. Note the following two
points, however: (a) it is not clear whether it is at all possible to prove (1.5) by using
(1.10); (b) more generally it appears to be just as difficult to deduce any lower -bound
relations on the density ρ of any random variable via (1.10).

Herein we prove a new general formula for ρ, from which we easily deduce (1.5) for
instance. For Z a mean-zero r.v. in D

1,2, define the function g : R → R almost everywhere
by

g(z) = gZ(z) := E
(

〈DZ,−DL−1Z〉H
∣

∣Z = z
)

. (1.11)

The L appearing here is the so-called generator of the Ornstein-Uhlenbeck semigroup,
defined in the next section. We drop the subscript Z from gZ in this article, since each
example herein refers to only one r.v. Z at a time. By [11, Proposition 3.9], g is non-
negative on the support of Z. Under some general conditions on Z (see Theorem 3.1 for a
precise statement), the density ρ of Z is given by the following new formula, for any z in
Z’s support:

P (Z ∈ dz) = ρ(z)dz =
E|Z|
2g(z)

exp

(

−
∫ z

0

x dx

g(x)

)

dz. (1.12)

The key point in our approach is that it is possible, in many cases, to estimate the
quantity g(z) in (1.11) rather precisely. In particular, we will make systematic use of the
following consequence of the Mehler formula (see Remark 3.6 in [11]), also proved herein
(Proposition 3.5):

g(z) =

∫ ∞

0

e−u E
(

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H|Z = z
)

du.

In this formula, the mapping ΦZ : R
H → H is defined P ◦X−1-almost surely through the

identity DZ = ΦZ(X), while X ′, which stands for an independent copy of X, is such that
X and X ′ are defined on the product probability space (Ω×Ω′,F ⊗F ′, P ×P ′); E denotes
the mathematical expectation with respect to P × P ′. This formula for g then allows, in
many cases, to obtain via (1.12) a lower and an upper bound on ρ simultaneously. We
refer the reader to Corollary 3.6 and the examples in Section 3, and in particular to the
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second and fourth examples, which are the proofs of Proposition 1.1 and Proposition 1.2
respectively. At this stage, let us note however that it is not possible to obtain only a lower
bound, or only an upper bound, using formula (1.12). Indeed, one can see that one needs
to control g simultaneously from above and below to get the technique to work.

In the second main part of the paper (Section 4), we explain what can be done when one
only knows how to bound g from one direction or the other, but not both simultaneously.
Note that one is precisely in this situation when one seeks to prove the inequalities (1.2) and
(1.3). These will be a simple consequence of a more general upper bound result (Theorem
4.1) in Section 4.

As another application of Theorem 4.1, the following result concerns a functional of
fractional Brownian motion.

Proposition 1.3 Let B = {Bt, t ∈ [0, T ]} be a fractional Brownian motion with Hurst
index H ∈ (0, 1). Then, denoting cH = H + 1/2, we have, for any z > 0:

P

(
∫ T

0

B2
udu > z + T 2H+1/(2cH)

)

6 exp

(

− c2H z2

2cHT 2H+1z + T 4H+2

)

.

Of course, the interest of this result lies in the fact that the exact distribution of
∫ T

0
B2

udu
is still an open problem when H 6= 1/2. With respect to the classical result by Borell [1]
(which would give a bound like exp(−Cz)), observe here that, as in Chatterjee [3], we get a
kind of “continuous” transition from Gaussian to exponential tails. The behavior for large
z is always of exponential type. At the end of this article, we take up the issue of finding
a lower bound which might be commensurate with the upper bound above; our Malliavin
calculus techniques fail here, but we are still able to derive an interesting result by hand,
see (4.28).

Section 4 also contains a lower bound result, Theorem 4.2, again based on the quantity
〈DZ,−DL−1Z〉H via the function g in (1.11). This quantity was introduced recently in
[11] for the purpose of using Stein’s method in order to show that the standard deviation
of 〈DZ,−DL−1Z〉H provides an error bound of the normal approximation of Z, see also
Remark 3.2 below. Here, in Theorem 4.2 and in Theorem 4.1 as a special case (α = 0
therein), g(Z) = E(〈DZ,−DL−1Z〉H|Z) can be instead assumed to be bounded either
above or below almost surely by a constant; this constant’s role is to be a measure of the
variance of Z, and more specifically to ensure that the tail of Z is bounded either above
or below by a normal tail with that constant as its variance. Our Section 4 can thus be
thought as a way to extend the phenomena described in [11] when comparison with the
normal distribution can only be expected to go one way. Theorem 4.2 shows that we may
have no control over how heavy the tail of Z may be (beyond the existence of a second
moment), but the condition g(Z) > σ2 > 0 essentially guarantees that it has to be no less
heavy than a Gaussian tail with variance σ2.

We finish this description of our results by stressing again that, whether in Sections 3 or
4, we present many examples where the quantities 〈DZ,−DL−1Z〉H and 〈ΦZ(X),ΦZ(e−uX+
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√
1 − e−2uX ′)〉H are computed and estimated easily, by hand and/or via Proposition 3.5.

The advantage over formulas such as (1.10), which involve the unwieldy divergence operator
δ, should be clear.

The rest of the paper is organized as follows. In Section 2, we recall the notions of
Malliavin calculus that we need in order to perform our proofs. In Section 3, we state
and discuss our density estimates. Section 4 deals with concentration inequalities, i.e. tail
estimates.

2 Some elements of Malliavin calculus

We follow Nualart’s book [12]. As stated in the introduction, we denote by X a centered
isonormal Gaussian process over a real separable Hilbert space H. Let F be the σ-field
generated by X. It is well-known that any random variable Z belonging to L2(Ω,F , P )
admits the following chaos expansion:

Z =
∞
∑

m=0

Im(fm), (2.13)

where I0(f0) = E(Z), the series converges in L2(Ω) and the kernels fm ∈ H⊙m, m >

1, are uniquely determined by Z. In the particular case where H = L2(A,A , µ), for
(A,A ) a measurable space and µ a σ-finite and non-atomic measure, one has that H⊙m =
L2

s(A
m,A ⊗m, µ⊗m) is the space of symmetric and square integrable functions on Am and,

for every f ∈ H⊙m, Im(f) coincides with the multiple Wiener-Itô integral of order m of f
with respect to X. For every m > 0, we write Jm to indicate the orthogonal projection
operator on the mth Wiener chaos associated with X. That is, if Z ∈ L2(Ω,F , P ) is as in
(2.13), then JmF = Im(fm) for every m > 0.

Let S be the set of all smooth cylindrical random variables of the form

Z = g
(

X(φ1), . . . , X(φn)
)

where n > 1, g : R
n → R is a smooth function with compact support and φi ∈ H. The

Malliavin derivative of Z with respect to X is the element of L2(Ω,H) defined as

DZ =
n
∑

i=1

∂g

∂xi

(

X(φ1), . . . , X(φn)
)

φi.

In particular, DX(h) = h for every h ∈ H. By iteration, one can define the mth derivative
DmZ (which is an element of L2(Ω,H⊙m)) for every m > 2. As usual, for m > 1, D

m,2

denotes the closure of S with respect to the norm ‖ · ‖m,2, defined by the relation

‖Z‖2
m,2 = E(Z2) +

m
∑

i=1

E
(

‖DiZ‖2
H⊗i

)

.
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Note that a random variable Z as in (2.13) is in D
1,2 if and only if

∞
∑

m=1

mm! ‖fm‖2
H⊗m <∞,

and, in this case, E
(

‖DZ‖2
H

)

=
∑

m>1mm! ‖fm‖2
H⊗m. If H = L2(A,A , µ) (with µ non-

atomic), then the derivative of a random variable Z as in (2.13) can be identified with the
element of L2(A× Ω) given by

DaZ =
∞
∑

m=1

mIm−1

(

fm(·, a)
)

, a ∈ A.

The Malliavin derivative D satisfies the following chain rule. If ϕ : R
n → R is of class

C 1 with bounded derivatives, and if {Zi}i=1,...,n is a vector of elements of D
1,2, then

ϕ(Z1, . . . , Zn) ∈ D
1,2 and

Dϕ(Z1, . . . , Zn) =

n
∑

i=1

∂ϕ

∂xi
(Z1, . . . , Zn)DZi. (2.14)

Formula (2.14) still holds when ϕ is only Lipshitz but the law of (Z1, . . . , Zn) has a density
with respect to the Lebesgue measure on R

n (see e.g. Proposition 1.2.3 in [12]).
We denote by δ the adjoint of the operator D, also called the divergence operator. A

random element u ∈ L2(Ω,H) belongs to the domain of δ, denoted by Domδ, if and only if
it satisfies

∣

∣E〈DZ, u〉H
∣

∣ 6 cuE(Z2)1/2 for any Z ∈ S ,

where cu is a constant depending only on u. If u ∈ Domδ, then the random variable δ(u)
is uniquely defined by the duality relationship

E(Zδ(u)) = E〈DZ, u〉H, (2.15)

which holds for every Z ∈ D
1,2.

The operator L is defined through the projection operators as L =
∑∞

m=0 −mJm, and is
called the generator of the Ornstein-Uhlenbeck semigroup. It satisfies the following crucial
property. A random variable Z is an element of DomL (= D

2,2) if and only if Z ∈ DomδD
(i.e. Z ∈ D

1,2 and DZ ∈ Domδ), and in this case:

δDZ = −LZ. (2.16)

We also define the operator L−1, which is the inverse of L, as follows. For every Z ∈
L2(Ω,F , P ), we set L−1Z =

∑

m>1 − 1
m
Jm(Z). Note that L−1 is an operator with values

in D
2,2, and that LL−1Z = Z − E(Z) for any Z ∈ L2(Ω,F , P ), so that L−1 does act as

L’s inverse for centered r.v.’s.
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The family (Tu, u > 0) of operators is defined as Tu =
∑∞

m=0 e
−muJm, and is called

the Orstein-Uhlenbeck semigroup. Assume that the process X ′, which stands for an inde-
pendent copy of X, is such that X and X ′ are defined on the product probability space
(Ω×Ω′,F ⊗F ′, P ×P ′). Given a random variable Z ∈ D

1,2, we can write DZ = ΦZ(X),
where ΦZ is a measurable mapping from R

H to H, determined P ◦X−1-almost surely. Then,
for any u > 0, we have the so-called Mehler formula:

Tu(DZ) = E ′
(

ΦZ(e−uX +
√

1 − e−2uX ′)
)

, (2.17)

where E ′ denotes the mathematical expectation with respect to the probability P ′.

3 Density estimates

For Z ∈ D
1,2 with zero mean, recall the function g introduced in the introduction in (1.11):

g(z) = E(〈DZ,−DL−1Z〉H|Z = z).

It is useful to keep in mind throughout this paper that, by [11, Proposition 3.9], g(z) > 0
on the support of Z. In this section, we further assume that g is bounded away from 0.

3.1 General formulae and estimates

We begin with the following theorem, which will be key in the sequel.

Theorem 3.1 Let Z ∈ D
1,2 with zero mean, and g as above. Assume that there exists

σmin > 0 such that

g(Z) > σ2
min almost surely. (3.18)

Then Z has a density ρ, its support is R and we have, almost everywhere:

ρ(z) =
E |Z|
2g(z)

exp

(

−
∫ z

0

x dx

g(x)

)

. (3.19)

Proof. We split the proof into several steps.

Step 1: An integration by parts formula. For any f : R → R of class C 1 with bounded
derivative, we have

E
(

Zf(Z)
)

= E
(

LL−1Zf(Z)
)

= E
(

δD(−L−1Z)f(Z)
)

by (2.16)

= E
(

〈Df(Z),−DL−1Z〉H
)

by (2.15)

= E
(

f ′(Z)〈DZ,−DL−1Z〉H
)

by (2.14). (3.20)
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Step 2: Existence of the density. Fix a < b in R. For any ε > 0, consider a C ∞-function
ϕε : R → [0, 1] such that ϕε(z) = 1 if z ∈ [a, b] and ϕε(z) = 0 if z < a− ε or z > b+ ε. We
set ψε(z) =

∫ z

−∞
ϕε(y)dy for any z ∈ R. Then, we can write

P (a 6 Z 6 b) = E
(

1[a,b](Z)
)

6 σ−2
minE

(

1[a,b](Z)E(〈DZ,−DL−1Z〉H|Z)
)

by assumption (3.18)

= σ−2
minE

(

1[a,b](Z)〈DZ,−DL−1Z〉H
)

= σ−2
minE

(

lim inf
ε→0

ϕε(Z)〈DZ,−DL−1Z〉H
)

6 σ−2
min lim inf

ε→0
E
(

ϕε(Z)〈DZ,−DL−1Z〉H
)

by Fatou’s inequality

= σ−2
min lim inf

ε→0
E
(

ψε(Z)Z
)

by (3.20)

= σ−2
minE

(

Z

∫ Z

−∞

1[a,b](u)du

)

by bounded convergence

= σ−2
min

∫ b

a

E
(

Z1[u,+∞)(Z)
)

du 6 (b− a) × σ−2
minE|Z|.

This implies the absolute continuity of Z, that is the existence of ρ.

Step 3: A key formula. Let f : R → R be a continuous function with compact support,
and F denote any antiderivative of f . Note that F is bounded. We have

E
(

f(Z)〈DZ,−DL−1Z〉H
)

= E
(

F (Z)Z
)

by (3.20)

=

∫

R

F (z) z ρ(z)dz

=
(∗)

∫

R

f(z)

(
∫ ∞

z

yρ(y)dy

)

dz

= E

(

f(Z)

∫∞

Z
yρ(y)dy

ρ(Z)

)

.

Equality (*) was obtained by integrating by parts, after observing that
∫ ∞

z

yρ(y)dy −→ 0 as |z| → ∞

(for z → +∞, this is because Z ∈ L1(Ω); for z → −∞, this is because Z has mean zero).
Therefore, we have shown

g(Z) = E(〈DZ,−DL−1Z〉H|Z) =

∫∞

Z
yρ(y)dy

ρ(Z)
almost surely. (3.21)

Step 4: The support of ρ. Since Z ∈ D
1,2, it is known (see e.g. [12, Proposition 2.1.7])

that Suppρ = [α, β] with −∞ 6 α < β 6 +∞. Since Z has zero mean, note that α < 0
and β > 0 necessarily. Identity (3.21) yields

∫ ∞

z

yρ (y)dy > σ2
min ρ (z) for almost all z ∈ (α, β). (3.22)

10



For every z ∈ (α, β), define ϕ (z) :=
∫∞

z
yρ (y)dy. This function is differentiable almost

everywhere on (α, β), and its derivative is −zρ (z). In particular, since ϕ(α) = ϕ(β) = 0,
we have that ϕ(z) > 0 for all z ∈ (α, β). On the other hand, when multiplied by z ∈ [0, β),

the inequality (3.22) gives ϕ′(z)
ϕ(z)

> − z
σ2
min

. Integrating this relation over the interval [0, z]

yields logϕ (z) − logϕ (0) > − z2

2 σ2
min

, i.e., since 0 = E(Z) = E(Z+) − E(Z−) so that

E|Z| = E(Z+) + E(Z−) = 2E(Z+) = 2ϕ(0), we have

ϕ (z) =

∫ ∞

z

yρ (y) dy >
1

2
E|Z|e−

z2

2 σ2
min . (3.23)

Similarly, when multiplied by z ∈ (α, 0], inequality (3.22) gives ϕ′(z)
ϕ(z)

6 − z
σ2
min
. Integrating

this relation over the interval [z, 0] yields logϕ (0)− logϕ (z) 6
z2

2 σ2
min

, i.e. (3.23) still holds

for z ∈ (α, 0]. Now, let us prove that β = +∞. If this were not the case, by definition, we
would have ϕ (β) = 0; on the other hand, by letting z tend to β in the above inequality,

because ϕ is continuous, we would have ϕ (β) >
1
2
E|Z|e−

β2

2σ2
min > 0, which contradicts

β < +∞. The proof of α = −∞ is similar. In conclusion, we have shown that suppρ = R.

Step 5: Proof of (3.19). Let ϕ : R → R be still defined by ϕ(z) =
∫∞

z
yρ(y)dy. On

one hand, we have ϕ′(z) = −zρ(z) for almost all z ∈ R. On the other hand, by (3.21), we
have, for almost all z ∈ R,

ϕ(z) = ρ(z)g(z). (3.24)

By putting these two facts together, we get the following ordinary differential equation
satisfied by ϕ:

ϕ′(z)

ϕ(z)
= − z

g(z)
for almost all z ∈ R.

Integrating this relation over the interval [0, z] yields

logϕ(z) = logϕ(0) −
∫ z

0

x dx

g(x)
.

Taking the exponential and using the fact that ϕ(0) = 1
2
E|Z|, we get

ϕ(z) =
1

2
E|Z| exp

(

−
∫ z

0

x dx

g(x)

)

.

Finally, the desired conclusion comes from (3.24).
2
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Remark 3.2 The “integration by parts formula” (3.20) was proved and used for the first
time by Nourdin and Peccati in [11], in order to perform error bounds in the normal
approximation of Z. Specifically, [11] shows, by combining Stein’s method with (3.20), that

sup
z∈R

∣

∣P (Z 6 z) − P (N 6 z)
∣

∣ 6

√

Var
(

E(〈DZ,−DL−1Z〉H|Z)
)

Var(Z)
, (3.25)

where N ∼ N (0,VarZ). In reality, the inequality stated in [11] is with Var
(

〈DZ,−DL−1Z〉H
)

instead of Var
(

E(〈DZ,−DL−1Z〉H|Z)
)

on the right-hand side; but the same proof allows
to write this slight improvement; it was not stated or used in [11] because it did not improve
the applications therein.

Using Theorem 3.1, we can deduce the following interesting criterion for normality,
which one will compare with (3.25).

Corollary 3.3 Let Z ∈ D
1,2; let g(Z) = E(〈DZ,−DL−1Z〉H|Z). Then Z is Gaussian if

and only if Var(g(Z)) = 0.

Proof : We can assume without loss of generality that Z is centered. By (3.20) (choose
f(z) = z), we have

E(〈DZ,−DL−1Z〉H) = E(Z2) = VarZ.

Therefore, the condition Var(g(Z)) = 0 is equivalent to

g(Z) = VarZ almost surely.

Let Z ∼ N (0, σ2). Using (3.21), we immediately check that g(Z) = σ2 almost surely.
Conversely, if g(Z) = σ2 almost surely, then Theorem 3.1 implies that Z has a density ρ

given by ρ(z) = E|Z|
2σ2 e

− z2

2 σ2 for almost all z ∈ R, from which we immediately deduce that
Z ∼ N (0, σ2).

2

Observe that if Z ∼ N (0, σ2), then E|Z| =
√

2/π σ, so that the formula (3.19) for ρ
agrees, of course, with the usual one in this case.

Depending on the situation, g(Z) may be computable or may be estimated by hand.
We cite the next corollary for situations where this is the case. However, with the exception
of this corollary, the remainder of this section, starting with Proposition 3.5, provides a
systematic computational technique to deal with g(Z).

Corollary 3.4 Let Z ∈ D
1,2 with zero mean and g(Z) := E(〈DZ,−DL−1Z〉H|Z). If there

exists σmin, σmax > 0 such that

σ2
min 6 g(Z) 6 σ2

max almost surely,

12



then Z has a density ρ satisfying, for almost all z ∈ R

E|Z|
2 σ2

min

exp

(

− z2

2σ2
max

)

6 ρ(z) 6
E|Z|
2 σ2

max

exp

(

− z2

2σ2
min

)

.

Proof : One only needs to apply Theorem 3.1.
2

3.2 Computations and examples

We now show how to compute g(Z) := E(〈DZ,−DL−1Z〉H|Z) in practice. We then provide
several examples using this computation.

Proposition 3.5 Write DZ = ΦZ(X) with a measurable function ΦZ : R
H → H. We

have

g(Z) =

∫ ∞

0

e−u E
(

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H|Z
)

du,

where X ′ stands for an independent copy of X, and is such that X and X ′ are defined on
the product probability space (Ω × Ω′,F ⊗ F ′, P × P ′). Here E denotes the mathematical
expectation with respect to P × P ′.

Proof : We follow the arguments contained in Nourdin and Peccati [11, Remark 3.6].
Without loss of generality, we can assume that H = L2(A,A , µ) where (A,A ) is a measur-
able space and µ is a σ-finite measure without atoms. Let us consider the chaos expansion
of Z, given by Z =

∑∞
m=1 Im(fm), with fm ∈ H⊙m. Therefore −L−1Z =

∑∞
m=1

1
m
Im(fm)

and

−DaL
−1Z =

∞
∑

m=1

Im−1(fm(·, a)), a ∈ A.

On the other hand, we have DaZ =
∑∞

m=1mIm−1(fm(·, a)). Thus

∫ ∞

0

e−uTu(DaZ)du =

∫ ∞

0

e−u

(

∞
∑

m=1

me−(m−1)uIm−1(fm(·, a))
)

du

=

∞
∑

m=1

Im−1(fm(·, a)).

Consequently,

−DL−1Z =

∫ ∞

0

e−uTu(DZ)du.

By Mehler’s formula (2.17), and since DZ = ΦZ(X) by assumption, we deduce that

−DL−1Z =

∫ ∞

0

e−uE ′
(

ΦZ(e−uX +
√

1 − e−2uX ′)
)

du.

Using E(E ′(. . .)|Z) = E(. . . |Z), the desired conclusion follows.
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2

By combining (3.19) with Proposition 3.5, we get the formula (1.12) given in the intro-
duction, more precisely:

Corollary 3.6 Let Z ∈ D
1,2 be centered, and let ΦZ : R

H → H be measurable and such
that DZ = ΦZ(X). Assume that condition (3.18) holds. Then Z has a density ρ given,
for almost all z ∈ R, by

ρ(z) =
E|Z|

2
∫∞

0
e−u E

(

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H|Z = z
)

du

× exp

(

−
∫ z

0

x dx
∫∞

0
e−u E

(

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H|Z = x
)

du

)

.

Now, we give several examples of application of this corollary.

3.2.1 First example: monotone Gaussian functional, finite case.

Let N ∼ Nn(0, K) with K ∈ S +
n (R), and f : R

n → R be a C 1 function having bounded
derivatives. We assume, without loss of generality, that each Ni has the form X(hi), for
a certain centered isonormal process X (over some Hilbert space H) and certain functions
hi ∈ H. Set Z = f(N) − E(f(N)). The chain rule (2.14) implies that Z ∈ D

1,2 and that
DZ = ΦZ(N) =

∑n
i=1

∂f
∂xi

(N)hi. Therefore

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H =
n
∑

i,j=1

Kij
∂f

∂xi
(N)

∂f

∂xj
(e−uN +

√
1 − e−2uN ′).

(Compare with Lemma 5.3 in Chatterjee [4]). In particular, Corollary 3.6 yields the fol-
lowing.

Proposition 3.7 Let N ∼ Nn(0, K) with K ∈ S +
n (R), and f : R

n → R be a C 1 function
with bounded derivatives. If there exist αi, βi > 0 such that αi 6

∂f
∂xi

(x) 6 βi for any

i ∈ {1, . . . , n} and x ∈ R
n, if Kij > 0 for any i, j ∈ {1, . . . , n} and if

∑n
i,j=1 αiαjKij > 0,

then Z = f(N) − E(f(N)) has a density ρ satisfying, for almost all z ∈ R,

E|Z|
2
∑n

i,j=1 βiβjKij

exp

(

− z2

2
∑n

i,j=1 αiαjKij

)

6 ρ(z) 6
E|Z|

2
∑n

i,j=1 αiαjKij

exp

(

− z2

2
∑n

i,j=1 βiβjKij

)

.
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3.2.2 Second example: proof of Proposition 1.1.

Let N ∼ Nn(0, K) with K ∈ S +
n (R). Once again, we assume that each Ni has the form

X(hi), for a certain centered isonormal process X (over some Hilbert space H) and certain
functions hi ∈ H. Let Z = maxNi − E(maxNi), and set

Iu = argmax16i6n(e−uX(hi) +
√

1 − e−2uX ′(hi)) for u > 0.

Lemma 3.8 For any u > 0, Iu is a well-defined random element of {1, . . . , n}. Moreover,
Z ∈ D

1,2 and we have DZ = ΦZ(N) = hI0.

Proof : Fix u > 0. Since, for any i 6= j, we have

P
(

e−uX(hi) +
√

1 − e−2uX ′(hi) = e−uX(hj) +
√

1 − e−2uX ′(hj)
)

= P
(

X(hi) = X(hj)
)

= 0,

the random variable Iu is a well-defined element of {1, . . . , n}. Now, if ∆i denotes the set
{x ∈ R

n : xj 6 xi for all j}, observe that ∂
∂xi

max = 1∆i
almost everywhere. The desired

conclusion follows from the Lipshitz version of the chain rule (2.14), and the following
Lipshitz property of the max function, which is easily proved by induction on n > 1:

∣

∣max(y1, . . . , yn) − max(x1, . . . , xn)
∣

∣ 6

n
∑

i=1

|yi − xi| for any x, y ∈ R
n. (3.26)

2

In particular, we deduce from Lemma 3.8 that

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H = KI0,Iu
. (3.27)

By combining this fact with Corollary 3.6, we get Proposition 1.1, which we restate.

Proposition 3.9 Let N ∼ Nn(0, K) with K ∈ S +
n (R). If there exists σmin, σmax > 0 such

that σ2
min 6 Kij 6 σ2

max for any i, j ∈ {1, . . . , n}, then Z = maxNi − E(maxNi) has a
density ρ satisfying (1.5) for almost all z ∈ R.

3.2.3 Third example: monotone Gaussian functional, continuous case.

Assume that X = (Xt, t ∈ [0, T ]) is a centered Gaussian process with continuous paths,

and that f : R → R is C 1 with a bounded derivative. Consider Z =
∫ T

0
f(Xv)dv −

E
(

∫ T

0
f(Xv)dv

)

. Then Z ∈ D
1,2 and we have DZ = ΦZ(X) =

∫ T

0
f ′(Xv)1[0,v]dv. There-

fore

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H

=

∫∫

[0,T ]2
f ′(Xv)f

′(e−uXw +
√

1 − e−2uX ′
w)E(XvXw)dvdw.

Using Corollary 3.6, we get the following.
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Proposition 3.10 Assume that X = (Xt, t ∈ [0, T ]) is a centered Gaussian process with
continuous paths, and that f : R → R is C 1. If there exists α, β, σmin, σmax > 0 such that
α 6 f ′(x) 6 β for all x ∈ R and σ2

min 6 E(XvXw) 6 σ2
max for all v, w ∈ [0, T ], then

Z =
∫ T

0
f(Xv)dv − E

(

∫ T

0
f(Xv)dv

)

has a density ρ satisfying, for almost all z ∈ R,

E|Z|
2β2 σ2

max T
2
e
− z2

2α2 σ2
min

T2
6 ρ(z) 6

E|Z|
2α2 σ2

min T
2
e
− z2

2β2 σ2
maxT2 .

3.2.4 Fourth example: supremum of a Gaussian process

Fix a < b, and assume that X = (Xt, t ∈ [a, b]) is a centered Gaussian process with
continuous paths and such that E|Xt − Xs|2 6= 0 for all s 6= t. Set Z = sup[a,b]X −
E(sup[a,b]X), and let τu be the (unique) random point where e−uX +

√
1 − e−2uX ′ attains

its maximum on [a, b]. Note that τu is well-defined, see e.g. Lemma 2.6 in [7]. Moreover,
we have that Z ∈ D

1,2, see Proposition 2.1.10 in [12], and DZ = ΦZ(X) = 1[0,τ0], see
Lemma 3.1 in [5]. Therefore

〈ΦZ(X),ΦZ(e−uX +
√

1 − e−2uX ′)〉H = R(τ0, τu)

where R(s, t) = E(XsXt) is the covariance function ofX. Using Corollary 3.6, the following
obtains.

Proposition 3.11 Let X = (Xt, t ∈ [a, b]) be a centered Gaussian process with continuous
paths, and such that E|Xt−Xs|2 6= 0 for all s 6= t. Assume that, for some real σmin, σmax >
0, we have σ2

min 6 E(XsXt) 6 σ2
max for any s, t ∈ [a, b]. Then, Z = sup[a,b]X−E(sup[a,b]X)

has a density ρ satisfying, for almost all z ∈ R,

E|Z|
2σ2

max

e
− z2

2 σ2
min 6 ρ(z) 6

E|Z|
2σ2

min

e
− z2

2 σ2
max .

To the best of our knowledge, Proposition 3.11, as well as Proposition 3.9, contain the
first bounds ever established for the density of the supremum of a general Gaussian pro-
cess. When integrated over z, the upper bound above improves the classical concentration
inequalities (1.2), (1.3), (1.4) on the tail of Z, see e.g. the upper bound in (1.9); the lower
bound for the left-hand tail of Z which one obtains by integration, appears to be entirely
new. When applied to the case of fractional Brownian motion, we get the following.

Corollary 3.12 Let b > a > 0, and B = (Bt, t > 0) be a fractional Brownian motion with
Hurst index H ∈ [1/2, 1). Then the random variable Z = sup[a,b]B − E

(

sup[a,b]B
)

has a
density ρ satisfying (1.6) for almost all z ∈ R.

Proof : For any choice of the Hurst parameter H ∈ (1/2, 1), the Gaussian space gener-
ated by B can be identified with an isonormal Gaussian process of the type X = {X(h) :
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h ∈ H}, where the real and separable Hilbert space H is defined as follows: (i) denote by
E the set of all R-valued step functions on R+, (ii) define H as the Hilbert space obtained
by closing E with respect to the scalar product

〈

1[0,t], 1[0,s]

〉

H
= E(BtBs) =

1

2

(

t2H + s2H − |t− s|2H
)

.

In particular, with such a notation, one has that Bt = X(1[0,t]). The reader is referred e.g.
to [12] for more details on fractional Brownian motion.

Now, the desired conclusion is a direct application of Proposition 3.11 since, for all
a 6 s < t 6 b,

E(BsBt) 6
√

E(B2
s )
√

E(B2
t ) = (st)H

6 b2H

and

E(BsBt) =
1

2

(

t2H + s2H − (t− s)2H
)

= H(2H − 1)

∫∫

[0,s]×[0,t]

|v − u|2H−2dudv

> H(2H − 1)

∫∫

[0,a]×[0,a]

|v − u|2H−2dudv = E(B2
a) = a2H .

2

4 Concentration inequalities

Now, we investigate what can be said when g(Z) = E(〈DZ,−DL−1Z〉H|Z) just admits
a lower (resp. upper) bound. Results under such hypotheses are more difficult to obtain
than in the previous section, since there we could use bounds on g(Z) in both directions to
good effect; this is apparent, for instance, in the appearance of both the lower and upper
bounding values σmin and σmax in each of the two bound in (1.5), or more generally in
Corollary 3.4. However, given our previous work, tails bounds can be readily obtained:
most of the analysis of the role of g(Z) in tail estimates is already contained in the proof
of Theorem 3.1.

4.1 Upper bounds

Our first result allows comparisons both to the Gaussian and exponential tails.

Theorem 4.1 Let Z ∈ D
1,2 with zero mean, g(Z) = E(〈DZ,−DL−1Z〉H|Z), and fix α > 0

and β > 0. Assume that

(i) g(Z) 6 αZ + β almost surely;
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(ii) Z has a density ρ.

Then, for all z > 0, we have

P (Z > z) 6 exp

(

− z2

2αz + 2β

)

.

Proof : We follow the same line of reasoning as in [3, Theorem 1.5]. For any A > 0,
define mA : [0,+∞) → R by mA(θ) = E

(

eθZ1{Z6A}

)

. By Lebesgue differentiation theorem,
we have

m′
A(θ) = E(ZeθZ1{Z6A}) for all θ > 0.

Therefore, we can write

m′
A(θ) =

∫ A

−∞

z eθz ρ(z)dz

= −eθA

∫ ∞

A

yρ(y)dy + θ

∫ A

−∞

eθz

(
∫ ∞

z

yρ(y)dy

)

dz by integration by parts

6 θ

∫ A

−∞

eθz

(
∫ ∞

z

yρ(y)dy

)

dz since
∫∞

A
yρ(y)dy > 0

= θE
(

g(Z) eθZ 1{Z6A}

)

,

where the last line follows from identity (3.21). Due to the assumption (i), we get

m′
A(θ) 6 θ αm′

A(θ) + θ β mA(θ),

that is, for any θ ∈ (0, 1/α):

m′
A(θ)

mA(θ)
6

θβ

1 − θα
.

By integration and since mA(0) = P (Z 6 A) 6 1, this gives, for any θ ∈ (0, 1/α):

mA(θ) 6 exp

(
∫ θ

0

βu

1 − αu
du

)

6 exp

(

βθ2

2(1 − θα)

)

.

Using Fatou’s inequality (as A→ ∞) in the previous relation implies

E
(

eθZ
)

6 exp

(

βθ2

2(1 − θα)

)

for all θ ∈ (0, 1/α). Therefore, for all θ ∈ (0, 1/α), we have

P (Z > z) = P (eθZ
> eθz) 6 e−θzE

(

eθZ
)

6 exp

(

βθ2

2(1 − θα)
− θz

)

.

Choosing θ = z
αz+β

∈ (0, 1/α) gives the desired result.
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2

Let us give an example of application of Theorem 4.1. Assume that B = (Bt, t > 0) is
a fractional Brownian motion with Hurst index H ∈ (0, 1). For any choice of the parameter
H , as already mentioned in the proof of Corollary 3.12, the Gaussian space generated by
B can be identified with an isonormal Gaussian process of the type X = {X(h) : h ∈ H},
where the real and separable Hilbert space H is defined as follows: (i) denote by E the set
of all R-valued step functions on R+, (ii) define H as the Hilbert space obtained by closing
E with respect to the scalar product

〈

1[0,t], 1[0,s]

〉

H
= E(BtBs) =

1

2

(

t2H + s2H − |t− s|2H
)

.

In particular, with such a notation one has that Bt = X(1[0,t]). Now, let

Z = ZT :=

∫ T

0

B2
udu−

T 2H+1

2H + 1
.

By the scaling property of fractional Brownian motion, we see first that ZT has the same
distribution as T 2H+1Z1. Thus we choose T = 1 without loss of generality; we denote
Z = Z1. Now observe that Z ∈ D

1,2 lives in the second Wiener chaos of B. In particular,
we have −L−1Z = 1

2
Z. Moreover DZ = 2

∫ 1

0
Bu 1[0,u]du, so that

〈DZ,−DL−1Z〉H =
1

2
‖DZ‖2

H = 2

∫

[0,1]2
BuBv E(BuBv)dudv

6 2

∫

[0,1]2
|Bu| |Bv|

∣

∣E(BuBv)
∣

∣dudv

6 2

∫

[0,1]2
|Bu| |Bv| uHvHdudv = 2

(
∫ 1

0

|Bu|uHdu

)2

6 2

∫ 1

0

B2
udu×

∫ 1

0

u2Hdu =
1

H + 1/2

∫ 1

0

B2
udu

=
1

H + 1/2

(

Z +
1

2H + 1

)

.

Since it is easily shown that Z has a density, Theorem 4.1 implies the desired conclusion
in Proposition 1.3, or with cH = H + 1/2,

P (Z1 > z) 6 exp

(

− z2c2H
2cHz + 1

)

.

By scaling, this shows that the tail of ZT/T
2H+1 behaves asymptotically like that of an

exponential random variable with mean ν = (H/2 + 1/4)−1.
For the moment, it is not possible to use our tools to investigate a lower bound on

this tail, see the forthcoming Section 4.2. We have also investigated the possibility of us-
ing such tools as the formula (1.10), or the density lower bounds found in [13], thinking
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that a specific second-chaos situation might be tractable despite the reliance on the di-
vergence operator, but these tools seem even less appropriate. However, in this particular
instance, we can perform a calculation by hand, as follows. By Jensen’s inequality, with

µ = (2H + 1)−1, we have that Z + µ = Z1 + µ >

(

∫ 1

0
Budu

)2

. Thus

P
(

Z1 > z
)

> P

(

(
∫ 1

0

Budu

)2

> z + µ

)

= P

(
∣

∣

∣

∣

∫ 1

0

Budu

∣

∣

∣

∣

>
√
z + µ

)

.

Here of course, the random variable N =
∫ 1

0
Budu is centered Gaussian, and its variance

can be calculated by hand:

σ2 := E
(

N2
)

=

∫∫

[0,1]2
E (BuBv) dudv

=

∫ 1

0

dv

∫ v

0

du
(

u2H + v2H − (v − u)2H
)

=
1

2H + 2
.

Therefore, by the standard lower bound on the tail of a Gaussian r.v., that is
∫∞

z
e−y2/2dy >

z
1+z2e

−z2/2 for all z > 0, we get

P (Z1 > z) >
σ
√
z + µ

σ2 + z + µ
exp

(

−z + µ

2σ2

)

∼
z→∞

1√
z
√

2H + 2
exp

(

− H + 1

2H + 1

)

exp (− (H + 1) z) . (4.28)

Abusively ignoring the factor z−1/2 in this lower bound, we can summarize our results by
saying that ZT/T

2H+1 has a tail that is bounded above and below by exponential tails with
respective means (H/2 + 1/4)−1 and (H + 1)−1.

As another example, let us explain how Theorem 4.1 allows to easily recover both the
Borell-Sudakov-type inequalities (1.2) and (1.3), for Z defined as the centered supremum
of a Gaussian vector in (1.1). We can assume, without loss of generality, that each Ni has
the form X(hi), for a certain centered isonormal process X (over some Hilbert space H)
and certain functions hi ∈ H. Condition (ii) of Theorem 4.1 is easily satisfied while for
condition (i), we have, by combining (3.27) with Proposition 3.5:

〈DZ,−DL−1Z〉H =

∫ ∞

0

e−uKI0,Iu
du 6 max

16i,j6n
Kij = σ2

max (4.29)

so that

g(Z) 6 σ2
max almost surely.

In other words, condition (i) is satisfied with α = 0 and β = σ2
max. Therefore P (Z > z) 6

exp
(

− z2

2 σ2
max

)

, for all z > 0, and (1.2) is shown. The proof of (1.3) follows the same lines,

by considering −Z instead of Z.
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4.2 Lower bounds

We now investigate a lower bound analogue of Theorem 4.1. Recall we still use the notation
g(z) = E(〈DZ,−DL−1Z〉H|Z = z).

Theorem 4.2 Let Z ∈ D
1,2 with zero mean, and fix σmin, α > 0 and β > 1. Assume that

(i) g(Z) > σ2
min almost surely.

The existence of the density ρ of Z is thus ensured by Theorem 3.1. Also assume that

(ii) the function h (x) := x1+βρ (x) is decreasing on [α,+∞).

Then, for all z > α, we have

P (Z > z) >
1

2

(

1 − 1

β

)

E|Z| 1

z
exp

(

− z2

2 σ2
min

)

.

Alternately, instead of (ii), assume that there exists 0 < α < 2 such that

(ii)’ lim supz→∞ z−α log g(z) <∞.

Then, for any ε > 0, there exist K, z0 > 0 such that, for all z > z0,

P (Z > z) > K exp

(

− z2

(2 − ε) σ2
min

)

.

Proof : First, let us relate the function ϕ(z) =
∫∞

z
yρ(y)dy to the tail of Z. By integra-

tion by parts, we get

ϕ (z) = z P (Z > z) +

∫ ∞

z

P (Z > y)dy. (4.30)

If we assume (ii), since h is decreasing, for any y > z > α we have yρ(y)
zρ(z)

6

(

z
y

)β

. Then we

have, for any z > α:

P (Z > z) = zρ (z)

∫ ∞

z

1

y

yρ (y)

zρ (z)
dy 6 zρ (z) zβ

∫ ∞

z

dy

y1+β
=
zρ (z)

β
.

By putting that inequality into (4.30), we get

ϕ(z) 6 z P (Z > z) +
1

β

∫ ∞

z

yρ(y)dy = z P (Z > z) +
1

β
ϕ(z)

so that P (Z > z) >

(

1 − 1
β

)

ϕ(z)
z
. Combined with (3.23), this gives the desired conclusion.

21



Now assume (ii)′ instead. Here the proof needs to be modified. From the key result of
Theorem 3.1 and condition (i), we have

ρ(z) >
E|Z|
2 g(z)

exp

(

− z2

2 σ2
min

)

.

Let Ψ (z) denote the unnormalized Gaussian tail
∫∞

z
exp

(

− y2

2 σ2
min

)

dy. We can write, using

the Schwarz inequality,

Ψ2(z) =

(

∫ ∞

z

exp

(

− y2

2 σ2
min

)

√

g(y)
1

√

g(y)
dy

)2

6

∫ ∞

z

exp

(

− y2

2 σ2
min

)

g(y) dy ×
∫ ∞

z

exp

(

− y2

2 σ2
min

)

1

g(y)
dy

so that

P (Z > z) =

∫ ∞

z

ρ (y)dy

>
E |Z|

2

∫ ∞

z

e−y2/(2σ2
min) 1

g(y)
dy

>
E |Z|

2

Ψ2 (z)
∫∞

z
e−y2/(2σ2

min)g (y) dy
.

Using the classical inequality
∫∞

z
e−y2/2dy >

z
1+z2e

−z2/2, we get

P (Z > z) >
E|Z|

2

σ4
minz

2

(

σ2
min + z2

)2

exp
(

− z2

σ2
min

)

∫∞

z
exp

(

− y2

2σ2
min

)

g(y)dy
. (4.31)

Under condition (ii)′, we have that there exists c > 0 such that, for y large enough,
g(y) 6 ecyα

with 0 < α < 2. We leave it to the reader to check that the conclusion now
follows by an elementary calculation from (4.31).

2

Remark 4.3 1. Inequality (4.31) itself may be of independent interest, when the growth
of g can be controlled, but not as efficiently as in (ii)′.

2. Condition (ii) implies that Z has a moment of order greater than β. Therefore it
can be considered as a technical regularity and integrability condition. Condition (ii)′

may be easier to satisfy in cases where a good handle on g exists. Yet the use of
the Schwarz inequality in the above proof means that conditions (ii)′ is presumably
stronger than it needs to be.

22



3. In general, one can see that deriving lower bounds on tails of random variables with
little upper bound control is a difficult task, deserving of further study.

Acknowledgment: We are grateful to Paul Malliavin, David Nualart, and Giovanni
Peccati, for helpful comments.
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