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Soit N ∈ N * , des réels a i < b i i = 1, . . . , N , Ω = N i=1 ]a i , b i [ et u(t, x) solution de [START_REF] Loreti | An Ingham type proof for a bigrid observability theorem[END_REF]. Le système est bien défini pour des conditions initiales satisfaisant (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω). On a la proposition classique suivante. Proposition 0.1 Il existe T 0 > 0 tel que pour T > T 0 , le système (1) est observable : il existe une constante c > 0 telle que l'on ait [START_REF] Komornik | On the exact internal controllability of a Petrowsky system[END_REF] pour tout (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω). La méthode des multiplicateurs (cf. [START_REF] Komornik | Exact Controllability and Stabilization-The Multiplier Method[END_REF]) permet d'obtenir cette inégalité d'observabilité [START_REF] Komornik | On the exact internal controllability of a Petrowsky system[END_REF] avec un temps optimal T 0 = 2 N i=1 (b i -a i ) 2 . Dans certaines situations, on peut aussi essayer d'obtenir une preuve utilisant une inégalité d'Ingham (cf [START_REF] Komornik | Fourier Series in Control Theory[END_REF]). Comme la solution de [START_REF] Loreti | An Ingham type proof for a bigrid observability theorem[END_REF] est explicitement donnée en termes de série de Fourier, une question naturelle est : peut-on obtenir (2) avec des arguments de type Ingham ? La difficulté principale, dans le cadre multi-dimensionnel (N > 1) est que des valeurs propres en nombre arbitraire peuvent être arbitrairement proches, ce qui rend l'obtention de l'inégalité d'observabilité par une telle approche plus difficile. Notons que de tels cas ont déjà été considérés dans d'autres situations (voir [START_REF] Loreti | Partial exact controllability for spherical membranes[END_REF], [START_REF] Loreti | An Ingham type proof for a bigrid observability theorem[END_REF]). Certains théorèmes multi-dimensionnels de type Ingham ont été établis et ont permis de traiter par exemple du cas de l'équation des plaques avec contrôle interne [START_REF] Komornik | On the exact internal controllability of a Petrowsky system[END_REF]. Cependant, à notre connaissance, le cas de l'observabilité frontière de l'équation des ondes en dimension N > 1 n'a jamais été traité dans la littérature par une approche de type Ingham. Notons que (2) a été prouvé pour le cas du carré à l'aide de séries de Fourier, grâce à un test de type Hautus dans [START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF], sans temps explicite d'observation. Le but de cette présente Note est de fournir une preuve auto-contenue de type Ingham de (2), dans le cas (déjà précisé) où le domaine est un produit d'intervalles. On utilise d'abord l'orthogonalité des vecteurs propres, puis on applique la première méthode d'Ingham. Grâce à une décomposition convenable, on peut se débarasser des termes où il n'y a pas d'écart (comme dans [START_REF] Loreti | Partial exact controllability for spherical membranes[END_REF]) et on peut donc obtenir l'inégalité d'observabilité désirée. Le temps d'observation, ainsi que les constantes impliquées dans l'inégalité peuvent être explicitées, mais nous n'avons pas pu atteindre le temps optimal par cette méthode.

Introduction

Let N ∈ N * , reals a i < b i i = 1, . . . , N , Ω = N i=1 ]a i , b i [ and u(t, x) solution of          u ′′ = ∆u, 0 < t < T, x ∈ Ω u = 0, 0 < t < T, x ∈ ∂Ω u(0, x) = u 0 (x), u ′ (0, x) = u 1 (x), x ∈ Ω. ( 1 
)
The system is well defined for initial conditions satisfying (u 0 , u 1 ) ∈ H 1 0 (Ω)×L 2 (Ω). We have the following classical proposition.

Proposition 1.1 Let Γ = ∪ N j=1 j-1 i=1 [a i , b i ] × {a j } × N i=j+1 [a i , b i ] .
There exists T 0 > 0 such that for T > T 0 , the system (1) is observable: there exists a constant c > 0 such that we have

u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) ≤ c T 0 Γ |∂ ν u(t, x)| 2 dΓdt, (2) 
for all (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω). One famous method to study such an observability inequality is to use the multiplier method (cf [START_REF] Komornik | Exact Controllability and Stabilization-The Multiplier Method[END_REF]). We can here effectively apply this method and obtain (2) with an optimal time

T 0 = 2 N i=1 (b i -a i ) 2 .
In some situations, we can also try to use an Ingham inequality (cf [START_REF] Komornik | Fourier Series in Control Theory[END_REF]). The solution of ( 1) is explicitely given by terms of a Fourier series :

u(t, x) = k∈(N * ) N c k e iω k t + c -k e -iω k t N j=1 sin πk j (x j -a j ) b j -a j , (3) 
with suitable coefficients c k , and with the notations

k = (k 1 , . . . , k N ) , x = (x 1 , . . . , x N ) , ω k = N j=1 k j π b j -a j 2 .
A natural question is then, can we obtain [START_REF] Komornik | On the exact internal controllability of a Petrowsky system[END_REF] with Ingham type arguments? The main difficulty, in the multi-dimensional setting (N > 1), is that arbitrarily many eigenvalues can be arbitrarily close, which makes the obtention of the observability inequality by such an approach more difficult. Note that such cases have already been considered in other situations (see [START_REF] Loreti | Partial exact controllability for spherical membranes[END_REF], [START_REF] Loreti | An Ingham type proof for a bigrid observability theorem[END_REF]). Some multi-dimensional Ingham type theorems have been stated and enabled to deal with e. g. the case of the plate equation with internal control [START_REF] Komornik | On the exact internal controllability of a Petrowsky system[END_REF]. However, to our knowledge, the case of the boundary observability of the wave equation has never been considered in the literature by a Ingham type approach. Note that (2) has been proven for the case of the square by means of Fourier series, thanks to a Hautus type test in [START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF], without an explicit time of observation. The aim of the present note is to provide a simple self contained Ingham type proof of (2), in the case (already precised) where the domain is a product of intervals. We first use the orthogonality of the eigenfunctions, and then apply Ingham's first method. Thanks to a convenient decomposition, we can get rid of the terms where there is no gap (like in [START_REF] Loreti | Partial exact controllability for spherical membranes[END_REF]) and thus obtain the desired observability inequality. The time of observation, like the constant involved in the inequality can be explicited, but we were not able to reach the optimal time with that method. In the sequel, we will write A ≍ B instead of c 1 A ≤ B ≤ c 2 A and A B instead of A ≥ c 1 B for brevity, where c 1 , c 2 > 0 are constants.

A new Ingham inequality

We present here a new Ingham inequality which will enable us to prove the Proposition 1.1 as an application, and which may have its own interest. It also could be applied for other problems. Theorem 2.1 Let d ∈ N * , an infinite set K ⊂ N * , reals (λ k ) k∈K d , and complexes (p ℓ ) ℓ∈K . We suppose the following gap assumption : for j = 1, . . . , d, there exists γ j > 0 such that λ k1,...,kj-1,kj ,kj+1,...,k d -λ k1,...,kj-1,k ′ j ,kj+1,...,

k d ≥ γ j k j -k ′ j , (4) 
λ k1,...,kj-1,kj ,kj+1,...,k d + λ k1,...,kj-1,k ′ j ,kj+1,...,k d ≥ γ j k j + k ′ j , (5) 
for all the indices k = (k 1 , . . . , k d ) ∈ K d and k ′ j ∈ K such that the weights (p ℓ ) ℓ∈K satisfy max i=1,...,d, i =j

|p ki | ≤ max p kj , p k ′ j . (6) 
Then, for T > 2π

d i=1 1 γ 2 i
, there exists a constant c 1 > 0 such that we have,

d j=1 k1,...,kj-1,kj+1,...,k d ∈K T 0 kj ∈K p kj a k e iλ k t + a -k e -iλ k t 2 dt ≥ c 1 k∈K d |a k | 2 + |a -k | 2   d j=1 p kj 2   , (7) 
for all complexes (a k ) k∈K d and (a -k ) k∈K d , such that the sums involved are finite. The proof consists in using Ingham's first method. We recall here the definition and the main properties that will be useful. We consider the function

k(t) =    cos πt T if |t| ≤ T /2 0 if |t| > T /2. It's Fourier transform k satisfies: k(x) = ∞ -∞ k(t)e ixt dt = -2T π cos(xT /2) x 2 T 2 -π 2
. We have k(0) = 2T π , and for γ > 2π T , ℓ ∈ N * and |x| ≥ ℓγ,

| k(x)| ≤ 2T π 1 | x 2 T 2 π 2 -1| = 2T π 2π γT 2 1 |4 x γ 2 -2π γT 2 | ≤ 2T π 2π γT 2 1 4ℓ 2 -1 . ( 8 
)
We recall also that

∞ ℓ=1 1 4ℓ 2 -1 = 1 2 ∞ ℓ=1 1 2ℓ -1 - 1 2ℓ + 1 = 1 2 . ( 9 
)
We set b k (t) = a k e iλ k t + a -k e -iλ k t . Now, since k(t) ≤ 1 [-T /2,T /2] , we have

A := T /2 -T /2 kj ∈K p kj b k (t) 2 dt ≥ R k(t) kj ∈K p kj b k (t) 2 dt.
We note δ j = max i=1,...,d, i =j |p ki | and then have the decomposition

A ≥ R k(t) kj ∈K, δj ≤|p k j | p kj b k (t) + kj ∈K, δj >|p k j | p kj b k (t) 2 dt = (kj ,k ′ j )∈Λ1 + (kj,k ′ j )∈Λ2 + (kj,k ′ j )∈Λ3 B k + R k(t) kj ∈K, δj >|p k j | p kj b k (t) 2 dt, ( 10 
)
by setting for brevity

k ′ = (k 1 , . . . , k j-1 , k ′ j , k j+1 , . . . , k d ), Λ 1 := (k j , k ′ j ) ∈ K, δ j ≤ p kj , δ j ≤ p k ′ j , Λ 2 := (k j , k ′ j ) ∈ K, δ j ≤ p kj , δ j > p k ′ j , Λ 3 := (k j , k ′ j ) ∈ K, δ j ≤ p kj , δ j > p k ′ j , and, since k(x) = k(-x), B k = p kj p k ′ j (a k a k ′ + a -k a -k ′ ) k(λ k -λ k ′ ) + (a k a -k ′ + a -k a k ′ ) k(λ k + λ k ′ ) .
The key point here is that we can get rid of the last term of (10) where there is no gap assumption thanks to the positiveness of k. This trick was already used in [START_REF] Loreti | Partial exact controllability for spherical membranes[END_REF] (see also [START_REF] Loreti | An Ingham type proof for a bigrid observability theorem[END_REF]).

For the first term of (10), by using the assumption (4)-( 5)-( 6), the fact that T > 2π γj , the property (8), and since k(0) = 2T π , we get, by putting

A k = |a k | 2 + |a -k | 2 , (kj ,k ′ j )∈Λ1 B k ≥ 2T π    kj ∈K, δj ≤|p k j | p kj 2 A k - (kj ,k ′ j )∈Λ1, kj =k ′ j C k    ,
where

C k = p kj 2 A k + p k ′ j 2 A k ′ 2 2π T γ j 2 1 4(k j -k ′ j ) 2 -1 + 1 4(k j + k ′ j ) 2 -1 .
For the second and the third terms of (10), we obtain similarly

(kj ,k ′ j )∈Λ2 B k ≥ - 2T π (kj ,k ′ j )∈Λ2 C k (kj ,k ′ j )∈Λ3 B k ≥ - 2T π (kj ,k ′ j )∈Λ3 C k .
By gathering the estimates of the four terms of (10) and then using (9), we thus get

π 2T A ≥ kj ∈K, δj ≤|p k j | p kj 2 |a k | 2 - kj ,k ′ j ∈K, kj =k ′ j C k ≥ kj ∈K, δj ≤|p k j | p kj 2 |a k | 2 - kj ∈K a k p kj 2 2π T γ j 2 .
We then obtain, by summing over j = 1, . . . , d and k ∈ K d ,

B := d j=1 k1,...,kj-1,kj+1,...,k d ∈K T /2 -T /2 kj ∈K p kj a k e iλ k t + a -k e -iλ k t 2 dt d j=1 k∈K d , δj ≤|p k j | A k p kj 2 - d j=1 2π T γ j 2 k∈K d A k p kj 2 = k∈K d A k d j=1 1 δj≤|p k j | - 2π T γ j 2 p kj 2 .
Since we notice that 

B   1/ d j=1 1 γ 2 j - 2π T 2   k∈K d A k   d j=1 p kj γ j 2   ≥   1/ d j=1 1 γ 2 j - 2π T 2   k∈K d A k   d j=1 p kj 2   ,
which ends the proof of Theorem 2.1, from the assumption T > 2π In order to prove Proposition 1.1 by using Theorem 2.1, we first express the inequality (2) in terms of the Fourier series [START_REF] Komornik | Exact Controllability and Stabilization-The Multiplier Method[END_REF]. We have at first

T 0 Γ |∂ ν u(t, x)| 2 dΓdt = N j=1 T 0 b1 a1 . . . bj-1 aj-1 bj+1 aj+1 . . . bN aN k∈(N * ) N πk j b j -a j c k e iω k t + c -k e -iω k t N ℓ=1,ℓ =j sin πk ℓ (x ℓ -a ℓ ) b ℓ -a ℓ 2 dx 1 . . . dx j-1 dx j+1 dx N dt.
Due to the orthogonality of the family sin πk

ℓ (x ℓ -a ℓ ) b ℓ -a ℓ k ℓ ≥1 in L 2 (a ℓ , b ℓ ), we get T 0 Γ |∂ ν u(t, x)| 2 dΓdt ≍ N j=1 k1,...,kj-1,kj+1,...,kN∈N * T 0 kj∈N * k j c k e iω k t + c -k e -iω k t 2 dt. (11) 
On the other hand, we have

u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) ≍ k∈(N * ) N   N j=1 |k j | 2   |c k | 2 + |c -k | 2 . (12) 
We then apply Theorem 2.1 : we take d = N , K = N * , λ k = ω k , for k ∈ (N * ) N and p ℓ = ℓ, for ℓ ∈ N * . In order to check the gap assumption ( 4)-( 5)-( 6), for a fixed j ∈ {1, . . . , N }, we thus consider k

= (k 1 , . . . , k N ) ∈ (N * ) N and k ′ j ∈ N * , such that 0 < k i ≤ max(k j , k ′ j ), i = 1, . . . , N, i = j, (13) 
and we have to obtain (4)-( 5), for a suitable γ j . We compute . We can suppose for instance that k j ≤ k ′ j and thus have by using (13)

|ω k -ω k ′ | = k j -k ′ j π 2 (b j -a j ) 2 k j + k ′ j D +
|ω k -ω k ′ | ≥ k j -k ′ j π 2 (b j -a j ) 2 1 + (k j /k ′ j ) d i=1, i =j π bi-ai 2 + (k j /k ′ j ) 2 π 2 (bj -aj ) 2 + d i=1 π bi-ai 2 ≥ k j -k ′ j π 2 (b j -a j ) 2 1 2 d i=1 π bi-ai 2 .
On the other hand, we have

|ω k + ω k ′ | ≥ k j + k ′ j π
(bj -aj ) . We get thus ( 4)-( 5) by taking 

γ j = π 2 (b j -a j ) 2

d j=1 1

 1 δj ≤|p k j | p kj 2 ≥ max j=1,...,d

d i=1 1 γ 2 i 3 .

 23 and since we can change the interval [-T /2, T /2] into [0, T ] by a classical translation argument. Application for the proof of Proposition 1.1

N j=1 γ 2 j = 4 Nj=1 (b j -a j ) 4 N

 44 -a j ) .From (11) and (12), we finally get (2) with T > 2π j=1 (b j -a j ) -2 , which ends the proof of Proposition 1.1. Note that if we could take γ j = π (bj -aj ) , we would obtain the optimal time T 0 = 2 N i=1 (b i -a i ) 2 .