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Symplectic inverse spectral theory for

pseudodifferential operators

Vũ Ngo.c San∗

June 2008

Abstract

We prove, under some generic assumptions, that the semiclassical
spectrum modulo O(~2) of a one dimensional pseudodifferential oper-
ator completely determines the symplectic geometry of the underlying
classical system. In particular, the spectrum determines the hamilto-
nian dynamics of the principal symbol.

1 Introduction

In this article I would like to advocate an inverse spectral theory for pseu-
dodifferential operators. What does this means ? One of the most famous
inverse spectral problems, made fashionable by Kac’s very entertaining arti-
cle [11], with a mind-catching title “Can one hear the shape of a drum ?”(1),
was about the Laplace operator on a bounded domain Ω ⊂ R

n. Frequencies
ν solutions to the eigenvalue problem

1

2
∆u = ν2u, u = 0 on ∂Ω

may be viewed as harmonics that can be heard when the interior of the
“membrane” Ω vibrates freely. The question was whether the knowledge
of all frequencies completely determines Ω (up to isometry, of course). As
Kac mentioned, this question appears naturally in the context of quantum
mechanics, for a particle trapped in a hard potential well. An important
observation in this paper was the relevance of the Weyl law, which let us

∗IRMAR (UMR 6625), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes
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(1)Kac attributes the problem to Bochner and the title to Bers.
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find the volume (or area when n = 2) of Ω from the asymptotic behaviour
of large eigenvalues.

Counterexamples are now known : there are non-isometric shapes in
R

2 that produce different frequencies [9]. Nonetheless, this fact should not
let us think that the problem has become obsolete. As far as I know, the
seemingly simple case of a convex, bounded domain Ω ∈ R

2 with analytic
boundary is still open (although by the time this article is published, it
might very well have been settled by Zelditch, see [22, 21]).

Understanding this problem requires putting it in a wider perspective. A
natural variant of Kac’s problem is whether the spectrum of the Laplace op-
erator ∆g on a compact riemannian manifold (M,g) determines the metric g.
Although, here again, counterexamples have been known for a long time [14],
our understanding remains relatively poor. Recent works by Zelditch and
Guillemin suggest that microlocal tools are quite relevant for all these ques-
tions. This, in turn, is a hint that more general operators than the Laplacian
could be dealt with similarly.

From a quantum mechanical viewpoint, Kac’s situation is quite extreme.
A more natural setting would involve a particle ‘trapped’ by a smooth poten-
tial well. No more boundary problems, but instead a Schrödinger operator
on R

n

P = −
~

2

2
∆ + V (x).

Of course now the potential function V should be recovered from the spec-
trum of P . This inverse spectral problem has been studied a lot, but only
very recently have microlocal tools similar to those used by Guillemin and
Zelditch been applied to it [10, 5].

Here, I would like to shift again the initial problem one step further away.
Instead of the Laplacian, or the Schrödinger operator, why not consider any
(elliptic) differential operator, or even, since we’re at it, any pseudodifferen-
tial operator ? Of course, since there is no domain Ω anymore, no potential
function V , the sensible question is what should we try to recover from the
spectrum ?

The inverse spectral problems I’ve mentioned here can all be understood
as semiclassical limits. From a quantum object, the spectrum, one wants to
recover classical observables such as the metric g, or the potential V . These
quantities, in turn, fully determine the classical dynamics of the system.
For general pseudodifferential operators, semiclassical analysis still shows
the strong relationship between the classical dynamics and the quantum
spectrum, so I believe that the most natural “object” that we should try
and recover from the spectrum is precisely this classical dynamics. This,
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precisely, amounts to determining the principal symbol of the operator. In
fact, if we keep in mind Weyl’s asymptotics, this sounds fairly natural, for it
is well known that Weyl’s asymptotics extend to arbitrary pseudodifferential
operators, provided that we compute phase space volumes defined by energy
ranges given by the principal symbol [15].

As in the riemannian case, one should take into account a symmetry
group acting on the classical data. For general pseudodifferential operators,
there’s only one available : the group of symplectomorphisms, acting on the
phase space M . This is a much bigger group than the group of riemannian
isometries, in accordance with the fact that the space of principal symbols
C∞(M) is much bigger than the space of riemannian metrics, or potential
functions.

2 The setting

Since we aim at recovering the classical dynamics from the spectrum, we
are going to work in the setting of semiclassical pseudodifferential opera-
tors, which we recall here. Throughout this work, we only consider the
one-dimensional theory. It would be very interesting to have higher dimen-
sional results, but it is not expected that such precise results would persist.
However, a reasonable challenge would be to undertake a similar study for
the completely integrable case.

The classes Ψd(m) of semiclassical pseudodifferential operators we use
are standard. Let M = T ∗

R = R
2
(x,ξ). Let d and m be real numbers. Let

Sd(m) be the set of all families (p(·; ~))~∈(0,1] of functions in C∞(M) such
that

∀α ∈ N
2,

∣

∣

∣∂α
(x,ξ)p(x, ξ; ~)

∣

∣

∣ 6 Cα~
d(1 + |x|2 + |ξ|2)

m

2 , (1)

for some constant Cα > 0, uniformly in ~. Then Ψd(m) is the set of all
(unbounded) linear operators P on L2(R) that are ~-Weyl quantisations of
symbols p ∈ Sd(m) :

(Pu)(x) = (Opw
~ (p)u)(x) =

1

2π~

∫

R2

e
i

~
〈x−y,ξ〉p(x+y

2 , ξ; ~)u(y) |dydξ| .

The number d in (1) is called the ~-order of the operator. Unless specified,
it will always be zero here. In this work all symbols are assumed to admit
a “classical” asymptotic expansions in integral powers of ~ (that is to say,
in the ladder (Sd(m))d∈Z,d>d0 for some d0 ∈ Z). The leading term in this
expansion is called the principal symbol of the operator.
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Thus, the Schrödinger operator P = −~2

2 ∆+V on R is a good candidate,
of ~-order zero, whenever V has at most a polynomial growth.

We use in this article the standard properties of such pseudodifferen-
tial operators. In particular the composition sends Ψd(m) × Ψd′(m′) to
Ψd+d′(m + m′). Moreover all P ∈ Ψ0(0) are bounded: L2(R) → L2(R),
uniformly for 0 < ~ 6 1.

An operator P ∈ Ψ(m) is said to be elliptic at infinity if there exists a
constant C > 0 such that the principal symbol p satisfies

|p(x, ξ)| >
1

C
(|x|2 + |ξ|2)m/2

for |x|2 + |ξ|2 > C.
If P has a real-valued Weyl symbol, then it is a symmetric operator

on L2 with domain C∞
0 (R). If furthermore the principal symbol is elliptic

at infinity, then P is essentially selfadjoint (see for instance [7, proposition
8.5]).

Finally, when P ∈ Ψ0(m) is selfadjoint and elliptic at infinity, then for
any f ∈ C∞

0 (R), the operator f(P ) defined by functional calculus satisfies
f(P ) ∈ ∩k∈N(Ψ0(−km)). See for instance [7] or [16] for details.

The advantage of the semiclassical theory is that it allows us to use
richer versions of Weyl’s asymptotics. Instead of considering the limit of
large eigenvalues, we fix a bounded spectral window I = [E0, E1] ⊂ R and
study the asymptotics of all eigenvalues in I, as ~ → 0.

Definition 2.1 We say that Assumption A(P,J , I) holds whenever

1. P is a selfadjoint pseudodifferential operator in Ψ0(m) with principal
symbol p, elliptic at infinity.

2. J ⊂ [0, 1] is an infinite subset with zero as an accumulation point.

3. There exists a neighbourhood J of I such that p−1(J) is compact in
M .

If Assumption A(P,J , I) holds, we denote by Σ~(P, I) the spectrum of
P = P (~) in I (including multiplicities). We denote by Σ(P,J , I) the
family of all {Σ~(P, I); ~ ∈ J }. It is well known that Σ~(P, I) is discrete
for ~ small enough (see eg. [16, Théorème 3.13], in a slightly different setup).
Notice that when m > 0, the properness condition 3. is always satisfied.

Proposition 2.2 Let P be a selfadjoint pseudodifferential operator in Ψ(m),
with principal symbol p, elliptic at infinity. Let J ⊂ R be a closed interval
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such that p−1(J) is compact. Then for any open interval I ⊂ J there exists
~0 > 0 such that the spectrum of P in I is discrete for ~ 6 ~0.

Proof. The case m > 0 is probably the most standard. We recall it quickly.

Case m > 0. — Let χ ∈ C∞
0 (J) be equal to 1 on I. Then by pseudodif-

ferential functional calculus, f(P ) is compact for ~ small enough. Therefore,
denoting by ΠI the spectral projector on I, we have that ΠI = ΠIf(P ) is
compact. This implies that ΠI has finite rank : the spectrum in I is discrete.

Case m 6 0. — First we show that one can replace J by an unbounded
interval containing I. Thus assume J is compact. For notational conve-
nience we let J = [−1, 0]. For any α ∈ ]−1, 0[, Sard’s theorem ensures the
existence of a regular value λ ∈ ]α, 0[ for p. Then C := p−1(λ) is a compact
1-dimensional submanifold of R

2 : it is a finite union of circles. Let Ω be
the unbounded component of R

2 \ C. Suppose first that p↾Ω > λ. Since the
differential of p does not vanish on C, p < λ in all the bounded components
of R

2 \ C. Therefore p−1( ]−∞, λ]) is compact and one may replace J by
]−∞, λ]. Now if on the contrary p↾Ω < λ on the unbounded components,
we have to apply the same argument for λ′ ∈ ]−1, α[. Because λ′ < λ, the
new bounded components contain the old one, and therefore consist of the
points where p > λ′. Then p−1([λ′,+∞[ ) is compact, and one may replace
J by [λ′,+∞[.

For the rest of the proof, we may suppose that J = ]−∞, 0]. Let −ǫ ∈
J \ I, close to the origin. Let χ ∈ C∞(R) be such that











χ(x) = −ǫ/2 for x ∈ ]−∞,−ǫ]

χ(x) = x for x > −ǫ/3

χ(x) > −ǫ/2 everywhere.

Let p~ be the Weyl symbol of P and define p̃~ = χ◦p~. Then p̃~ is a symbol in
Ψ(m), with p̃~ > −ǫ/2 on R

2 and p̃~ = p~ outside the set p−1
~

( ]−∞,−ǫ/3]).
Because m 6 0, the set p−1

~
( ]−∞,−ǫ/3]) is included in p−1(J) for ~ small

enough and hence must be compact as well. Denote by P̃ the Weyl quanti-
sation of p̃. Then for ~ small enough (P̃ − λ) is invertible for all λ ∈ I. We
can write

P − λ = (P̃ − λ)
(

Id + (P̃ − λ)−1(P − P̃ )
)

.

Since P −P̃ is the Weyl quantisation of a compactly supported symbol (with
support in a compact independent of ~), it is of the trace class. By analytic

5



Fredholm theory, we may take the determinant of (Id+(P̃−λ)−1(P−P̃ )) and
conclude that the spectrum of P consists of the zeroes (with multiplicities)
of a non-vanishing holomorphic function and hence is discrete. �

The goal of this article is to recover the dynamics of the hamiltonian p
in the region p−1(I) for any operator P for which Assumption A(P,J , I)
holds, for some subset J ⊂ [0, 1]. Of course if we can do it for an arbitrary
compact interval I ⊂ R, we recover the full dynamics of p.

It turns out that, under some genericity conditions, these inverse spec-
tral problems are fairly easy, compared to the general multi-dimensional
problems alluded to in the introduction, in the sense that they only require
a few terms in the asymptotics of the spectrum. Having this in mind, for
α ∈ R we denote by Σ(P,J , I) +O(~α) the equivalence class of all Σ~(P, I)
modulo ~

α. Our main result is Theorem 5.2, but we also state several inter-
mediate results that require weaker hypothesis. An informal statement of
Theorem 5.2 is as follows.

Theorem 2.3 (Theorem 5.2) Let Assumption A(P,J , I) hold, and de-
note M = p−1(I). Suppose that p↾M is a Morse function. Assume that the
graphs of the periods of all trajectories of the hamiltonian flow defined by
p↾M , as functions of the energy, intersect generically.

Then the knowledge of Σ(P,J , I) + O(~2) determines the dynamics of
the hamiltonian system p↾M .

In fact, we determine completely the Hamiltonian p up to symplectic equiva-
lence. Perhaps the most difficult step, for which Weyl’s asymptotics are not
enough, is the seemingly simple question to count the number of connected
components of p−1(E), for a regular energy E ∈ I (Theorem 4.2).

Although we state everything for pseudodifferential operators defined on
on R, it is most probable that all results extend to the case of pseudodifferen-
tial operators defined on a one-dimensional compact manifold equipped with
a smooth density, and to the case of Toeplitz operators on two-dimensional
symplectic manifolds.

The plan of the paper follows a fairly logical progression. Since we always
work modulo symplectomorphisms, it is not reasonable to look for a formula
that would give the principal symbol p. Instead we will try to recover as
many symplectic invariants as possible from the spectrum so that, given
two spectra, we should be able to tell whether they come from isomorphic
systems.
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Thus, the geometric object under study is a proper map p : M → R,
where M is a symplectic 2-manifold. The simplest symplectic invariants of
this map are in fact topological invariants, and are dealt with in Sections 3
and 4. Indeed, it follows from the action-angle theorem that as soon as
E ∈ R is a regular value of p, then the fibres of p consist of a finite number
of closed loops, each one diffeomorphic to a circle. Therefore, we need to be
able to detect

1. Whether an energy E ∈ R is a regular or critical value of p; this is
done in Section 3 (Theorem 3.1).

2. When E is a regular value, the number of connected components of
the fibre p−1(E); Section 4.1 discusses this point (Theorem 4.2).

Putting these results together we are able to recover the topological type
of the singular fibration (Theorem 4.5). Then in Section 5, relying on the
classification result of Dufour-Molino-Toulet [8, 17] (and some additional
argument) we finally manage to recover the symplectic geometry of the
system (Theorem 5.2).

3 Singularities

In order to detect whether a given energy E0 ∈ R is a critical value of p or
not, it is enough to know the spectrum of P in a small ball around E0, at
least under some nondegeneracy conditions.

Recall that a function f : M → R is said to have a nondegenerate critical
point m ∈ M when df(m) = 0 and the Hessian f ′′(m) is a nondegenerate
quadratic form. Since M has dimension 2, there are only two cases :

1. Elliptic case : there are local symplectic coordinates (x, ξ) in TmM
such that f ′′(m)(x, ξ) = C(x2 + ξ2), for some constant C 6= 0.

2. Hyperbolic case : there are local symplectic coordinates (x, ξ) in
TmM such that f ′′(m)(x, ξ) = Cxξ, for some constant C 6= 0.

We refer to each of these two cases as the type of the singularity m.

Theorem 3.1 Let I be an interval containing E0 in its interior, and let
Assumption A(P,J , I) hold. Assume also that p has only nondegenerate
critical values in I, and that any two critical points with the same singu-
larity type cannot have the same image by p. Then from the knowledge of
Σ(P,J , I) + O(~2) one can infer
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1. whether E0 is a critical value of p or not;

2. in case E0 is a critical value, the type of the singularity.

This theorem is a corollary of the following proposition, where we consider
the density of states in small regions around E0. We could, equivalently,
invoke Weyl’s asymptotics.

Proposition 3.2 Let γ ∈ (0, 1) and, for E ∈ I,

ρ~(E) = ~
1−γ#(Σ~(P,B(E, ~γ))).

Then for any E ∈ I, the limit ρ(E) = lim~→0 ρ~(E) exists (in [0,+∞]), and

1. if E is a regular value of p, then ρ is smooth at E;

2. if E is an elliptic critical value of p, then ρ is discontinuous;

3. if E is a hyperbolic critical value of p, then ρ(E) = +∞.

Proof . In case E is a regular value, the result follows directly from Weyl’s
asymptotics, which in turn can be derived from a semiclassical trace formula
as in [6], or from the semiclassical Bohr-Sommerfeld rules as in [18]. Let us
recall the Bohr-Sommerfeld approach. There exists an ǫ > 0 such that the
eigenvalues of P inside [E − ǫ, E + ǫ] modulo O(~∞) are the union (with
multiplicities) of a finite number of spectra σk, k = 1, . . . , N , where N is the
number of connected components of p−1(E), and each σk is determined by
quasimodes microlocalised on the corresponding component. Precisely, the
elements of σk are given by the solutions λ to the equation

g(k)(λ; ~) ∈ 2π~Z, (2)

where the function g(k) admits an asymptotic expansion of the form

g(k)(λ; ~) ≃ g
(k)
0 (λ) + ~g

(k)
1 (λ) + ~

2g
(k)
2 (λ) + · · · (3)

with smooth coefficients gj . Moreover, if we denote by Ck(λ) the k-ieth
connected component of p−1(λ), in such a way that the family (Ck(λ)) is

smooth in the variable λ, then g
(k)
0 is the action integral :

g
(k)
0 (λ) =

∫

Ck(λ)
ξdx. (4)

From (2) is follows that, for ~ small enough

# (σk ∩ B(E, ǫ)) = (2π~)−1
∣

∣

∣g(k)(E + ǫ; ~) − g(k)(E − ǫ; ~)
∣

∣

∣ + δ,
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where the δ ∈ [−1, 1] is here to take care of the appropriate integer part of
the right-hand-side. Hence

# (σk ∩ B(E, ǫ)) = (2π~)−1

∣

∣

∣

∣

∣

2ǫ
∂g

(k)
0 (E)

∂E
+ O(ǫ2) + O(~)

∣

∣

∣

∣

∣

+ δ.

With ǫ = ~
γ , this gives

# (σk ∩ B(E, ~γ)) =
~

γ−1

π

∣

∣

∣

∣

∣

∂g
(k)
0 (E)

∂E

∣

∣

∣

∣

∣

+ O(~2γ−1) + O(1).

Summing up all contributions for k = 1, . . . , N , we get the first claim of the
theorem, with

ρ(E) =
1

π

∣

∣

∣

∣

∣

∂g
(k)
0 (E)

∂E

∣

∣

∣

∣

∣

.

The second claim can be proved in a similar way, using Bohr-Sommerfeld
rules for elliptic singularities [20]. For our purposes, a Birkhoff normal form
as in [2] would even be enough, since we deal with energy intervals of size
O(~γ). Here again there exists an ǫ > 0 such that the eigenvalues of P inside
[E − ǫ, E + ǫ] modulo O(~∞) are the union (with multiplicities) of a finite
number of spectra σk corresponding to the various connected components
of p−1(E). The difference is that not all components need have critical
points. In fact by assumption only one component may have an elliptic
critical point. Let us call σk the corresponding spectrum, and Ck(λ) the
corresponding family of connected components. Since an elliptic critical
point is a local extremum for p, the sets Ck(λ) are empty for all λ in one of
the halves of the interval [E − ǫ, E + ǫ]. Without loss of generality, one can
assume that Ck(λ) = ∅, ∀λ ∈ [E − ǫ, E[. Then Ck(E) is just a point, while
Ck(λ) is a circle for all λ ∈ ]E,E + ǫ].

The Bohr-Sommerfeld rules for elliptic singularities say that the elements
of σk are the solutions λ to an equation of the form

e(k)(λ; ~) ∈ 2π~N, (5)

where the function e(k) admits an asymptotic expansion exactly as g(k)

above (3). What’s more, it is equally true that the principal term is an
action integral :

e(k)(E) = 0, e
(k)
0 (λ) =

∫

Ck(λ)
ξdx, ∀λ ∈ [E,E + ǫ].

9
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Calculating along the same lines as above, we find, for the quantity

ρ
(k)
~

(λ) := ~
1−γ#(σk ∩ B(λ, ~γ))),

the following limits :

1. when λ ∈ [E − ǫ, E[, lim~→0 ρ
(k)
~

(λ) = 0;

2. when λ ∈ ]E,E + ǫ, E], lim~→0 ρ
(k)
~

(λ) = 1
π

∣

∣

∣

∣

∂e
(k)
0 (λ)
∂λ

∣

∣

∣

∣

;

3. lim~→0 ρ
(k)
~

(E) = 1
2π

∣

∣

∣

∣

∂e
(k)
0 (E)
∂E

∣

∣

∣

∣

;

Finally, let E be a hyperbolic critical value for p. Weyl asymptotics
for such a situation have been worked out in [1], and the singular Bohr-
Sommerfeld rules have been established in [3]. Using the latter result it can
be proven as in [12] that the number of semiclassical eigenvalues generated
by a hyperbolic fixed point, in a neighbourhood of size ǫ = ~

γ of the critical
value, is of order ǫ |ln ~| /~. Therefore, since there may be only one hyper-
bolic point in p−1(0), it follows from this estimate and the results we just
proved above for the regular and the elliptic case that

ρ~(E) > C |ln ~| ,

for some constant C > 0. This gives ρ(E) = +∞.

Remark 3.3 It is probable that the nondegeneracy condition can be
avoided. It is known quite generally that Weyl asymptotics hold for critical
energies [23]. Thus, in all case, we recover the action integral as the inte-
grated density of states. It would remain to show that the behaviour of the
action integral completely determines the singularities of p. This is easy in
the Schrödinger case p = ξ2 + V (x). △

4 Topology

As we already mentioned above, once the singular fibres of p have been
excluded, the topology is easy to understand. The map p become a locally
trivial fibration whose fibres are disjoint unions of circles.

Thus, if E0 is a regular value of p, the semiglobal problem around E0

just amounts to counting the number of connected components of p−1(E0).
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The topology of singular fibres strongly depends on the type of singu-
larity. Under the nondegeneracy assumption, the topology of the singular
foliation in a neighbourhood of a singular fibre is essentially determined by
the type of the singularity, and thus by Theorem 3.1.

4.1 Connected components

Let I be a compact interval of regular values of p. As above, we denote
by Ck(λ), for k = 1, . . . , N and λ ∈ I the smooth families of connected
components of p−1(λ). Each Ck(λ) is globally invariant by the hamiltonian
flow generated by p. Thus, this flow is periodic on Ck(λ). Let |τk(λ)| 6= 0
be its primitive period (the sign is determined by the formula below). It
follows from the action-angle theorem that τk is a smooth function of λ. In
fact it is well know that the period is the derivative of the action, and we
have already met this quantity in the proof of Proposition 3.2. Using the
action integral (4), we get

τk(λ) =
∂g

(k)
0 (λ)

∂λ
.

Notice again that τk never vanishes on I.

Definition 4.1 We say that a point (λ, t) ∈ (I×R
∗) is resonant whenever

there exist (k, j) and (k′, j′) in {1, . . . , N} × Z
∗, with k 6= k′, such that

jτk(λ) = j′τk′(λ) = −t.

Theorem 4.2 Let I be an interval of regular values of p, and let Assump-
tion A(P,J , I) hold. Assume also that the set of resonant points in I × R

is discrete. Then the number N of connected components of p−1(λ), λ ∈ I,
is determined by spectrum Σ(P,J , I) + O(~2).

Before proving the theorem, let us just remark that the leading term of
Weyl’s asymptotics is not sharp enough for this. Indeed, it only gives the
density ρ (Proposition 3.2) :

ρ(λ) =
1

π

N
∑

k=1

|τk(λ)| . (6)

From this one cannot distinguish, for example, one component with period
τ from two components with periods |τ1| + |τ2| = |τ |.
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Remark also that the condition on resonant points is not adapted to
systems with symmetries. For instance, a Schrödinger operator with a sym-
metric double well has two components with equal periods.

Proof of Theorem 4.2. We introduce the period lattice Lk(I) :

Lk(I) : = {(λ, t) ∈ I × R; exp(tXp) is periodic on Ck(λ)}

= {(λ, jτk(λ)); λ ∈ I, j ∈ Z}

and L(I) =
⋃N

k=1 Lk(I). The set L(I) is a union of smooth graphs that may
intersect. The intersection points for t 6= 0 are precisely the resonant points.

In order to prove the theorem, we split the argument into two steps. The
first one is to prove that Σ(P,J , I) + O(~2) determines L(I). The second
step consists in showing why the knowledge of L(I) — and the assumption on
the set of resonant points — allows us to count the number N of connected
components.

Step 1. Coming back to the Bohr-Sommerfeld rules discussed in the proof
of Proposition 3.2, we recall that the spectrum of P modulo O(~∞) is the
superposition of the spectra σk generated by Ck, for k = 2, . . . , N . For
each k, σk has a periodic structure that makes it close to an arithmetic
progression. Thus, a simple and naive idea to distinguish between the dif-
ferent periodic structures is to perform a frequency analysis, via a Fourier
transform. Because we have at our disposal only a truncated sequence of
eigenvalues (those that belong to I), we need to introduce a cut-off. Let
I ′ ⋐ I and let χ ∈ C∞(R) have compact support in the interior of I and be
equal to 1 on I ′. We introduce the spectral measure

D0(λ; ~) =
∑

E∈Σ~(P,I)

χ(E)δE(λ),

where δE is the Dirac distribution at E. The quantity we want to investi-
gate is its Fourier transform. Since the mean spacing between consecutive
eigenvalues is of order ~, we use a corresponding scale for the time variable
t, and thus introduce

Z(t; ~) =
∑

E∈Σ~(P,I)

χ(E)e−itE/~.

The function Z is called the partition function. In fact, the idea we’ve just
described is very well known in the semiclassical context, and is part of
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the general formalism of trace formulæ. We can consider the Schrödinger
group U(t; ~) = exp(−itP/~), and then Z(t; ~) = Trace(χ(P )U(t; ~)). It is
well known that χ(P )U(t; ~) is a Fourier Integral Operator, whose canonical
transformation is the classical flow of p. Moreover, its trace is a lagrangian
(or WKB) distribution associated with the lagrangian manifold of periods

Λp = {(E, τ) ∈ R
2; ∃z ∈ p−1(E), exp(τXp)(z) = z} = L(I ′).

Such a result would almost finish the proof of Step 1. In fact, this state-
ment exists in many versions, depending on various possible situations and
hypothesis. For this reason we are not using it here as is, but instead resort
once again to the Bohr-Sommerfeld rules, which is arguably the easiest way
to go.

We can split the partition function as

Z(t; ~) =

N
∑

k=1

∑

E∈σk

χ(E)e−itE/~.

Then from (2) one can introduce c 7→ f (k)(c; ~) as the inverse of λ 7→
g(k)(λ; ~), which exists for ~ small enough, and write

Z(t; ~) =
∑

j∈Z

ϕt(2π~j; ~) (7)

(which, as before, is a finite sum) with

ϕt(c; ~) :=
N

∑

k=1

χ(f (k)(c; ~))e−itf(k)(c;~)/~. (8)

Note that ϕt(·; ~) ∈ C∞
0 (R). By the Poisson summation formula,

Z(t; ~) =
1

2π~

∑

j∈Z

ϕ̂t(j/~) (9)

(which, contrary to (7), is a truly infinite sum) with

ϕ̂t(j/~) =

∫

R

e−icj/~ϕt(c)dc =

N
∑

k=1

Zk(t; j, ~) (10)

and

Zk(t; j, ~) =

∫

e−i~−1(cj+tf(k)(c;~))χ(f (k)(c; ~))dc.

13



The integral Zk is a compactly supported oscillatory integral, whose phase

is stationary when j + t
∂f

(k)
0

∂c = 0 or equivalently

t = −jτk(λ), λ = f (k)(c; ~). (11)

Moreover, the Hessian of the phase, Q := t
∂2f

(k)
0

∂c2
= t(∂τk

∂λ )−1 never vanishes
for t 6= 0. Hence, by the stationary phase expansion, Zk is a lagrangian
distribution whose principal symbol ιk can be written as a smooth function
of λ :

ιk(λ; j, ~) =
ei π

4
sign(Q)

|Q|1/2
e−ij~

−1(g
(k)
0 (λ)−λτk(λ))χ(λ),

with Q = −jτk(λ)(∂τk

∂λ )−1. Since its amplitude vanishes precisely with χ, we
can deduce that the semiclassical wave-front of Zk is (for fixed j ∈ Z

∗)

WF~(Zk) = {(λ, t) ∈ R
2; t = −jτk(λ), χ(λ) 6= 0}.

We still need to sum up all Zk(t; j, ~) for j ∈ Z
∗. For this we consider the

localisation of Z. Without loss of generality, one can restrict to positive
times. Let t0 > 0, ǫ > 0, and let ρ ∈ C∞

0 (B(t0, ǫ)). There is no solution
to (11) in the support of ρ for |j| outside the interval

Ik(ǫ) :=

(

t0 − ǫ

supJ |τk|
,

t0 + ǫ

infJ |τk|

)

.

Making explicit the non-stationary phase argument, we can write, for any
ℓ ∈ N,

Zk(t; j, ~) =

(

~

ji

)ℓ ∫

e−i~−1(cj+tf
(k)
0 (c;~))Lℓ(a(c; ~))dc,

where L is the linear differential operator defined by

(Lu)(c) =
d

dc





u(c)

1 + t
j

∂f
(k)
0

∂c





and a(·; ~) ∈ C∞
0 (I) admits an asymptotic expansion in non-negative powers

of ~, in the C∞ topology. Let b(c) = (1 + t
j

∂f
(k)
0

∂c )−1. Then b is uniformly
bounded on I for |j| > (t0 + ǫ)/ infJ |τk|, and for any ℓ ∈ N

∗, there exists

a positive constant Cℓ, independent of j and ~, such that
∣

∣

∣

dℓb
dcℓ

∣

∣

∣ 6 Cℓ/j.

Therefore, there exist constants C̃ℓ > 0 such that
∣

∣

∣Lℓ(a)
∣

∣

∣ 6 C̃ℓ,
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and we get, again when |j| > (t0 + ǫ)/ infJ |τk|,

|ρ(t)Zk(t; j, ~)| 6 C̃ℓ

(

~

j

)ℓ

.

Thus, for ℓ > 2,
∑

|j|>
t0+ǫ

infJ |τk|

|ρ(t)Zk(t; j, ~)| 6 C̃ℓ~
ℓ.

This shows that only a finite (independent of ~) number of terms contribute
to ρ(t)Z(t; ~) modulo O(~∞). Thus the (non)-stationary phase approxima-
tions are jointly valid. Therefore Z(t; ~) microlocally vanishes at any point
that does not belong to L(I); this writes

WF~(Z(·; ~)) ⊂ L(I).

More precisely,

WF~(ρZ(·; ~)) ⊂ {(λ, jτk(λ)); λ ∈ I, |j| ∈ Ik(ǫ), k = 1, . . . , N} .

Moreover, at a non-resonant point (λ, jτk(λ)), no other period j′τk′ can
contribute, and Z(·; ~) is a lagrangian distribution with principal symbol
equal to ιk(λ; j, ~). Since the set of resonant points is discrete, and WF~(Z)
is closed in T ∗I, we must have WF~(Z(·; ~)) = L(I), which finishes the proof
of the first step.

Step 2. We are now left with a simple geometric inverse problem : given
the set of periods L(I), how can one recover the number N of connected
components ?

Our strategy is to recover the fundamental periods |τ1| , . . . , |τN |. First
of all, by Weyl’s asymptotics (6), one obtains the a priori bound |τk(λ)| 6

πρ(λ). Let R := maxJ πρ. Then by assumption, the set of resonant points
inside I×]0, R] is finite; therefore, one can always find a smaller, non-empty
interval Ĩ ⊂ I such that there is no resonant point at all in Ĩ×]0, R].

We extract the periods τk from L1 := L(Ĩ) ∩ (Ĩ×]0, R]) inductively, as
follows.

1. Consider a point (λ1, τ1) ∈ L1 with “minimal height” τ1 : ∀(λ, τ) ∈
L1, τ1 6 τ .

2. By the non-resonance assumption, the connected component of (λ1, τ1)
in L1 is the graph of a smooth function of the interval Ĩ. We denote
this function by λ 7→ τ1(λ).
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3. Consider the set

L2 := L1 \ {(λ, jτ1(λ)); λ ∈ Ĩ , j ∈ Z
∗}.

Again by the non-resonance assumption, L1 remains a union of non-
intersecting smooth graphs.

4. If L1 is empty, then N = 1. Otherwise, start again by replacing L0 by
L1, and so on. If Lk is empty, then N = k − 1.

�

Remark 4.3 If we disregard symmetry issues, our assumption on the res-
onant set is quite weak. For instance, one can allow the crossing of two
periods to be flat (all derivatives are equal at a point λ), simply because
we put ourselves in a region with no crossing at all. However, it is easy
to prove Step 2 with even weaker assumptions. For instance, it may work
even if there are some open intervals of values of λ which admits resonant
pairs. It would be interesting to know whether Step 1 could hold in this case
as well. It would then involve sub-principal terms in the Bohr-Sommerfeld
expansion. △

4.2 Singular fibres

As we already mentioned, the following result comes for free.

Theorem 4.4 Let Assumption A(P,J , I) hold, and let E0 ∈ I be a non-
degenerate critical value of p. Assume also that p−1(E0) contains only one
critical point. Then from the knowledge of Σ(P,J , I) + O(~2) one can de-
termine the topology of the singular foliation induced by p, in a saturated
neighbourhood of p−1(E0).

Proof . Under these assumptions, the topology of the singular foliation
induced by p in a saturated neighbourhood of p−1(E0) is known to be com-
pletely characterised by the type of the singularity [8, 24], which is deter-
mined by Theorem 3.1. For the convenience of the reader, we briefly recall
the two possible cases.

1. The elliptic case. — The singular fibre p−1(E0) is just a point and
the foliation is homeomorphic to the one given by the Hamiltonian
H(x, ξ) = x2 + ξ2.
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2. The hyperbolic case. — The singular fibre is a circle with a transversal
self-intersection (the figure eight). It separates a saturated neighbour-
hood into three connected parts : two on one side, and one on the
other side. It is homeomorphic to the foliation given by the Hamilto-
nian H(x, ξ) = ξ2 + x4 − x2, in a neighbourhood of H−1(0).

�

4.3 Global topology

We say that a hamiltonian system p on the symplectic 2-manifold M is
topologically equivalent to the hamiltonian system p̃ on M̃ if there is a
homeomorphism ϕ : M → M̃ such that

p = p̃ ◦ ϕ.

Notice that this implies that ϕ respects the foliation, fibre by fibre. In
particular, p and p̃ have the same set of regular values and the same set
of critical values. If I is an open interval, then two hamiltonian systems p
and p̃ are called topologically equivalent over I when they are topologically
equivalent when restricted to the symplectic manifolds p−1(I), (p̃)−1(I).

We call the topological type of a hamiltonian system the equivalence class
of topologically equivalent systems.

Theorem 4.5 Let Assumption A(P,J , I) hold, and assume that p has only
nondegenerate critical values in some neighbourhood of I, such that any two
critical points with the same singularity type cannot have the same image
by p. Let c1 < · · · < cn be the critical values of p in I. Suppose that in
each interval (ci, ci+1), i = 1, . . . , n−1, there exists a non-empty subinterval
Ii such that the set of resonant points in Ii × R is discrete in R

2. Then
the knowledge of Σ(P,J , I) + O(~2) determines the topological type of the
hamiltonian system p over I.

Proof. Upon a possible enlargement of I, one may assume that I = (E0, E1)
for regular values E0, E1. Using symplectic cutting [13] or surgery [24], one
may replace the phase space R

4 by a compact symplectic manifold where
p−1(I) is embedded. Then we apply the result of [8] that says that the
topological type of p on M is determined by its Reeb graph : the set of leaves
of the foliation, as a topological 1-complex. This graph is characterised by
the relative positions of critical values, and the number of fibres between two
consecutive critical values. The former is determined by the spectrum in I

17



thanks to Theorem 3.1, while the latter is determined for each i = 1, . . . , n−1
by the spectrum in Ii, thanks to Theorem 4.2. This give the topological
type of p, up to some homeomorphism of the Reeb graph itself. But since
we know the precise values of p at singularities, we can in fact assume that
this homeomorphism is the identity. �

5 Symplectic geometry

The tools we’ve used so far give us the periods of the classical hamiltonian
system, which is of course much more than a mere topological information.
We show here that it is indeed sufficient to recover the full dynamics of the
systems.

We say that a hamiltonian system p on the symplectic 2-manifold M
is symplectically equivalent to the hamiltonian system p̃ on M̃ if there is a
smooth symplectomorphism ϕ : M → M̃ such that

p = p̃ ◦ ϕ.

Thus, the dynamics of p on the levelset {p = E} is transported via ϕ to
the dynamics of p̃ on the levelset {p̃ = E}.

We call the symplectomorphism type of a hamiltonian system the equiva-
lence class of symplectically equivalent systems. As before, one may restrict
this equivalence to an interval I of values of p and p̃.

Definition 5.1 Let (λ, t) ∈ I × R be a resonant point for p. Thus

jτk(λ) = j′τk′(λ) = −t

for some j, j′, k 6= k′. We say that this resonance is weakly transversal if
there exists an integer n ∈ N

∗ such that the n-th derivatives of the periods
are not equal :

jτ
(n)
k (λ) 6= j′τ

(n)
k′ (λ).

Theorem 5.2 Let Assumption A(P,J , I) hold, and suppose that p has only
nondegenerate critical values in some neighbourhood of I, such that any two
critical points with the same singularity type cannot have the same image
by p. Let c1 < · · · < cn be the critical values of p in I. Suppose that for
each interval Ji := (ci, ci+1), i = 1, . . . , n − 1, the set of resonant points in
Ji × R is discrete. Finally assume that all such resonant points are weakly
transversal.

Then the knowledge of Σ(P,J , I)+O(~2) determines the symplectic type
of the hamiltonian system p over I.
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Proof . We use the symplectic classification of [8, 17] using weighted Reeb
graphs. Under our assumptions, the Reeb graph has vertices of degree 1 and
3. A vertex of degree 1, a bout, corresponds to an elliptic critical value, while
a vertex of degree 3, called a bifurcation point, corresponds to a hyperbolic
critical value. At a bifurcation point we can distinguish one particular edge,
called the trunk, corresponding to the side of the figure 8 with only one
connected component. The two other edges are called the branches. A
weighted Reeb graph is a Reeb graph each of whose edges is associated with
a positive real number, its length, and such that each of the two branches of
each bifurcation point is associated with a formal Taylor series (ie a sequence
of real numbers). The hypothesis of the theorem allow for determining the
topological Reeb graph via Theorem 4.5. Thus, the next step of the proof
is to show how the numbers that constitute the weighted Reeb graph can
be recovered from the spectrum. The final step is to obtain the symplectic
equivalence in the sense that we have just defined above.

The lengths. — Let Ck(Ji), for k = 1, . . . , N , be the connected com-
ponents of p−1(Ji). Let Kk,i ∈ C∞(Ck(Ji)) be an action variable for the
regular lagrangian fibration p↾Ck(Ji); it is unique up to a sign and an addi-
tive constant. By definition the length of the edge corresponding to the set
of leaves in Ck(Ji) is

ℓk,i :=

∣

∣

∣

∣

lim
c→ci

Kk,i(c) − lim
c→ci+1

Kk,i(c)

∣

∣

∣

∣

. (12)

In a learned terminology, this is the Duistermaat-Heckman measure of Ji

for the S1-action defined by Kk,i, or, equivalently, it is the affine length of
Ji endowed with its natural integral affine structure given by p↾Ck(Ji).

It follows from the local models for elliptic and hyperbolic singularities
that this length is always finite. This is obvious at elliptic singularities,
where the action has the form x2 + ξ2. At a hyperbolic singularity m,
one can introduce a foliation function q such that, in some local symplectic
coordinates around m, q = xξ, and q > 0 on the branches while q < 0 on
the trunk. Then the Duistermaat-Heckman measure has the form

{

dµj(q) = (ln q + gj(q)) dq on each branch (j=1,2)

dµ(q) = (2 ln |q| + g(q)) dq on the trunk,
(13)

with some smooth functions g, g1, g2 satisfying

∀p, g(p)(0) = g
(p)
1 (0) + g

(p)
2 (0).
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Under this form, the Taylor series of the functions g, g1, g2 at the origin are
uniquely defined [17, 19].

Using the proof of Theorem 4.2, from the spectrum in I we can recover
the periods τk(λ), k = 1, . . . , N , for λ in any interval in Ji where the graphs
of the periods τk don’t cross. At a crossing the difficulty is to put the labels
k correctly, so that the connected components Ck(λ) remain in the same
Ck(Ji) when λ varies. This can be overcome precisely thanks to the weak
resonant assumption at each crossing, because each τk is C∞ in Ji. This
was the main issue. Now, fixing a point λi ∈ Ji, the action variable Kk,i can
be computed by the formula

Kk,i(λ) :=

∫ λ

λi

τk(λ)dλ, λ ∈ Ji.

This gives the length of Ck(Ji) via equation (12).

The Taylor series at the bifurcation points. — By definition, the
sequences of numbers associated with a bifurcation point in the Reeb graph
are the Taylor series of the functions g1, g2 (defined in equation (13)) at the
origin.

Let us show how to recover the Taylor series of g from the spectrum.
The procedure is completely analogous for g1 and g2.

Thus, we consider a hyperbolic critical value ci+1. We want to express
the Duistermaat-Heckman measure on the trunk in terms of the principal
symbol p. By a theorem of Colin de Verdière and Vey [4], there exist local
symplectic coordinates (x, ξ) at the hyperbolic point, and a smooth, locally
invertible function f : (R, ci+1) → (R, 0) such that

f(p) = xξ = q.

For notational purposes, one may assume that f ′(ci+1) > 0, which amounts
to say that the trunk is sent by p to λ < ci+1. Then from (13), for λ close
to ci+1, λ < ci+1,

dµ(λ) = (2 ln |f(λ)| + g ◦ f(λ)) f ′(λ)dλ.

On the other hand if the connected component corresponding to the trunk is
Ck(Ji), one has by definition of the Duistermaat-Heckman measure dµ(λ) =
τk(λ)dλ. Therefore

τk(λ) = f ′(λ) (2 ln |f(λ)| + g ◦ f(λ)) = 2f ′(λ) ln |λ − ci+1| + h(λ),
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for some smooth function h at λ = ci+1. There, using Taylor’s formula, we
have written f(λ) = α(λ− ci+1)+(λ− ci+1)

2f̂(λ), with α > 0 and f̂ smooth
at ci+1, and hence

h(λ) = 2f ′(λ) ln
∣

∣

∣
α + (λ − ci+1)f̂(λ)

∣

∣

∣
+ f ′(λ)g ◦ f(λ). (14)

This shows that h is smooth for λ close to ci+1.
It is easy to see that any smooth function φ in a neighbourhood of the

origin such that φ(t) ln t extends to a smooth function at t = 0 must be flat.
Hence the knowledge of τk(λ) for λ < ci+1 completely determines the Taylor
series of f ′(λ) (and hence f(λ)) at λ = ci+1.

Then one can recover the Taylor series of h using

h(λ) = τk(λ) − 2f ′(λ) ln |λ − ci+1| , ∀λ < ci+1

Finally, from (14) and the fact that f is locally invertible, one can recover
the Taylor series of g at the origin.

Symplectic equivalence. — We have proven that the weighted Reeb
graph is determined by the spectrum. By Toulet’s classification [8, 17], if
two such systems (M,p) and (M, p̃) have the same weighted Reeb graph,
there exists a symplectomorphism ϕ : M → M̃ such that p and p̃ ◦ ϕ define
the same singular foliation on M (ϕ indices a homeomorphism of the leaf
space, fixing the vertices). If we assume that the operators P and P̃ have
the same spectrum (modulo ~

2) and fulfil the requirements of the theorem,
then we also know that p and p̃ ◦ ϕ share the same set of critical values
ci. The fact that p and p̃ ◦ ϕ define the same foliation implies that for
each connected component Ck(Ji), there exists a smooth, invertible function
f : Ji → Ji such that

p = f ◦ p̃ ◦ ϕ on Ck(Ji). (15)

Since the singular fibres at the ends of Ck(Ji) are fixed by ϕ, f must be
increasing, and thus extends to a homeomorphism of Ji.

As we already saw, the spectrum also determines the periods at a given
energy E = λ. Hence for λ ∈ Ji, τk(λ) = τ̃k(λ). Since τk is integrable at
ci+1, we can define action integrals for λ < ci+1 as :

Kk,i(λ) :=

∫ λ

ci+1

τk(λ)dλ, K̃k,i(λ) :=

∫ λ

ci+1

τ̃k(λ)dλ.
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We have Kk,i(λ) = K̃k,i(λ). On the other hand, the action is a symplectic
invariant of the foliation. From (15) on can compute the action on the curve
ϕ(Ck(f(λ))) = C̃k(λ) : Kk,i(f(λ)) = K̃k,i(λ) + const. Therefore

Kk,i(λ) = Kk,i(f(λ)).

Since τk does not vanish in Ji, Kk,i is strictly monotonous on Ji. Therefore

f(λ) = λ, ∀λ ∈ Ji.

Thus p = p̃ ◦ ϕ on each Ck, and by continuity

p = p̃ ◦ ϕ on M.

This finishes the proof of the theorem. �
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