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ABSTRACT

The authors investigate the relationships between coherent structures and turbulence anisotropy in the
neutral planetary boundary layer by means of empirical orthogonal function (EOF) analysis of large-eddy
simulation (LES) data. The simulated flow contains near-surface transient streaks. The EOF analysis
extracts the most energetic patterns from the velocity fluctuations based on their second-order spatial
correlations. The scale and direction of streaks obtained from a level-by-level analysis of the LES flow field
do correspond to that of the EOFs.

It is found that two characteristics of the turbulence anisotropy depend on whether or not the velocity
fluctuations with a given horizontal wave vector present distinct patterns: (i) the vertical extent up to which
the turbulent kinetic energy (TKE) is concentrated and (ii) the ratio of the vertical TKE EV to the
horizontal TKE EH. Although still present in the complete signal, this anisotropy is strongly emphasized
when the signal is projected onto the EOF structures. Hence the coherent structures do indeed carry more
anisotropy than the remaining turbulent fluctuations. Furthermore, at horizontal wave vectors where en-
ergetic patterns are dominant, the ratio EV /EH takes values close to 0.2, representative of the ratio EV /EH

based on the total LES flow and on in situ measurements.

1. Introduction

Important features of the near-surface turbulence in
the neutrally stratified planetary boundary layer
(NPBL) are a strong anisotropy and the presence of
coherent structures (Moeng and Sullivan 1994; Carlotti
2002; Drobinski et al. 2004, 2007). Although each of
these two features is well documented, the relationship
between them, besides the fact that they both occur in
the surface layer, has been less investigated. We present
here such an investigation.

The present study deals with the NPBL and leaves
the stable and unstable cases for future investigations.
Near-neutral conditions are frequently met above very

rough surfaces such as forest and tall natural vegeta-
tion. Episodes of near-neutral conditions are also en-
countered over flat terrains as during the 1999 Coop-
erative Atmosphere–Surface Exchange Study (CASES-
99) campaign. One of these episodes served for the
validation of the numerical data analyzed in this work
(Drobinski et al. 2007).

Sheared PBLs are populated with eddies, among
which there are rolls and streaks. Rolls span the depth
of the PBL and, once established, they persist for hours
or even days (Etling and Brown 1993; Drobinski et al.
1998; Young et al. 2002). Because of their long dura-
tion, rolls are believed to be associated with the non-
linear saturation of normal-mode instabilities that
reach a finite amplitude in a modified mean flow. De-
spite some variability, rolls form at angles to the mean
wind above the NPBL compatible with such theories
(Etling and Brown 1993). However, such rolls seldom
form in large-eddy simulations (LES) of the NPBL
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(Moeng and Sullivan 1994). Instead, the near-surface
flow is characterized by transient streaks, which are
alternating bands of relatively higher and lower stream-
wise velocity and are responsible for a significant frac-
tion of the surface stress. The streaks are spatially pe-
riodic elongated features of the NPBL that reside in the
surface layer (SL) and lower portion of the outer-
NPBL. Streaks appear to go through a continuous cycle
of generation, growth, decay, and regeneration, and
typical lifetimes of individual streaks are on the order
of tens of minutes (Lin et al. 1996; Foster 1997; Drob-
inski and Foster 2003). They are thus different from the
persistent PBL rolls. Streaks are also of much smaller
scale (wavelengths �100–300 m) than rolls. Because
they align approximately along the mean shear corre-
sponding to their vertical extent, streaks can form at
larger angles to the mean wind above the NPBL than
theoretical rolls (Young et al. 2002). Progress in high-
resolution Doppler lidars now permits the in situ ob-
servation of streaks (Drobinski et al. 2004), which are
the dominant feature of the near-surface flow in the
NPBL.

Concomitant with the presence of streaks in the neu-
tral SL, turbulence displays highly anisotropic charac-
teristics: (i) the variances of the wind velocity fluctua-
tions differ for the three components; that is, �u2 �/u2

* �
5 � 6, ��2 �/u2

* � 3 and �w2 �/u2

* � 1 � 2 (where �·� stands
for the time average, u, � and w are the streamwise,
transverse, and vertical wind velocity fluctuation, and
u* is the friction velocity) or similarly ��2 �/�u2 � and
�w2 �/��2 � are about 0.5 as shown numerically (Moeng
and Sullivan 1994; Drobinski et al. 2007) and experi-
mentally (Panofsky 1974; Nicholls and Readings 1979;
Grant 1986, 1992; Drobinski et al. 2004); (ii) close to the
ground, the wind velocity spectra show a deviation
from the �5/3 spectral slope expected for isotropic tur-
bulence with the existence of a �1 power law at inter-
mediate spectral subrange [e.g., Katul and Chu (1998)
for a review and, more recently, Hunt and Morrison
(2000), Hunt and Carlotti (2001), and Drobinski et al.
(2004, 2007)].

In this paper we investigate the relationship between
streaks and turbulence anisotropy in the near-surface
flow of a well-resolved LES. One first issue is therefore
to identify these streaks. Identifying the streaks is, how-
ever, only a first step, and to quantitatively evaluate
their relationship with turbulence anisotropy we also
want to know how much they contribute to various
turbulent quantities like momentum fluxes. Hence a
suitable coherent structure extraction technique has to
be chosen. Indeed, while organized structures are fre-
quently observed in numerical or field data, they have
no unique definition and several identification tech-

niques coexist. In vortex identification methods, vortex
cores are visualized as isosurfaces of eigenvalues of the
velocity gradient, the pressure Hessian, and related ten-
sors (Jeong and Hussain 1995). Conditional sampling is
more quantitative in that it provides the flow and fluxes
conditionally averaged with respect to the occurrence
of some event, typically ejection or sweep events. Yet it
is sometimes criticized on the grounds that the results
depend on subjectively chosen sampling criteria. Many
studies of PBL coherent structures have used condi-
tional sampling and vortex visualization techniques
(Lin et al. 1996; Foster et al. 2006). References to ear-
lier studies can be found in Wilson (1996). Empirical
orthogonal function (EOF) analysis, also known as
principal component analysis (PCA) and proper or-
thogonal decomposition (POD), is an extraction tech-
nique which has been widely employed on engineering
flows, especially the turbulent boundary layer over a
smooth boundary (Berkooz et al. 1993). The outputs
are the eigenfunctions of the correlation functions and
are unique once a quadratic norm has been chosen. The
method is generally considered more objective than
other methods in the sense that arbitrary choices made
by the investigator, such as defining thresholds, are re-
duced to a minimum. It is also a quantitative method
since all quadratic quantities can be decomposed into
contributions of the individual structures. Because of
these properties, we chose the EOF analysis as our co-
herent structure extraction technique.

The possibilities of EOF analysis have been widely
employed in the engineering context (Berkooz et al.
1993). In the geophysical context, EOF analysis is also
widely used in climatic variability studies but less so in
boundary layer meteorology, possibly because of the
large datasets required by the method. A few studies
are based on an EOF analysis of PBL or PBL-like data
(Preisendorfer 1988), and follow the progress in the
availability of detailed data. While early studies were
limited to a one-dimensional (Jalickee and Ropelewski
1979) or two-dimensional analysis, increasing comput-
ing power and data availability recently enabled three-
dimensional EOF analysis in the convective PBL
(Rinker and Young 1996; Wilson 1996), the neutral
PBL (Esau 2003), or in a wheat canopy (Finnigan and
Shaw 2000). Still, reliable three-dimensional data in the
neutral SL became available only recently and this
work elaborates on this progress (Carlotti 2002; Drob-
inski et al. 2007). Beyond the extraction and identifica-
tion of coherent structures, which is the principal aim of
these works, EOF analysis also permits to study the
contribution of the structures to the flow energetics
(Wilson and Wyngaard 1996). Wilson and Wyngaard
(1996) analyzed a LES simulation of a weakly convec-
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tive PBL in a mesoscale box relevant for rolls spanning
most of the PBL. However, the resolution of this simu-
lation was too coarse to study the SL. To focus on the
SL streaks, we analyze a more finely resolved LES in a
smaller box (Carlotti 2002), extract coherent structures,
and proceed with the analysis of their contribution to
turbulence anisotropy.

Because of horizontal homogeneity, the EOF analy-
sis extracts the most energetic vertical pattern for each
horizontal wave vector. As a result, the corresponding
flows have the same structure as the linear normal
modes or optimal perturbations and can be compared
to them. Furthermore, two aspects of anisotropy can be
investigated: (i) the vertical–horizontal ratio of the ve-
locity components and of the extracted flow patterns
and (ii) the dependence of turbulent quantities on the
orientation of the horizontal wave vector relatively to
the geostrophic wind. The present work complements
that of Foster et al. (2006), which was based on condi-
tional sampling of the same dataset. Conditional sam-
pling does not separate the various horizontal scales of
the velocity fluctuations; conversely EOF analysis does
not distinguish between ejections and sweeps. This
makes the two methods complementary in that they
focus on different issues.

Section 2 presents the basis of the data analysis tech-
nique. Section 3 describes the individual structures and
section 4 investigates their relationship with the anisot-
ropy. Section 5 summarizes the results.

2. Data analysis

a. The dataset

We use the nonhydrostatic LES code Meso-NH
(Lafore et al. 1998) to model a NPBL in a box with size
(L, l, H) � 3 km � 1 km � 750 m along the x, y, and
z axes, respectively. The mesh cell is a cube of side 6.25
m (Nx � Ny � Nz � 480 � 160 � 120) to avoid any
grid-induced anisotropy. The subgrid-scale (SGS)
model is based on a turbulent kinetic energy (TKE)
equation (Cuxart et al. 2000). Near the ground, the
results may be sensitive to different SGS schemes. To
estimate this sensitivity, two additional LES were per-
formed with different SGS schemes: a modified mixing
length model by Redelsperger et al. (2001) and Sma-
gorinsky’s model (Smagorinsky 1963). However, the
simulated flow proved not to be very dependent on the
SGS model except less than 20 m (3 grid cells) above
ground (Drobinski et al. 2007). The computational box
is assumed to be at midlatitude, and a large-scale pres-
sure gradient that would balance a geostrophic wind of
10 m s�1 above the NPBL is imposed. The top of the
domain is a rigid lid, a legitimate approximation as long

as there is no interest in the dynamics near the inver-
sion layer capping the PBL (Andren et al. 1994; Hess
2004). The lateral boundary conditions are periodic. At
the first grid point above the surface (z � 3.125 m), the
wind speed equals (u*/�) log(z/z0) where u* is the fric-
tion velocity, � � 0.4 is the von Kármán constant, and
z0 � 10 cm is the roughness length.

The simulation was started from a laminar velocity
field in which a very weak random temperature fluc-
tuation (	T/T � 3 � 10�4) was imposed at the bottom
of the domain in order to generate turbulence. The
temperature fluctuations were quickly damped, result-
ing in a neutrally stratified turbulent flow. After 10 h of
physical time, 14 snapshots of the three-dimensional
velocity, pressure, and the TKE were extracted and
stored, with 500 s between each snapshot. The 500-s
interval between snapshots is comparable to the mean
advection time across the domain, and the flow statis-
tics do not change appreciably between snapshots, in-
dicating that the flow has reached statistical equilib-
rium. For example, the standard deviation of the mean
friction velocity, u* � 0.42 m s�1, between the snap-
shots is 
u* � 0.0034 m s�1, less than 1%.

We decompose the velocity field into a mean flow
[U(z), V(z), 0] forced by large-scale pressure gradient
and turbulent fluctuations [u(x, y, z, t), �(x, y, z, t), w(x,
y, z, t)]. In the time-averaged wind hodograph (Fig. 1)
the wind is oriented about 12° left to the x direction in
high layers and about 20° left to the x direction close to
the ground, following an Ekman spiral continued by a
logarithmic layer near the surface. The mean speed
profile is approximately logarithmic up to about 270 m.
However, there is no appreciable turning in the profile
only up to about 40 m, which we take to be the top of
the surface layer. In the first 100 m, the wind fluctua-
tions form streaky structures roughly aligned with the
ground wind. These structures appear clearly on hori-
zontal cross sections of the velocity field (Fig. 2) and are
the dominant features near the surface, associated with
an overturning circulation, for example, alternating
bands of updrafts and downdrafts approximately cen-
tered on the streaks (Foster et al. 2006). The spacing of
the streaks has several apparent scales, from �100-m
spacing near the surface to �200-m spacing higher up.
The structure of the streaks is broadly consistent with
most LES of the neutrally stratified PBL (e.g., Dear-
dorff 1972; Moeng and Sullivan 1994; Lin et al. 1996;
Drobinski and Foster 2003). These instantaneous flow
realizations show a coherent organization of the simu-
lated turbulence that is not purely periodic but is an
aggregation of smaller-scale structures.

Figure 3 shows the variances normalized by u2

*, as a
function of height. The normalized variances �u2 �/u2

*,
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��2 �/u2

* and �w2 �/u2

* are about 5–6, 3, and 1–2 up to
about 0.13H (i.e., 100 m) as in Panofsky (1974). The
ratios of ��2 �/�u2 � and �w2 �/��2 � are about 0.5 which is in
good agreement with LES studies (Moeng and Sullivan
1994) and observations (Nicholls and Readings 1979;
Grant 1986, 1992; Drobinski et al. 2004). These ratios
tend to 1 near the PBL top.

The results of this LES were compared to theoretical
developments for two-point statistics (Carlotti 2002)
and integral length scales (Carlotti and Drobinski 2004)

near the ground and were validated against sonic an-
emometer and Doppler lidar measurements in the
near-neutral surface layer collected on 13 October 1999
during the CASES-99 campaign (Drobinski et al. 2007).
The comparison between the LES and the observations
reveals good agreement for the vertical profiles of wind
speed, momentum flux, and wind component variances
as well as the near-surface flow pattern.

We now expose how the EOF analysis permits to
recover energetic patterns from this complex signal.

FIG. 2. Snapshot of the three velocity components U � u, V � �, and w in m s�1 at altitude
z � 60 m.

FIG. 1. Hodograph of mean wind, time-averaged after reaching statistical equilibrium.
Various heights above the surface are marked. The total PBL height is H � 750 m.
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b. Principle of EOF analysis

For completeness, we summarize the basic steps of
the method and the most important properties of its
outcome. An application of the method to the weakly
convective PBL is described in Wilson (1996) and more
details can be found in Berkooz et al. (1993) and
Holmes et al. (1996).

In the sequel, we use small letters for time-dependent
quantities and capital or Greek letters for statistical
quantities and the quantities derived from them. We
also use the superscript and the index i to number the
EOFs and derived quantities. The subscript and in-
dexes j, k are used for the three components of the
velocity vector. The indexes m and n correspond to the
horizontal wave vector.

1) EIGENVALUE PROBLEM

We consider the time series of the state vector u(t),
where u is the deviation of the three-dimensional ve-
locity field from its time average; for example

u1x, y, z; t� � ux, y, z, t�
u2x, y, z; t� � �x, y, z, t�
u3x, y, z; t� � wx, y, z, t�.

We define � � to be the time average over the duration
of the simulation. The purpose of the EOF analysis is to
find special state vectors (�1, . . . , �N), called empirical
orthogonal functions, that form an orthonormal basis
and optimally represent u(t) in the least squares sense.
For this we first need a definition of the Euclidean
norm ||u || of a state vector, or equivalently a scalar
product [u(t), u(t �)] between two state vectors. It is
common to choose (u, u) on energetic grounds (Ber-
kooz et al. 1993), and we define (u, u) to be propor-
tional to the volume-averaged TKE:

||u ||2 � u, u� �
1

LlH � u2 � �2 � w2� dx dy dz

�
1

LlH � ujuj dx dy dz, 1�

where the summation over the repeated indices (here
j � 1 . . . 3) is implied.

Consider first the one-dimensional space spanned by
�1. For a given state u(t), the best approximation of u(t)
by a multiple of �1 is a1 (t)�1, where

a1t� � ��1, ut�� �
1

LlH � �j
1x, y, z�ujx, y, z, t� dx dy dz.

2�

The coefficient a1 (t) is called the score of the sample
u(t) with respect to �1. The error we commit by pro-
jecting u(t) onto �1 is on average

� ||ut� � a1t��1 ||2� � � ||ut� ||2� � ��a1t��2� with

��a1t��2� � ��ut�, �1�2� � ��Rjkx, x�, y, y�, z, z���j
1x, y, z��k

1x�, y�, z��
dx dx�

L2

dy dy�

l2

dz dz�

H2 , 3�

where Rjk is the self-correlation function

Rjkx, x�, y, y�, z, z�� � �ujx, y, z; t�ukx�, y�, z�; t��.

4�

We have the freedom to choose �1 such as to minimize
the error. Introducing the Lagrange multiplier �1 asso-
ciated to the constraint (�1, �1) � 1 and setting to zero

the first variation of �1(�1, �1) � �a1(t)2 � with respect to
�1, we find that the optimal �1 is a solution of the
eigenproblem:

1
LlH � Rjkx, x�, y, y�, z, z���k

1x�, y�, z�� dx� dy� dz�

� �1�j
1x, y, z�. 5�

FIG. 3. Vertical profiles of normalized variances �u2 �/u2
* (solid

line), �� 2 �/u2
* (dashed line), and �w2 �/u2

* (dotted line) as a function
of height.
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If we now search for the subspace (�1, . . . , �N) onto
which the orthogonal projection of the signal produces
the least error, we arrive at the same eigenproblem,
each EOF �i being associated with its own eigenvalue
�i. A global minimum of the error is realized if �1, . . .
�N are the N largest eigenvalues of the self-correlation

function. Hence the first EOF �1 is associated to the
largest eigenvalue �1, the second EOF to the second
largest, and so on.

Notice that the scores ai(t) with respect to differ-
ent EOFs of index i and i� have a vanishing correla-
tion:

�ait�ai�t�� � �� Rjkx, x�, y, y�, z, z���j
ix, y, z��k

i�x�, y�, z��
dx dx�

L2

dy dy�

l

dz dz�

H2

� �i���j
ix, y, z��j

i�x, y, z�
dx

L

dy

l

dz

H
� �i��i, �i�� � 0 if i � i�. 6�

Furthermore �ai(t)2 � � �i. The eigenvalue �i is there-
fore called the energy explained by the i-th EOF.

2) EFFECT OF STATISTICAL HOMOGENEITY

Because of periodic boundary conditions in the x and
y directions, it is convenient to write the velocity field in
Fourier representation:

ujx, y, z, t� � Re�
m,n

ûjm, n, z, t� exp2i��mx

L
�

ny

l �, 7�

where the horizontal wave vector (kx, ky) � 2�(m/L,
n/l) is quantized according to the box dimensions L and
l. With this normalization,

u, u� �
1
H � �

m,n
ûjm, n�û*j m, n� dz, 8�

where the star * stands for complex conjugation.
Repeating the above steps, the eigenproblem satisfied by
�̂i is

1
H � �

m�,n�

R̂jkm, m�, n, n�, z, z���̂k
i m�, n�, z�� dz� � �i�̂j

im, n, z�, where 9�

R̂jkm, m�, n, n�, z, z�� � �ûjm, n, z; t�û*km�, n�, z�; t��. 10�

If the statistics are invariant under horizontal trans-
lations, the cross correlation R̂jk(m, m�, n, n�, z, z�)
between different wave vectors is zero. The different
wave vectors are then decoupled in the above eigen-
problem and it is sufficient to solve, independently for
each mode (m, n),

1
H �R̂jkm, m, n, n, z, z���̂k

i m, n, z�� dz�

� Kim, n��̂j
1m, n, z�, 11�

where we have noted Ki(m, n) the energy explained by
the i-th EOF �̂i

j(m, n, z).

3) DISCRETIZATION AND PRACTICAL STEPS

In practice a number p of snapshots at times t1, . . . , tp
is used and the time average is computed as the average
over the snapshots.

In addition, we reshape the triple profile ûj(m, n, z; t)
into a single vector ĝj of length 3Nz:

ĝ3k�jm, n; t� � ûjm, n, zk; t�, 12�

�̂3k�j
i m, n� � �̂j

im, n, zk�, 13�

where the zk are the altitudes of the Nz vertical levels.
Consistently with the uniform grid, the eigenproblem
(11) may be approximated by

1
Nz

Cjkm, n��̂k
i m, n� � Kim, n��̂ j

im, n�, 14�

where Cjk(m, n) is the self-correlation matrix:

Cjk � � ĝkm, n; t�ĝk�m, n; t�*�

�
1
p �

q�1

p

ĝkm, n; tq�ĝk�m, n; tq�*. 15�

Each of the p snapshots is first Fourier transformed
in order to obtain ûj(m, n, z; t). We then proceed inde-
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pendently for each mode (m, n). We construct ĝk(m, n;
t) according to definition (12) then compute Ckk�(m, n)
according to (15). We solve the eigenvalue problem
(14) with a standard linear algebra package and obtain
the eigenvalues Ki(m, n) and eigenvectors �̂ i

k(m, n).
Finally the three profiles �̂i

j(m, n, z) defining the i-th
EOF are reconstructed using (13). We store all eigen-
values and the first two EOFs for further reference.

Our set of realizations consists of 14 snapshots of the
whole velocity field taken at different instants. Thus
this procedure extracts the energetic spatial flow pat-
terns and drops any temporal correlations from the sig-
nal. Furthermore the number of EOFs is equal to the
dimension of the space spanned by the signal, here 14
because of the small size of our sample. We checked
that this number of samples is nevertheless sufficient
for the present study by performing the statistical
analysis twice, once with the complete set of 14 samples
and once with only the first 7 samples. We found insig-
nificant differences in the quantities analyzed in the
sequel, and especially those presented in section 4.

c. Energy-weighted decomposition

At each wave vector, we compute the ratio K1(m,
n)/K(m, n), where K(m, n) � �iK

i(m, n) is the contri-
bution of the Fourier mode (m, n) to the vertically

integrated TKE. This ratio is the energy fraction ex-
plained by the first (i � 1) EOF and takes values be-
tween 0 and 1. Suppose for instance that for a given
wave vector Ki(m, n)/K(m, n) � 1. In this case all scores
a i(t) with i � 1 are zero. Thus the flow (within this
Fourier mode) has the same vertical structure at all
instants given by Re{�̂1

j (m, n, z) exp2i�[(mx/K) � (ny/
l)]}, but appears with a random amplitude given by
|a1(t) | and at a random position given by the phase of
a1(t). Conversely, if the energy is equipartitioned
among all EOFs, the signal is white-in-space noise. So
only wave vectors where the first EOF explains an im-
portant fraction of the energy present distinct patterns
and can be said to be “strongly structured.” Conversely,
wave vectors with a low fraction of energy explained by
the first EOF correspond, from the point of view of the
EOF analysis, to more disordered motions.

Because of the statistical orthogonality of the scores
a1(t), any quantity that depends quadratically on the
velocity fluctuations can, on average, be split into indi-
vidual contributions from the EOFs. Quadratic quanti-
ties of particular interest here are the turbulent kinetic
energy and the shear production of turbulent kinetic
energy. The horizontally averaged turbulent kinetic en-
ergy e(z, t) and shear production s(z, t) can first be written
as the sum of contributions from each Fourier mode:

ez, t� � �� u2 � �2 � w2�
dx dy

2Ll
� �

mn

em, n, z, t�, where em, n, z, t� �
ûjm, n, z, t�û*j m, n, z, t�

2

sz, t� � �� w�u
dU

dz
� �

dV

dz � dx dy

Ll
� �

mn

sm, n, z, t�, where

sm, n, z, t� � Re��ûm, n, z, t�
dU

dz
� �̂m, n, z, t�

dV

dz�*
ŵm, n, z, t��. 16�

On average, the quadratic quantities may be further
decomposed as energy-weighted contributions from the
individual EOFs:

Em, n, z� � �
i

Kim, n�Eim, n, z�, 17�

with Em, n, z� � �em, n, z, t�� 18�

and Eim, n, z� �
| �̂1

i z� |2 � | �̂2
i z� |2 � | �̂3

i z� |2

2
,

19�

�sm, n, z, t�� � �
i

Kim, n�Sim, n, z�

where Sim, n, z�

� Re���̂1
i m, n, z�

dU

dz
� �̂2

i m, n, z�
dV

dz�*�̂3
i m, n, z��.

It follows finally that the profiles of TKE and TKE
production �e(z, t)� and �s(z, t)� can be expressed as
sums over the spectral domain (indexes m, n) and over
the sequence of EOFs (index i) weighted by the energy
explained by each EOF:

�ez, t�� � �
i,m,n

Kim, n�Eim, n, z�, 20�

�sz, t�� � �
i,m,n

Kim, n�Sim, n, z�. 21�
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In decompositions (20) and (21), it can be informative
to compute and compare partial sums, where the triplet
of indexes (i, m, n) spans only a subset of all possible
indices, for instance the subset D � {(i, m, n); i � 1}
containing, at each wave vector (m, n), only the most
energetic EOF (i � 1):

�ez, t��D � �
i,m,n�∈D

Kim, n�Eim, n, z�

� �
m,n

K1m, n�E1m, n, z�, 22�

�sz, t��D � �
i,m,n�∈D

Kim, n�Sim, n, z�

� �
m,n

K1m, n�S1m, n, z�. 23�

Contributions of other subsets will be considered in the
next subsection.

3. Energetic weight and flow structure of the
extracted patterns

a. Energetic EOFs

We display in Fig. 4 the energy fraction K1(m, n)/
K(m, n) explained by the first (i � 1) EOF at each wave
vector. Notice that we normalize the length scales by
the PBL depth H. We could have chosen the depth of
the SL as a characteristic length scale, but since it scales
with the PBL depth (Holtslag and Nieuwstadt 1986)

both choices are sensible. Furthermore, since the PBL
depth is more frequently directly available than the SL
depth, normalizing by H makes it easier to compare
with existing or future literature.

As explained before, the wave vector presents dis-
tinct patterns if the energy fraction explained by the
first EOF is large. We shall call such wave vectors
strongly structured. The choice of a threshold is some-
what arbitrary but does not affect the overall shape of
the spectral domain where wave vectors are strongly
structured: wave vectors where the first EOF explains a
large fraction of the energy lie in a narrow range of the
Fourier space close to the line m � n � 0, or, equiva-
lently, 3kx � ky � 0 [remember that (kx, ky) � 2�(m/L,
n/l) and that the domain is rectangular with L � 3l].
Actually, the wave vector where the energy fraction
explained by the first EOF is maximum lies off this line
at (m, n) � (0, 2). However, since it corresponds to a
very grave mode with only two wavelengths fitting in
the computational domain, it is suspect of finite-size
effects. Hence we shall not discuss this mode specifi-
cally and will concentrate on the line 3kx � ky � 0. This
line corresponds to a phase line at an angle of as in (1⁄3)
�19.5° with respect to the x axis, almost parallel to the
surface wind, which is at about 20° with respect to the
x axis (Fig. 1). Hence the extracted coherent structures
have the same orientation as found from the level-by-
level identification of streaks (Fig. 2).

To quantify in more detail the energetic weight of the
extracted structures, we now consider several contribu-
tions to the profiles of TKE and of shear production of

FIG. 4. Energy fraction K1 (m, n)/K (m, n) explained by the first EOF of each Fourier mode
as a function of the normalized wave vector Hk/2� � (H/�x, H/�y) � H (m/L, n/l), where
H � 750 m is the PBL height.
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energy. The first contribution, already defined, is due to
the dominant EOF of each horizontal wave vector:

D � �i, m, n�: i � 1�. 24�

We also define the set S of indexes whose horizontal
wave vector is strongly structured as obtained above;
that is,

S � �i, m, n�: m � n � 0�. 25�

Finally, it is natural to consider the contribution of
those indexes that correspond both to a strongly struc-
tured wave vector and a dominant EOF:

S ∩ D � �i, m, n�: i � 1 and m � n � 0�. 26�

We display the contributions of sets S, D, and S ∩ D
to the vertical profiles of turbulent kinetic energy and
of shear production of energy (Fig. 5).

Let us first consider the contribution of set S of
strongly structured wave vectors. This contribution
(circles) is an order of magnitude smaller than the com-
plete average (solid), because strongly structured wave
vectors cover only a very small fraction of the spectral
space. Next, it is interesting to compare the contribu-
tion due to set D (dominant EOFs) to the complete
average. This contribution (crosses) is now 2–3 times
smaller than the complete average (solid). Indeed most
wave vectors are weakly structured (do not present dis-
tinct patterns); hence, by ignoring all but one EOF at
each wave vector, we also drop a lot of the velocity
fluctuations. Let us finally compare the contributions
due to sets S and S ∩ D. By definition, the set S ∩ D is
made of the most energetic EOFs of set S, the set of
strongly structured wave vectors. Now, although set S ∩
D (dots) consists of much fewer EOFs than S (circles),
both contribute by a comparable amount.

Hence the EOFs, at strongly structured wavenum-
bers, are the major contributor not only to the TKE but
also to other quadratic quantities such as the produc-
tion of TKE by shear. However strongly structured
wavenumbers represent a small fraction of the total
TKE. As a result, when focusing on the properties of
the EOFs, care should be taken that these properties
are representative of the total flow. The contribution of
the coherent structures can then be assessed by com-
paring the properties of the coherent structures and
of the total flow. This will be our methodology in sec-
tion 4.

b. Typical flow structure

The dynamical origin of the rolls and streaks has
been investigated in idealized models of the NPBL, es-
pecially the Ekman flow. Lilly established that the Ek-

man flow is subject to an inflexion point instability
(Lilly 1966). The rolls observed in the near-neutral PBL
are usually interpreted as the outcome of this instabil-
ity. More recently, Foster pointed out that optimal per-
turbations of the Ekman flow present large transient
amplifications and that their scale and orientation are
in broad agreement with those of near-surface streaks
(Foster 1997). These analyses based on linearized dy-
namics lack, however, all of the nonlinear mechanisms
that support turbulence. Especially, the decay of
streaks appears to be a nonlinear process (Drobinski
and Foster 2003). Nevertheless, it is interesting to com-
pare the flow patterns emerging from these idealized
studies to those extracted from this complex flow obey-
ing fully nonlinear dynamics.

Indeed, because of incompressibility, the flow corre-

FIG. 5. Profiles of (top) turbulent kinetic energy E(z) and (bot-
tom) shear production of energy S(z) as a function of the altitude
z normalized by the PBL height H � 750 m: complete average
(solid) and contributions of sets S (strongly structured wave vec-
tors; circles), D (dominant EOFs; crosses), and S ∩ D (dots).
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sponding to a single Fourier mode or to several Fourier
modes with parallel wave vectors can be conveniently
described in terms of an across–wave vector horizontal
(along streak) velocity u� and an along–wave vector
streamfunction, from which the vertical velocity w and
the along–wave vector horizontal velocity �� are de-
rived. This description and choice of axes is called
Squire’s transformation in the context of normal-mode
stability analysis. This common flow structure between
EOFs, unstable normal modes, and optimal perturba-
tions is what makes the comparison straightforward.

We find that the first EOFs are concentrated close to
the ground with a vertical extension comparable to
their horizontal wavelength. At very low wavenumbers
(�m � n � 1, 2, not shown), the vertical scale of the
EOFs is about 200 � 400 m. No streaks are distinguish-
able on horizontal cross sections of the velocity field at
such altitudes. Furthermore, the corresponding hori-
zontal scale

� � �x
�2 � �y

�2��1	2 � m2	L2 � n2	l2��1	2 27�

is � � 474 m for �m � n � 2 (L � 3 km, l � 1 km).
Such large horizontal scales comparable to the domain
size are probably affected by finite-size effects, as well
as the mode (m, n) � (0, 2) where the explained energy
fraction is maximal. Hence higher-wavenumber EOFs
(�m � n � 4, 5, � � 237 m, 190 m), displayed in Fig. 6,
are more likely to correspond reliably to the streaks.
Since the EOFs are defined through the eigenproblem
(14) up to a multiplicative constant (in the computa-
tions the constant is determined by the convention that
the EOF has unit energy), the units of Fig. 6 are arbi-
trary. Both EOFs have the structure of an alternating
along-streak jet superimposed onto two counterrotat-
ing rolls typical of linearly unstable normal modes and
of optimal perturbations (Foster 1997). The stream-
function is approximately in quadrature with respect to
the along-streak velocity. This means that the along-
streak and vertical velocities are roughly in phase, pro-
ducing, on average, a vertical flux of horizontal momen-
tum and extracting energy from the mean shear. Com-
pared to the along-streak velocity, the streamfunction
of the linearly most unstable normal mode extends ver-
tically roughly twice as much (Foster 1997, Fig. 4). At
contrast, the along-streak velocity and streamfunction
of the optimal perturbations have roughly the same ver-
tical extent (Foster 1997, Figs. 7–8). In the patterns
displayed in Fig. 6, the streamfunction and the along-
streak velocity present comparable vertical extents.
Thus, the first EOF bears more resemblance to the
optimal perturbation than to the unstable normal
mode.

At this point it is useful to emphasize the difference
in horizontal and vertical scales between the SL struc-
tures considered here and the PBL structures studied
by Wilson (1996). Wilson classifies the EOFs extracted
from the LES of a slightly convective PBL in several
categories: random motion, motion near the inversion
layer, thermal, and longitudinal roll. The latter struc-
ture, labeled E1 in Wilson (1996), spans most of the
PBL and has a horizontal wavelength comparable to
the PBL depth. At contrast, the flow displayed in Fig. 6
spans about 20% of the PBL and its wavelength is one-
third of the PBL depth. Furthermore, it is one of the
largest modes among the strongly structured modes ly-
ing on the line 3kx � ky � 0; the other ones (not dis-

FIG. 6. Flow structure of the first EOF at wave vector k �
2�(�4/L, 4/l), corresponding to a horizontal-scale � � 237 m and
phase lines almost parallel to the surface wind. The streak axis is
perpendicular to the plane of the figure. (top) Contours of along-
streak velocity. (bottom) Contours of the streamfunction of the
circulation in an across-streak plane. Contours are regularly
spaced. The across-streak coordinate x · k/k is normalized by the
PBL height H � 750 m.
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played) are of smaller scale in both the vertical and
horizontal directions.

We finally display for the Fourier modes �m � n �
2 and �m � n � 4 the vertical profiles of kinetic energy
E1(m, n, z) (Fig. 7) and of production rate of energy by
the shear S1(m, n, z) (Fig. 8). Because of the normal-
ization of the EOFs, E1(m, n, z) is an adimensional
quantity whose vertical integral is 1. It can be seen that
the energy of the first EOF is concentrated closer to the
ground than the total energy of the corresponding Fou-
rier mode. Concerning the shear production, most of it
is solely due to the first EOF. Only very close to the
ground does the flux intensity contributed by the first
EOF decrease much faster than the total contribution
by the corresponding Fourier mode. The maximum
shear production for the first EOF of Fourier mode
(�m � n � 4) is attained at an altitude �0.08H (i.e.,
about 60 m), which corresponds to the typical altitude
up to which streaks can be observed on horizontal cross
sections of this LES.

4. Contribution to turbulence anisotropy

Here, as in previous studies (Rinker and Young 1996;
Wilson 1996; Finnigan and Shaw 2000; Esau 2003), the
EOF technique proves successful at (i) identifying the
horizontal characteristics of the energetic flow patterns
(wavelength and orientation) and (ii) providing the cor-
responding vertical structure of the flow. We now pro-

ceed with the analysis of the contribution of these struc-
tures to turbulence anisotropy. Strictly speaking, this
analysis is independent from the previous discussion.
However the line 3kx � ky will be a useful visual guide
emphasizing where strongly structured modes are lo-
cated in the spectral domain. Meanwhile it must be
borne in mind that the energetic patterns extracted by
the EOF technique represent only a small fraction of
the energy (except, by construction, in the strongly
structured spectral domain).

a. Vertical extent

The vertical extent of rolls or streaks is often studied
by investigating up to which height above ground the
spatial features of a horizontal cross section (z � const)
of the velocity field survive. Here, because the EOFs
precisely represent the correlations between the differ-
ent altitudes, the different levels are never considered
independently. Therefore we characterize the vertical
extent of the turbulent structures through their TKE
center, the column average of altitude weighted by the
turbulent kinetic energy (Wilson 1996):

Zm, n� �

� zEm, n, z� dz

� Em, n, z� dz

, 28�

Z1m, n� �

� zE1m, n, z� dz

� E1m, n, z� dz

. 29�

FIG. 7. Vertical repartition E1 (m, n, z) of the kinetic energy of
the first EOFs for Fourier modes �m � n � 2 (circles) and
�m � n � 4 (crosses). Vertical repartition Emn of the total kinetic
energy contained in the Fourier modes �m � n � 2 (solid) and
�m � n � 4 (dashed). These quantities are adimensional and
their vertical integral is equal to one. The corresponding horizon-
tal scale is � � 474 m (�m � n � 2) and � � 237 m (�m � n �
4), respectively.

FIG. 8. Vertical profile of �S1 (m, n, z) (contribution of the first
EOFs to the shear production; see section 2c) for Fourier modes
�m � n � 2 (circles) and m � �n � 4 (crosses). Vertical profile
of the total shear production Smn for the Fourier modes �m �
n � 2 (solid) and �m � n � 4 (dashed).
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In this definition, we can choose to weigh by the TKE
E(m, n, z) � �e(m, n, z, t)� at altitude z and wavenum-
ber (m, n) or only by the contribution E1(m, n, z) of the
first EOF. In addition, we may consider the total TKE
or only the horizontal TKE EH � 1⁄2�u2 � �2 � or the
vertical TKE EV � 1⁄2�w2 �. The height Z(m, n) can then
be interpreted as a penetration height up to which a
given Fourier mode or EOF contributes significantly to
the horizontal Fourier spectrum.

We display in Fig. 9 the TKE center as a function of
the horizontal wavenumber, obtained from the hori-
zontal energy EH (m, n, z) of the corresponding Fourier
mode (Fig. 9a) or obtained from the horizontal energy
E1

H(m, n, z) of the corresponding first EOF only (Fig.
9b). A global trend is that horizontally short structures
(large wave vectors) have a correspondingly small ver-
tical extent. A striking feature is the strong anisotropy
in the values of the TKE center Z. For wave vectors
lying on the line 3kx � ky � 0, the TKE center is much
smaller than that of wave vectors of comparable mag-
nitude and different direction. This anisotropy is more

pronounced for the TKE center based on EOFs (Fig.
9b). The line 3kx � ky � 0 corresponds to the strongly
structured wave vectors. Hence what we observe is that
the most energetic patterns of this flow are more con-
centrated close to the ground than motions of compa-
rable horizontal scale for which no significant EOF can
be extracted, indicating more disordered motion.

Considering, finally, the TKE center obtained now
from the vertical energy EV (m, n) (not shown), the
trend that horizontally short structures have a small
vertical extent persists. However, the anisotropy in the
values of the TKE center Zmn is much less apparent, yet
still visible for the TKE center based on EOFs. Now,
the vertical velocity is blocked near the ground, which
is not the case for the horizontal components. The
strength of this blocking effect does not depend on the
direction of the wave vector. Hence it may be the origin
of the weaker dependence of the vertical TKE on the
direction of the horizontal wave vector.

b. Vertical versus horizontal turbulent kinetic
energy

We have discussed so far the anisotropic dependence
of the vertical extent of flow patterns on their horizon-
tal wave vector. Anisotropy may enter in a second way
for a vector quantity such as velocity, since it may point
in directions that are not isotropically distributed. An
indication of that is given by the ratio EV /EH of the
vertical TKE over the horizontal TKE. The properties
of homogeneous and isotropic turbulence are that (i)
the ensemble means associated with the turbulent state
are invariant with respect to any translation, rotation,
or symmetry; and (ii) in practice, there is no privileged
direction for turbulence. If the velocity fluctuations had
isotropically distributed directions, as in locally isotro-
pic turbulence, we would have �u2 � � ��2 � � �w2 � and
the ratio EV /EH would be equal to one-half.

We display in Fig. 10a the TKE ratio EV /EH as a
function of the horizontal wavenumber. Only for very
small scales (large wave vectors) does EV /EH approach
the isotropic value of one-half. Everywhere else the
TKE ratio is in favor of the horizontal TKE, especially
at large horizontal scales (small wave vectors) but also
and more remarkably for strongly structured wave vec-
tors (lying on the line 3kx � ky � 0). Figure 10b pre-
sents the ratio E1

V /E1
H of the contribution of the first

EOF to the vertical and horizontal TKEs. Retaining
only the first EOFs worsens the statistical convergence,
resulting in a noisier plot. Nevertheless, the features
discussed above are clearly visible in an even more pro-
nounced way. In a narrow angular sector containing the
strongly structured line 3kx � ky � 0, the TKE ratio is

FIG. 9. TKE center Z1 (m, n) /H normalized by the PBL height
H � 750 m, as a function of the normalized horizontal wave vector
Hk/ 2� � (H/�x, H/�y). The black, dashed line 3kx � ky � 0
emphasizes the strongly structured region of Fourier space found
in section 3.
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in favor of the horizontal TKE while it is much closer to
its isotropic value of one-half outside this sector.

It is expected that isotropy is violated by structures
with very large horizontal scale since their vertical ex-
tent is limited by the PBL height, resulting in a low
geometric aspect ratio. Because of incompressibility,
such structures with small vertical extent relative to
their horizontal scale have a correspondingly low ver-
tical velocity. Conversely, horizontally short structures
are free to achieve a vertical–horizontal aspect ratio of
1 or more and the corresponding ratio of vertical to
horizontal TKE. This is clearly not the case at strongly
structured wave vectors for which a typical eV /eH ratio
is about 0.2 even at large wave vectors. This is consis-
tent with the observation that the corresponding flow
patterns are closer to the ground than those of equiva-
lent horizontal scale and different direction, resulting in
a lower vertical–horizontal aspect ratio. Noticing from
Fig. 3 that, for the total signal, ��2 �/�u2 � and �w2 �/��2 �

are about 0.5, we obtain that EV /EH � 0.17, which is
remarkably similar to the ratio found for the strongly
structured wave vectors. Hence the strongly structured
wave vectors carry a turbulence anisotropy that is rep-
resentative of the anisotropy observed in the total sig-
nal.

5. Summary

We have analyzed a dataset produced by a LES of a
neutral atmospheric surface layer (SL). In the LES, the
small-scale streaks can be observed up to about 0.13H
(i.e., 100 m above the ground). We have performed an
empirical orthogonal function (EOF) analysis; this
method exploits the statistical information contained in
the self-correlation matrix [Eq. (4)], here the correla-
tions between the velocity fluctuations at different al-
titudes (10). This is in contrast to, for instance, a level-
by-level spectral analysis, which would discard these
correlations.

Not all horizontal wave vectors, rather few in fact,
present distinct patterns in their vertical profile. We
identified the narrow band in the Fourier space near
3kx � ky � 0 where such energetic patterns are strong
enough that the first EOF carries more energy than the
next ones altogether. The orientation of this band is in
agreement with a level-by-level identification of the
streak lines. Thus these streak patterns are indeed pro-
duced by structures with a spatial coherence on the
vertical. Furthermore, the extracted EOFs have a flow
structure similar to that of linearly unstable normal
modes and optimal perturbations. EOF analysis thus
provides a way to compare features emerging from
complex, fully nonlinear dynamics and idealized, linear-
ized dynamics. From this comparison, it turns out that
the flow patterns of coherent structures bear more re-
semblance to the optimal perturbations (Foster 1997)
than to the unstable normal modes (Lilly 1966).

Foster et al. (2006) analyze the same dataset using
level-by-level spectral analysis and conditional sam-
pling, focusing on the relationship between streaks, up-
ward ejections of low-momentum air, and downward
sweeps of high-momentum air. Conditional sampling
does not separate the various horizontal scales of the
velocity fluctuations; conversely, EOF analysis does not
distinguish between ejections and sweeps. This makes
the two methods complementary in that they focus on
different issues. Nevertheless, both EOF analysis and
level-by-level spectral analysis provide length scales for
the streaks. Foster et al. (2006) find that the streaks
present multiple horizontal scales, ranging from 125 to
264 m at the lowest level. They also observe that the
large-scale peaks disappear farther from the surface

FIG. 10. Ratio EV /EH of vertical to horizontal TKE as a func-
tion of the horizontal wave vector k � (kx, ky) � (2�/�x, 2�/�y)
normalized by the PBL height H � 750 m. (a) Vertically averaged
TKEs. (b) Only the contribution due to the first EOF. The black,
dashed line 3kx � ky � 0 indicates the strongly structured region
of Fourier space. The black, dashed line 3kx � ky � 0 emphasizes
the strongly structured region of Fourier space found in section 3.
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than small-scale peaks. This is consistent with our result
that the EOFs computed at larger horizontal wave vec-
tors have a smaller vertical extension.

Beyond the extraction and identification of coherent
structures, we further analyze their contribution to the
turbulence anisotropy, which is the main aim of this
work. The EOF analysis helps us in two ways in this
task. First, it points us at the regions of Fourier space
where coherent structures are important and might
have a signature on the turbulence. We find that two
characteristics of the turbulence anisotropy depend on
whether the velocity fluctuations with a given horizon-
tal wave vector present distinct patterns:

1) The turbulence extends on a vertical range much
smaller for structured wave vectors than for unstruc-
tured wave vectors with comparable magnitude and
unspecified direction. This observation is particu-
larly true for the fluctuations of horizontal velocity
(as measured by the horizontal turbulent kinetic en-
ergy) and less for vertical velocity.

2) The velocity fluctuations themselves are also distrib-
uted in a less isotropic way, as made apparent by the
depleted ratio of vertical and horizontal turbulent
kinetic energies.

Second, EOF analysis not only extracts coherent
structures but also separates the velocity field into its
projection onto the dominant EOFs and remaining, less
structured fluctuations. The above two anisotropies of
turbulence are strongly emphasized when the signal is
projected onto the most energetic EOF of each Fourier
mode. This indicates that the coherent structures do
indeed “carry” more anisotropy than the remaining tur-
bulent fluctuations. Notice that the above two anisotro-
pies of turbulence are convincingly present in the com-
plete signal. This is important since the dominant EOFs
finally account for a relatively small fraction of the total
kinetic energy, and the significance of properties of the
EOF-filtered signal could therefore be questionable.
Hence we rely on both the EOF-filtered signal and the
complete signal to characterize the signature of the co-
herent structures on anisotropy, which we find indeed
significant.

We did not discuss the flow pattern produced by the
second EOF. Notice that the statistical convergence of
the higher EOFs (not investigated here) may require a
larger dataset. Furthermore, the flow patterns present
several recirculation loops and are not easy to interpret.
This is a manifestation of the general rule that higher
EOFs cannot be interpreted individually but only in
combination with the previous ones (Berkooz et al.
1993). They may deserve additional investigations.

In terms of parameterization, implementing subgrid-

scale models that conceptually account for the contri-
bution of the coherent structures to near-surface ener-
getics remains an issue. Improvements have been made
on the subgrid representation of coherent structures to
the total momentum and heat fluxes (Foster and Brown
1994; Redelsperger et al. 2001; Hourdin et al. 2002;
Drobinski et al. 2006) but not to the directional kinetic
energy and dissipation. Even though this is not treated
as such in this article, we believe it is worth to empha-
size this issue. Finally, while neutral stratification is an
important dynamical regime, nonneutral stratification
substantially affects the coherent structures and prob-
ably their contribution to the turbulence anisotropy.
Future works will investigate this contribution in the
stably stratified PBL, where both the structure of tur-
bulence and the dynamics of coherent structures are
less well understood than in the convective PBL.
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