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ABSTRACT

Reverse transcription of the genomic RNA by
reverse transcriptase occurs soon after HIV-1 infec-
tion of target cells. The viral nucleocapsid (NC) pro-
tein chaperones this process via its nucleic acid
annealing activities and its interactions with the
reverse transcriptase enzyme. To function, NC
needs its two conserved zinc fingers and flanking
basic residues. We recently reported a new role for
NC, whereby it negatively controls reverse tran-
scription in the course of virus formation. Indeed,
deleting its zinc fingers causes reverse transcription
activation in virus producer cells. To investigate this
new NC function, we used viruses with subtle muta-
tions in the conserved zinc fingers and its flanking
domains. We monitored by quantitative PCR the
HIV-1 DNA content in producer cells and in pro-
duced virions. Results showed that the two intact
zinc-finger structures are required for the temporal
control of reverse transcription by NC throughout
the virus replication cycle. The N-terminal basic
residues also contributed to this new role of NC,
while Pro-31 residue between the zinc fingers and
Lys-59 in the C-terminal region did not. These find-
ings further highlight the importance of NC as a
major target for anti-HIV-1 drugs.

INTRODUCTION

The inner structure of mature infectious retroviral parti-
cles is formed of the genomic RNA coated by several
hundred copies of the nucleocapsid (NC) protein (1).

NC is encoded by the C-terminal domain of Gag, and
found as the mature protein upon Gag polyprotein pro-
cessing by the viral protease during virion formation
and budding. NC is a small basic protein with either one
or two highly conserved ‘CCHC’ zinc fingers, and has
potent nucleic acid binding and annealing activities (1,2).
Retroviral NC is multifunctional in that it acts throughout
the virus replication cycle via a number of molecular inter-
actions. At the late stage, NC as part of Gag selects and
dimerizes the genomic RNA, which is thought to start
the Gag assembly process in infected cells. During the
early stage, mature NC molecules do extensively interact
with the viral genome and reverse transcriptase (RT) to
chaperone proviral DNA synthesis by reverse transcrip-
tase, thus ensuring the bona fide synthesis of the proviral
DNA flanked by the LTRs (1,2).
HIV-1 NC is characterized by a central globular domain

composed of two highly conserved CCHC zinc fingers (ZF)
linked by a basic RAPRKKG sequence, and flanked by
flexible N-terminal and C-terminal domains (Figure 1A)
(3,4). Upon Zn2+ coordination by the CCHC residues the
ZFs fold into a specific structure (5–7), which is required
for virus infectivity (Figure 1A).
The present view is that NC as part of the Gag poly-

protein specifically binds the genomic RNA via tight inter-
actions between the ZFs and the Psi packaging signal
located in the 50 leader sequence (8–14). These specific
NC–RNA molecular interactions are thought to promote
genomic RNA dimerization and Gag oligomerization,
where the viral RNA acts as an assembly platform in
the course of virion formation (1, 15–17). The basic resi-
dues located in the N-terminal flexible region of NC also
contribute to genomic RNA selection and HIV-1 assembly
(18–21). Indeed, subtle changes in the ZF structure caused
by mutating the CCHC residues or the aromatic amino
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acids result in the formation of replication defective
viruses (1,2). Similarly, changing the basic residues to neu-
tral ones in the N-terminus and the linker domains of NC
results in the production of virions with large defects in
the core structure and replication (12,22).
During the past years, detailed information has accu-

mulated on the role of NC protein in viral DNA synthesis
by RT both in vitro and in cell culture. For example, NC
promotes annealing of the replication primer tRNA to the
primer binding site (PBS) on the genomic RNA, and the
two obligatory strand transfers that are required to gen-
erate the complete proviral DNA flanked by the two LTR
(Figure 2) (1,2,23,24). NC also prevents nonspecific self-
priming induced by the TAR stem–loop structure at the 30

end of minus strand ssDNA (25–27). Thus, it appears that
NC has key roles as a nucleic acid chaperone during viral
DNA synthesis by RT once the viral infection is
completed.

Recently, we reported a new function for the NC in
the virus life cycle. Indeed, we showed for the first time
that NC regulates the timing of reverse transcription,
by inhibiting premature cDNA synthesis during the pro-
cess of HIV-1 assembly (28). By monitoring the effects
of ZF deletions on the conversion of both the genomic
and spliced RNA species into viral DNA, we showed
that mutant virions unexpectedly contained a high level
of viral DNA compared with wild-type (wt) virions (28).
We showed that such intravirion DNA content of NC
mutants did not result from endogenous reverse transcrip-
tion in viral particles, but was due to viral DNA synthesis
in virus producer cells. These findings revealed that
reverse transcription can occur before virion release,
most likely during HIV-1 assembly. Then, we called this
property ‘‘late reverse transcription’’ in accordance with
the hepadnaviruses (e.g. hepatitis B virus) and foamy
viruses, whose particles contain viral DNA due to reverse
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Figure 1. Sequence and structure of HIV-1 NC protein. (A) Sequence of the 1–71 form of NC and the 3D structure as determined by 1H-NMR are
shown (4). Numbers indicate positions of amino acids. ZFs 1 and 2 are in red with the Zn ions shown as blue dots. The linker between the two ZF is
in yellow and the N- and C-terminal domains (1–13 and 64–71, respectively) are in blue and gray, respectively. All residues important for this study
are in black. (B) Substitution of the wt CCHC motifs by alternative zinc-coordinating residues, i.e. CCCC. Point mutations are indicated in red.
(C) Point mutations targeting the N-terminus, the linker and the C-terminal domains of NC are shown.
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transcription taking place at the late stage of their
replication.

In the present study, we investigated what might be the
NC structural determinants involved in the temporal con-
trol of reverse transcription during the late stage of HIV-1
replication. To that end, we studied the consequences of
subtle structural changes caused by single mutations in the
first and/or the second ZF and of some conserved residues
flanking the ZFs. Results reported here showed that the
two intact ZF structures, as well as N-terminal basic resi-
dues are major determinants involved in the temporal con-
trol of reverse transcription by NC protein throughout
HIV-1 life-cycle.

MATERIALS AND METHODS

Plasmids and cell culture

Different HIV-1 pNL4-3 plasmids with point mutations
in NC were used: namely H23C, H44C, H23H44C,
R7R10K11S, K14D, P31L and K59L. Construction of
these mutants has been described elsewhere: H23C (29),
H44C and H23H44C (30); R7R10K11S and K14D (18),
P31L (31) and K59L (32).

The 293T cell line was grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with glutamine
(2mM), penicillin, streptomycin and 10% (v/v) heat-
inactivated fetal calf serum.

DNA transfection and virus preparation

Transfections of 293T cells were performed with 3� 106

cells divided 1 day before in 100mm dishes by the calcium
phosphate precipitation method with 8 mg of HIV-1 or
pSP72 (mock) plasmid DNAs. Cells were trypsinized 6 h
after transfection, extensively washed with fresh medium
and divided into two new plates to eliminate plasmid
DNA in excess. After 48 h posttransfection, virions were
purified from filtered culture supernatants by centrifuga-
tion through a 20% sucrose cushion at 30 000 r.p.m. in an
SW32 rotor for 1 h 30min at 48C. The amount of HIV-1
particles in the pellet was determined using a HIV-1
CAp24 core antigen enzyme-linked immunosorbent
assay (ELISA) Kit (Beckman CoulterTM).

DNA extraction and qPCR analysis

Nucleic acid extraction from virions was performed as pre-
viously described (28). Purified virions were incubated with
8U of DNAse (RQ1, Promega France, Charbonnières-les-
Bains) at 378C for 45min before phenol/chloroform
extraction and ethanol precipitation. DNase treatment
reduced contaminations by the transfecting-plasmid DNA
(pNL4-3) under the level of the FL DNA.
Cellular DNA was extracted with DNAzol (MRC)

according to the manufacturer’s instructions. To avoid
any contamination with viral cDNA associated with the
particles, cells were trypsinized and extensively washed
with PBS before DNA extraction.
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Figure 2. Strategy of qPCR to monitor the viral cDNA synthesis. (A) Conversion of the viral genomic RNA into FL DNA. Reverse transcription is
initiated from the cellular tRNALys

3 (represented by a short black line attached to a ‘clover-leaf’) annealed to a complementary part of the genomic
RNA called the primer binding site (PBS). Synthesis proceeds to the 50 end of the genome, creating a DNA fragment called minus strong-stop DNA
(ss-cDNA). The direct repeat sequences located at the ends of the genome enable the ss-cDNA to transfer to the 30 end. This first jump is called the
minus-strand transfer. Elongation of minus-strand DNA and RNase H degradation of reverse transcribed RNA continue (GagDNA), while plus-
strand synthesis initiates by the polypurine tracts (PPT30 and cPPT). A second jump, called plus-strand transfer, is required to the plus-strand DNA
synthesis and strand completion (FL DNA). The PCR–primer pairs used to specifically quantify the intermediate ss-cDNA, GagDNA, and the final
product FL DNA or the pNL4-3 plasmid were schematically represented by blue and black arrows, respectively. Primer numbers refer to the position
of the elongation start. (B) Spliced cDNA species monitored in the study. Only the splice sites (SD1/SA5 and SD4/SA7) important for this study are
indicated. The env and the class of the multispliced (MS) cDNAs are represented in green and orange, respectively.
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Nucleic acids were quantitated by measuring optical
absorption at 260nm. The qPCR was achieved with 25ng
of intravirion and cellular nucleic acid samples extracted
from cells transfected with either wt or mutant pNL4-3
plasmid, or with empty plasmid as controls (mock).
Background DNA levels measured in mock were subtracted
from all assays. Nucleic acid levels in virions and producer
cells have been normalized with respect to capsid protein
p24 (determined by ELISA) and GAPDH gene, respec-
tively (33). qPCR assays were performed with SYBR
Green Kit (Roche Diagnostics Meylan, France) with the
RotorGene (Labgene, Archamps, France) system. A stan-
dard curve was generated based on a range of 50–500000
copies of pNL4.3 plasmid DNA. Sequences of primers and
detailed PCR conditions will be provided on request.

RESULTS

Influence of point mutations in the NCZFs on reverse
transcription in virus producer cells

We previously showed that deletion of either the first
(�ZF1), the second (�ZF2) or the two (�ZF1ZF2) NC
ZFs resulted in the extensive synthesis of viral DNA
already in virus producer cells (28). In an attempt to
understand how NC controls the reverse transcription
process during virion formation, we studied the effect of
changing highly conserved residues in the NC ZFs, namely
His23, His44 or His23/His44 to Cys, referred as HIV-1
H23C, H44C and H23H44C, respectively (Figure 1B).
These mutations maintain the Zn2+-binding residues
(CCCC motifs), but lead to a partial misfolding of the
NC central globular domain, that is essential for virus
infectivity (22,31,34). These NC mutants have been pre-
viously tested in reverse transcription assays in vitro, and
the NC H23C and H44C mutants showed a reduced abil-
ity to chaperone the initiation of reverse transcription
(35,36) and of viral DNA strand transfer (37). However,
no effect was seen in RNA chaperoning assays in vitro
(Darlix and Gabus, unpublished results). Upon infection
by the corresponding HIV-1 H23C and H44C, mutations
caused a marked reduction of viral DNA synthesis in
infected cells, together with a complete defect in proviral
DNA integration probably due to a degradation of its
LTR ends (38). Besides the decrease in the overall effi-
ciency of reverse transcription, infection by spinoculation
revealed that the H23C and H44C mutants showed
amount of DNA increased during earlier time-points of
infection (1 h) compared to wt (38), suggesting that DNA
synthesis could begin within HIV-1 particles. Moreover,
we recently showed that the deletion of either one or the
two NC ZF lead to reverse transcription taking place in
virus producer cells, before virion release (28). Therefore,
we examined whether subtle point mutations in the NC
ZFs could induce such a change in the timing of the
reverse transcription throughout HIV life-cycle.
To test whether the DNA synthesis could be achieved,

at least in part, before virion release, we performed a
detailed quantitative analysis of viral DNA synthesized
in 293T cells expressing or not (mock) either one of the
HIV-1 H23C, H44C or H23H44C mutants. To circumvent

the difficulty to discriminate by qPCR between the trans-
fected plasmid DNA and the viral cDNA molecules
synthesized in cells, we analyzed the levels of spliced
cDNAs corresponding to the reverse transcription of the
spliced viral mRNAs (Figure 2). Indeed, we previously
showed that the viral spliced RNA were reverse-
transcribed as efficiently as the genomic RNA (39),
which makes these spliced DNA forms an ideal marker
for viral DNA quantification (28). As previously
described, the viral spliced DNA levels were monitored
by qPCR in cell lysates of assays and mock transfected
controls (28,39) (Figure 3). In the present study, we used a
primer pair for the analysis of env sequences, that repre-
sent 74% of the singly spliced RNA class, and a primer
pair specific for the SD4/SA7 splice junction that allowed
overall quantification of the multispliced RNA converted
into cDNA (MS cDNA) (33) (Figure 2B). In parallel, the
GAPDH copy numbers were systematically determined
in all DNA samples extracted from cell lysates for
normalization.

Mutating the first ZF (H23C) induced a slight increase
of the spliced cDNA levels, notably for env cDNA
(P=0.02), compared to wt. A more pronounced effect
was observed with the H44C mutation in the second ZF,
with a 90-fold increase of the env cDNA level (P=0.02).
Such an increase was not found with the double mutant
(H23H44C), where the effects of H23C and H44C muta-
tions did not appear to be cumulative, as already observed
with the two ZF deletion mutant (�ZF1ZF2) (28)
(Figure 3).

Because the accumulation of the viral cDNA in produ-
cer cells could be a direct function of the efficiency of viral
assembly and virus production, next we monitored the
viral cDNA products in nascent virions.

Impact of the H23C, H44C and H23H44Cmutations on the
cDNA content in virions

To examine whether viral cDNA products were incorpo-
rated into released virions, we performed an extensive
analysis of the purified virions produced by 293T trans-
fected cells (see Material and methods section). Overall,
these ZFs H23C, H44C and H23H44C mutations have a

Figure 3. Viral cDNA in HIV-1 producer cells. Analysis of viral DNA
synthesized in cells producing HIV-1 with either wt or mutated NC.
Spliced viral DNAs were measured by qPCR in 293T cells transfected
or not (control) with mutant or wt plasmid HIV-1 DNA. Mock con-
trols were subtracted from assays (n=3�SD).
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pleitropic effect on virus structure and replication. Indeed,
previous electron microscopy studies showed that these
ZF mutations resulted in the production of replication
defective virions with an immature core morphology, lack-
ing the typical cone-shaped core structure (29,30). The
mutations partially impair RNA packaging and modify
the intracellular localization of Gag proteins (29,30,34,40).

In our experimental system, virus production, as mon-
itored by a p24 ELISA assay on purified viral particles,
was partially impaired by all the mutations (Figure 4). In
contrast to previous observation (30), the double
H23H44C mutant showed only 2% of wt virion release.
The reason for this difference might be due in part to the
different experimental conditions, since previously HelaP4
cells were transfected and the virions collected 20 h post-
transfection without previous split. The present results
correlate with results of other mutations also targeting
the NC ZF (41).

To assess the DNA content in the HIV-1 ZF mutant
particles, purified virions were treated with DNase to
remove any contaminating plasmid DNA due to cell trans-
fection. We used qPCR for the quantitative monitoring of
the different intermediates of reverse transcription such as
the minus strong-stop, Gag and the full-length viral
cDNAs as well as the so-called MS and env cDNAs in
assays and mock controls (Figure 2) (28). All NC mutant
particles harbored an increase of 10- to 40-fold of the
viral FL DNA levels compared to wt virions (Figure 5).

There was also a large enhancement of the MS and env
cDNA in these mutant virions, with about a 100-fold
increase in the H44C viral particles. These results extend
previous ones on the consequences of deleting the ZF
motifs (�ZF1, �ZF2, �ZF1ZF2) (28), and indicate that
subtle structural alterations of the NC ZFs have an impor-
tant impact on the timing of reverse transcription through-
out the virus replication cycle.

Role of N-terminal basic residues of NC in the
temporal control of reverse transcription

To seek for other NC determinants involved in the control
of viral DNA synthesis during HIV-1 virion formation, we
examined the consequences of mutating conserved basic
residues in the N-terminal region that precedes the first
ZF. To that end, we selected the NC R7R10K11S (basic
residues Arg7, Arg10 and Lys11 changed to neutral Ser
residues) and K14D (basic to acidic) mutants (Figure 1C)
because such NC mutations cause a severe defect in virus
replication. This might be related to a strong defect in viral
DNA synthesis in infected cells and the fact the viral DNA
appeared to be unstable during the early phase of cell infec-
tion (18,19,42–44). In addition, the HIV-1 R7R10K11S
and K14D mutants were found to package the genomic
RNA at level of 20–50% (12,18,42,44) and 90% (18) of
the wt level, respectively. But genomic RNA dimerization
remained unaffected for the R7R10K11S mutant (42).
Presence of cDNA synthesized in cells transfected by the
mutant HIV-1 R7R10K11S or K14D DNAs was moni-
tored as before by qPCR. As shown in Figure 3, there
was an enhancement of the spliced cDNA levels in cells
expressing these HIV-1 mutants, notably a 40-fold increase
in the env cDNA.
Then, we examined the cDNA content of the mutant

particles produced by the transfected cells. In contrast to
the ZF point mutations, changing the basic residues had
only a moderate effect on virus production (Figure 4) but,
mutant particles harbored an altered core morphology
with an enlarged particle size (18). Quantification of the
different cDNA species present in DNAse treated virions,
i.e. sscDNA, Gag, FL DNA and spliced cDNAs,
revealed a much higher level of viral DNA (Figure 5).

Figure 4. Analysis of the viral particles produced by cells expressing
HIV-1 NC mutants. Amounts of viral p24 capsid present in pelleted
virions were quantitated by ELISA and values were normalized to wt
level (n=3� SD).

Figure 5. Quantitation of intravirion viral cDNAs in particles with NC mutations. Levels of viral strong-stop, Gag, FL, env and multispliced cDNAs
were determined by qPCR in wt and NC mutant virions. Copy numbers of viral DNA were given for 100 ng p24 corresponding to �6.25� 108

viruses (4000CA/virus used for calculation) (n=3� SD).
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In conclusion, the basic residues located in the N-terminal
domain of NC are important determinants for the control
of reverse transcription mediated by NC, during virion
formation.

Effect of mutating residues in the ZF linker and the
C-terminal domain of NC

The Proline residue at position 31 (Pro31) is unique in the
HIV-1 NC, and is located in the highly conserved
29RAPRKKG35 region linking the two ZF motifs
(Figure 1C). This structural kink caused by Pro31 is
thought to be involved in the respective spatial orientation
of the ZF motifs (3,4,11). Such a role in NC conformation
prompted us to study its importance in the control of late
reverse transcription. To that end, we analyzed the effect
of changing Pro31 to Leu31 (P31L), which is expected to
strongly modify the structure of the linker and of the
spatial orientation of the two ZFs. The P31L mutant
has been reported to produce noninfectious viruses con-
taining only minimal levels of mature RT (31,32). In our
experimental conditions, we found that the P31L mutant
produced 37% of the wt virion level, as measured by the
p24 ELISA assay (Figure 4). The viral cDNA was mon-
itored as above in both the producer cells (Figure 3) and
the virions (Figure 5). Results indicate that the cDNA
levels in the producer cells were similar to those found
with the wt HIV-1. In the P31L virions, the strong-stop,
Gag and FL cDNA levels were found lower than viral
cDNA levels in wt particles. In addition, the spliced
cDNA species remained undetectable in P31L particles.
Thus, changing Pro31 to Leucine in the ZF linker appears
to result in a possible increase in the control of reverse
transcription in virus producing cells. In agreement with
this notion, the P31L form of NCp7 was found to possess
potent RNA chaperoning activities and to extensively
interact with the RT enzyme in vitro (Darlix and Gabus,
unpublished data).
Last, we wanted to study the influence of the C-terminal

domain of the NC precursor (1–71) because NC (1–55),
thus missing residues 56–71, was shown to have a reduc-
tion of its activity in reverse transcription in vitro (45). The
large and short forms of NCp7 are found in HIV-1 virions
recovered every 2–4 h [Berthoux,L., thesis; (46)]. To study
the influence of the C-terminal region of NC on the con-
trol of viral cDNA synthesis, we used the HIV-1 NC
mutant where Lys59 was changed to Leucine (K59L).
The HIV-1 K59L mutant was about �1000-fold less infec-
tious than the wt virus (Darlix,J.L. and Berthoux,L.,
unpublished data) and contained 50% of wt genomic
RNA level (32) with most of it in a dimeric form (42).
While the main defect that has been reported for this
mutant was in the efficiency of the pr55Gag processing
(32,43,47), this has only weak effect on virus production
(Figure 4). Quantification of the viral cDNA levels in pro-
ducer cells (Figure 3) and in virions (Figure 5) showed that
cDNA levels were similar to those found with the wt HIV-
1, indicating that the K59L mutation has little or no effect
on the control of reverse transcription in virus producer
cells.

DISCUSSION

The results reported here indicate that HIV-1 reverse tran-
scription can occur in HIV-1 producer cells upon mutating
conserved residues in the NC (Figure 3) such as H23C and
H44C that convert the first and the second CCHC motif to
CCCC found in variety of cellular proteins (48). This has
been named ‘late reverse transcription’. These results con-
firm our first study showing the importance of the NC ZF
motifs in the regulation of the RT timing throughout the
HIV-1 life-cycle (28). Note that the double mutant
(H23H44C) did not exhibit efficient late reverse transcrip-
tion in cell as did the H23C and H44C mutants. Late RT
could be achieved upon virion formation at the assembly
sites, as supported by our previous study (28). Then, the
lower late-RT activity of the double mutant was likely
related to its severe defaults in RNA packaging and
virion release.

In addition, the present results clearly show that an
intact structure of ZF1 and ZF2 is required for the nega-
tive control of the late reverse transcription process. As
observed for complete ZF deletion, the substitution of
single conserved residues in the ZF also resulted in late
reverse transcription in virus producing cells, notably for
H44C, while causing only subtle changes in the conforma-
tion of the central globular domain of NC (1,4,31).

The 3D structure of HIV-1 NC has revealed the impor-
tance of the kink induced by Pro31 in bringing the two ZF
motifs into close proximity, while Pro31 was hydrogen-
bonded to ZF1 (3,4,11). Though overall 3D structure of
the ZFs appeared to be critical, the P31L point muta-
tion had no influence on the late reverse transcription
process. The NMR structure of NCp7 bound to the SL3
RNA stem–loop of the HIV-1 packaging signal showed
that the SL3 stem–loop interacts with N-terminal basic
residues such as Arg7, Arg10 and Lys11 via electrostatic
interactions (11). Interestingly, these conserved basic resi-
dues, Arg7, Arg10, Lys11, Lys 14, of the N-terminal
domain are important determinants for the control of
late reverse transcription, since their substitutions acti-
vated late reverse transcription (Figure 3). Besides their
role in viral RNA binding, these basic residues are also
involved in Gag–Gag and Gag–ABCE1 interactions
important for virion assembly (20,21,49,50). This led us
to hypothesize that late reverse transcription is probably
taking place in intracellular core structures at the time of
assembly, resulting in the production of viral DNA con-
taining particles. Therefore, mutations in the ZFs and
N-terminal basic residues may slow down the kinetics of
the coordinated assembly and budding processes, allowing
more time for viral DNA synthesis before virion release.
In that respect, the current view is that Gag assembly
relies on specific Gag–RNA interactions and Gag oligo-
merization, and also depends on the implications of cellu-
lar factors such as, Alix, APOBEC3G, ABCE1 (HP68)
(1,51), Staufen (41) and IMP1 (insulin-like growth factor
II mRNA binding protein 1) (52). These proteins are all
important for optimal HIV-1 assembly, and they have
been reported to interact with the Gag–NC domain
through either the ZF or the conserved basic residues.
Therefore, mutating these specific NC residues may well
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interfere with the cellular environment where assembly
takes place and indirectly promote late reverse transcrip-
tion during assembly. Another parameter that could be
implicated in the late reverse transcription reaction is the
processing of Gag and Gag-Pol in virus producer cells
(53). Interestingly, NC is also implicated in the protease
mediated processing of Gag through RNA binding
(53–56). Soon after infection, reverse transcription takes
place in nucleocapsid structures in the form of reverse
transcription complexes (RTC) containing the mature
enzymes reverse transcriptase and integrase (IN), the
genomic RNA and tRNA and NC protein molecules
(1,57). Such mature viral proteins and enzymes are also
present, to some extent, in producer cells and therefore
would be responsible for the late reverse transcription.
Consequently, the kinetic of maturation of the Gag and
Gag-Pol precursors during the late phase of HIV-1 repli-
cation could greatly influence the late reverse transcription
reaction. In conclusion, the NC ZF structures, as well as
conserved N-terminal basic residues are important deter-
minants involved in the control of HIV-1 reverse tran-
scription during virus replication. In contrast, the linker
and C-terminus domains of NC had no effect on viral
DNA synthesis, suggesting that they might not be
involved in the control of the late transcription reaction
during late steps of HIV replication.

Late reverse transcription is also a property of the hepad-
navirus [e.g. hepatitis B virus (58)] and foamy virus, which
then release viral DNA-containing particles (59,60).
Interestingly, HIV-1 carrying mutations in the ZFs and
the N-terminal domain appear to share some of the
foamy virus specific properties. Indeed, the characteristics
that led the foamy viruses to be closely related to DNA
viruses could rely in part to their lack of Gag–NC
ZFs and to an original Gag maturation without classical
processing into matrix, capsid and NC mature
products (60).

Note that presence of viral DNA-containing particles
has been observed in vivo in HIV-1 isolated from AIDS
patients (61,62) and could result to late reverse transcrip-
tion event. Such an intracellular DNA synthesis during
virus assembly producing HIV-1 DNA-containing parti-
cles could be the source of HIV-1 re-emergence when anti-
viral therapy is halted. Our findings may complement
ongoing efforts to block HIV replication with anti-NC
drugs (1,63,64) and may also identify new strategies for
the design of antiviral therapies.
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