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Abstract

This paper deals with a method for the real cables EMC (ElectroMagnetic Compatibility)
modeling. This method gives a simple and efficient approach available for the
electromagnetic compatibility (EMC). The objective is firstly to take into account the
continuous interlacing of the wires. To do that we start from an analytical law of the
location of a wire inside the cable. From this law it is possible to construct relations for the
characteristic impedance and the wave vector of the real cable. In a second step we compute
the cross talk between the wires inside the cable using the relations developed by Vabre.
The final equations of the lines can be used both in the time and frequency domain, based
on a Branin's circuit. Finally we can study the case of a harness which is a connection of
various cables.



1. Introduction

When we measure the characteristic impedance of a wire inside a cable (a group of wires),
we can see that it changes quite fastly from the center to the edge between two values. We
first show a simple method to evaluate this change. This can be done for a single wire or for
a pair of wires in a cable. By a similar approach we can make an estimation of the wave
vector computing the capacitance for each location of the wire. Having these two
parameters and making the hypothesis that from a location to the next one the mismatched
of the line is weak, we can obtain the whole line propagation and input impedance from an
energy argument. After what, using the Vabre's relations we can estimate the cross talk
between the line in the cable.

2. Frame, location and geometry of the cable

To define a law of the location of a wire inside the cable, we have to define a frame attached
with the cable. Figure 1 shows a choice of frame for a typical cable.
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Figure 1

The location of a wire inside the cable can be defined in distance from the center -z- and
rotation -a- for a length on the direction x. Each wire has its own diameter. For each wire n
we can define a law giving its location all along the cable. For example:

z(n,x)=z,(n)cos 21TX—+zp(n)

Z

a(n,x)=a(n)sin 2TrX—+ap(n)

a

equation 1



Zo(n) and a(n) are the amplitude of movement of the wire in the cable. Zp(n) and ap(n) are
their values at the begining of the cable, and Tz and Ta are the periods od interlacing. The
location of the wire n depending on x in the directions z and a define completely the cable.

3. Characteristic impedance

We know the formulas giving the characteristic impedance of one or two wires inside a
metallic enclosure or upon a ground plane [1]. Figure 2 presents a typical configuration of a
line made of two wires inside a circular shield.
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Figure 2

The characteristic impedance increases from the center to the edge. We can obtain an
evaluation of its values in the center and on the edge (here for a single wire line):

internal wire: Zc~601n de
di
external wire: Zc~601In 4h
equation 2

Figure 3 shows the signification of the parameters used in the equation 2 (for e=0). In some
cases, from the inductances L and capacitances C the characteristic impedance can be
evaluated directly using :

L(x)
Zc(x)=
T ew
equation 3

Some special software can be used too in order to compute the characteristic impedance of
the wire for various location inside the cable. We can compute the evolution of the
characteristic impedance using the relations 2 from the center to the edge of the cable. The
python program used to compute Zc is given in appendix B.



The values computed are given on the curve shown figure 4. This curve is the law for a

single wire of the change of its characteristic impedance depending on its location in a

shield.
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Figure 3

Zc depending on the location of the wire
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Figure 4

From this curve we can think that the characteristic impedance follows in general an

exponential law depending on the axe z:

Zc(z)="Zc exp (az)

equation 4

This kind of law can be obtain too for a two wires line inside a cable. Using equation 1

(here, under our hypothesis, we don't have an influence of a) we can define a characteristic

impedance which depends on x. We have here:

Zc(n ,x)=Zc exp|az (n)cos 2ni+zp(n)

¥4

equation 5

Using this relation we can compute a coefficient of reflexion seen from the input of the



line. If we accept that the characteristic impedance is near to be purely real (it means that
the spectrum of the reflected wave is reduced to a Dirac's pulse), we can describe the wave
O(t) seen from the input (for a normalized input voltage):

O(t)=c"(dx)s g-|-(1—|—(7+(dx) U+(2dx)(1+0'(dx)) 54g+'“

v v
g g

equation 6

v, is the group speed we will define later, ¢" being a wave going from left to write and 0™ a
wave going from right to left. As the reflexion between two location separated of dx is very
weak (this is in accordance with the hypothesis of continuous change in the location of the
wire), we can neglect the products of these coefficients. So the relation 6 can be reduced to:

O(t)~o"(dx)s , +0"(2dx)s . +...2O0(t)=[ dto” (x=v t)5
2— 4— t n—

v v v
g g g

equation 7

The value of 6" can be computed too under the same hypothesis:

v\ ZLe(x+dx)—Zc(x) dx 0Zc(x) .1 dx 0Zc(x)
do'(x)= ~ >0 __J' =2 gar\d)
Ze(x+dx)+Zc(x) 2Zc(x) 0x 2% |Ze(x) 0Ox
equation 8

Having define Zc(x), 6*(x) is defined using relation 8.

4. Group speed

The average speed for all the line length X must be the integration of all the delays all along
the line. We can write (n being the numbering of one line on the cable):

X 1|7 dx X
_:_z f :>Vg:
v, Nacilioov, (%) 1 i X%
N -1 |x=0 Vn(X)
equation 9

The local speed at a distance x being given by:

1
v (x)=—
! C_(x)Zc (x)

equation 10



The computation of C,(x) can be made using a finite element software which resolve the
Poisson's law. The values of C, can be computed at various x in order to find, using a
polinomial regression, the law for C,(x).

5. Transmission

For a matched line, we can write the energy assessment between the source (Vs), the
reflected energy (O) and the transmitted one (T) for a lossless line:

Vsi(t) O°(t)|_ ¢, T*(t)
{dt Zc Zc _{dt Zc

equation 11

As Zc is real and positive and O?(t) must be inferior to Vs(t), we can write:

T(t)=V|Vs’(t)- O*(t)]
equation 12

For a normalized source we obtain the classical transmitted power relation for real values of
the loads and of the characteristic impedances:

T(t)=V1-(o"(t))
equation 13

This relation is always avalaible only in the frequency domain, but when the impedances
are purely real, the white noise band of a fixed impedance is a Dirac's pulse. The
convolution product becomes a simple product where the real impedance value is a simple
coefficient. Equation 13 gives the value of the incident wave on a matched load. This is
sufficient to develop a Branin's model for the line. This model is based on the temporal
response of one line inside the cable for a normalized Dirac's source. The response to any
temporal signal is obtain making the convolution product between this signal and the pulse
response of the line. If we remember that the coefficient of reflexion is very weak, we can
evaluate the voltage value for each location in the direction x (here we consider Ax as dx).
Writing:

V(X)NVO(1+U+(dx))(1+(7+(2dx))...ZVOH (1+ 07 (ndx))

equation 14

A similar equality is obtained for the value of current at a location x:



I(X)NIO(1—0+(dx))(1—0+(2dx))...=IOH (1-0"(ndx))

n
equation 15

From these relations we can compute the electric and magnetic coupling.

6. The temporal Branin's model

As O(t) and T(t) are computed for a Dirac source, the response to any signal is obtained
using a convolution product. Figure 5 shows a schematic of the model and of its operations.
This model can be transformed in the frequency domain. In this case, the convolution
product is replaced by a simple one. The figure 5 is the begining of a more complete
schematic that will include the cross talk between the wires of the cable.

Figure 5

7. Cross talk between wires

To define completely the cable we have to find the relations to compute the cross talk
between the wires in the cable.

The first work is to start from the Vabre's relation and to extend them for non homogeneous
lines. Appendix A recall the demonstration made by Vabre in his study of pulsed electronics

[2].

The near end cross talk for a step source on the culprit line is a step function too but the far
end cross talk is the time derivation of the step function. To compute the signal cross talked
on the culprit lines we must define a step function with a finite time rise.

With this knowledge we can conclude that the near end cross talk can be a copy of the
modulated step obtained with a non homogeneous culprit line. By the same approach we
can think that the far end cross talk should be a time derivation of the modulated step. But
to make these hypothesis, we suppose that the victim line is homogeneous, which is not the



case.

We have to define the coupling factor between the lines at each location of the cable. It
means to define the inductance and capacitance coupling for all values of the line x
direction.

As previously we can obtain laws for Zc#(x) and v#(x), where the # symbol means that the
computation is made between the two lines culprit and victim ones.

From the differential Zc# we can estimate the capacitance g and the height of the culprit
line. From the height we can compute the mutual inductance M [4]. We suppose we know
g(x), M(x) and v(x) per meter of line of given Zc. For the far end cross talk at distance X
on the line 2 for a known current on the line 1 at the location x we have (the source wave
comes from the « left » of the line at the value x=0):

deQ(X)zM(x)dxMH 1+U;(x)}*6 X—x
dt « v,

equation 16

By analogy the current induced on the line 2 by a time changing of the voltage on line 1 is
given by:

M) 10 (o] 22X
dt « v

g

dI* (x)=g(x)dx

equation 17

The two generators de, and dI* must be compute separately. For the whole length of the line,
we must integrate the previous relations over the length X to obtain:

e2(X)=fdx M(x)dxdll(x)ﬁ 1+O';(X) *5 X—x
0 dt X Vg
X av (x) X L
I*(X)=J dx | g (x)dx [1[1-o3(x)fs| %
0 dt X Vg

equation 18

For the near end cross talk, the physic process is an integration over the time of the wave
induced locally. We obtain:



2X

v, Ly 0
e,(0)= [ dt| M(x)dx T T[4 () e | 2
t=0 dt X Vg
2X
" dv (x) 0 _
12(0)=f dt{g(x)dx—] | 1-0(x)|*6 XX
t=0 dt X Vg

equation 19

The index added on the reflexion coefficient point out the wire considered for the
propagation.

8. Complete model

In order to construct a complete model of the real cable we start from the Branin's one used
in the SPICE software [3]. Figure 6 recalls this model for a basic single line.

1(0,t) I(L,t)

Vv(0,t) V(L)

Figure 6
On the figure, the two generators E, and E; are defined by (L=X):
E,=V(L,t-T)-ZcI(L,t-T) E_ =V(0,t-T)+ZcI(0,t-T)
equation 20

T is the electrical line length (X/v,). To use what we have done before we must create four
operators. The operator « own » (0) that translates the energy transmitted from the input of
a line to the output of the same line; an operator « near end cross talk » (p) that translates
the energy cross talked from N lines to the input of another one, and an operator « far end
cross talk » (t) that translates the energy cross talked from N lines to the output of another

one. From what was discussed previously we write for the line a :



n=1
equation 21
For the far end cross talk we obtain:

e (X)=t (I*x)) with:

d(.) & X -
>ifaxM, deH[l—a;(x) o
2 | o dt & v, J
I"(X)=t™(V_(x)) with:
X X
2= [ dx|g"(x)dx L T [1+07 ()| 2
a |o l t « v,
equation 22
For the near end cross talk we have:
eb'(O)zpba(Ia(vgt)) with:
2X
d() 0 X—x
P.=Z fdt [1[1-o,0)xs
a dt X v
g
Ib(O)Zpba(Va(Vgt)) with:
2X
0
pba:z J‘dt gba d H[1+O' X_X
a Vs dt v,

equation 23

Having defined the distances, capacitances and characteristic impedances of all the line in
the cable, we can compute, using equation 20 and 21 the voltage V,(x) and currents I'(x) of
all the lines, from time to time for step function generators connected to these lines. For
each time step the near end cross talk can be computed using 23. The global cross talk
operator matrice obtained can then be used one time derivated and through a convolution

product for any kind of sources.

For the wave as for the reflexion coefficient we need to specify if the wave is a direct or a
bacward one when we want to construct the complete relations between the waves that runs

between the wires.

10



We add an exposant plus for the direct waves and a minus one for the bacward waves.

The final relation for the far end source is:
E, (L)="02V" (0)+t,, [I"(x) +p, [[(v,)|+...

2[00 T 0+ V() [V (v, 1)

equation 24
And for the near end source:
E, (0)="0"V", (L)+t[I*(x)}+p, [I*(v t)}+...
o —Tc {101 (L9t V, (x)J+p™( V7, (vgt))}

equation 25

The fonction O acts on the voltage and current at the locations L or 0. To notice on what
location they act, we add an index with O or L after a comma. This allows to resume the
previous relations knowing that O°% = 0 if a # b. We write:

E (L):(VO:’70+thab)V+b.(x)+ZcpabV'b.(Vgt)+_,_

a.

I~a
"'+(tab+Zc 0.,

+b -b
I(x)+p, I (vgt)

equation 26

And by consequence:
E, (0)="0} ~Zet™ |V, (x)~Zcp™ V", (v,t)+...
...+(tab—ZCIOi) L

-b +b
I"(x)+p,I (Vg t)

equation 27

Zc is the characteristic impedance of the line a.

9. Splices on power supply

A splice on the harness appears like a narrow mismatch. In this case the junction must be
studied between the two parts of the harness on each side of the splice, as could be made for
a simple line with one discontinuity. The multipole previously defined is a model for each
homogeneous line of the harness. The connection of the various multipole linked with each
cable is made through a network including the various impedances of these connections. An
help to establish the equation of the complete harness is to write a tree of the topology.
Figure 7 represents such a tree for one splice on a cable.

11



2
Figure 7

This harness is made of three cables connected in one point. The cables 1-2, 2-3, 2-4 are
made of, respectively, 2, 1 and 2 wires. The figure 8 shows the graph of this harness.

~Q

Z1 }/ \i
=

\\g L

/,/ \(, o~

.-
.

% )

7 2N
M -
o/ o

Figure 8

|
\

v

S
8~

At the location of the splice, a network of impedances is added to take into account the
effects of the connections. When a wire goes directly through the splice, it is better to add
anyway an impedance of connection. Figure 9 shows this modification applied on the

harness of figure 8.

Figure 9

With this modification, each part of the harness described figure 7 is independant and the

12



new topology allows easily to use the relations given equations 26 and 27. The impedance
Z3 (figure 9) can be a simple inductance which represents the length of connection.

10. Conclusion

Starting from a geometrical and analytical description of the wires inside a cable, we can
estimate the characteristic impedances, capacitances and group speed of the waves on each
line made of two wires in the cable. These laws give the input to compute the transmission
and cross talk of all the lines in the cable for a step source applied on one line. Using the
superposition theorem, the matrice of cross talk is obtained through a time derivation and
with a convolution product of the step response. To take into account the splices on the
power supply lines, we create various networks, each of them being a cable without splices.

13
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Appendix A

We consider the Telegraph's circuit of the two lines cross talked presented figure Al.

i1(x+dx) i2(x+dx)
gdx
Il
Il
M21dx M12dx
Cldx C2dx
i1(x) i2(x)

Figure Al: Telegraph's circuit

From this schematic we can write the following equations (with the hypothesis that
L1=L2=L, M12=M21=M and C1=C2=C):

di, di,
v; (x)=Ldx —+M —=+v; (x+dx)
dt t

(AD)

di, di,

V, (x)=Ldx —+Mdx —+v, (x+dx)
dt dt
and for the currents:

dv d(v,-v,)
i,(x)=Cdx—t+gdx —L %
| 1(x) it g I

dv d(v,-v,)
i,(x)=Cdx—2+gdx —L 2%
2(X) it g I

+i,(x+dx)

(A2)

+i,(x+dx)

From these systems we can obtain:

-0V oi o1
L1, —2L4 2 ]
0X ot ot

(A3)

0x ot ot

The same for the current i, and the voltage v,.

We precise two relations generally verified, which we consider as hypothesis:
M<L and ¢g<(C+g) (A4)
Under these conditions, the system of equations becomes (using the Laplace's transform):

15



—dv

1

=Lpi,
—di,
" =(C+g)pv,
| —dv (A3)
2 =1pi,+Mpi,
—di
2=(C+g)pv,—gpv,
dx

With the two first equations we have:

2v

é—L(C—i—g)ﬁ v;=0 (A6)

The solution is:

Vl(x,p):Aefpv“L(c+g)x+Bepv‘L(c+g)x A7)

We can defined y—[\L(c+ g)Jfl to write:

X

Vl(x,p):AeierBep“ (A8)

With the last equations we obtain:

2
2

dv 2 2
o +L(C+g)p v,=[M(C+g)-Lg|p v, (A9)

V, is given by A8. The solution of the differential equation without the second member is:

v,(x,p)=De ' "+Ee" " (A10)
Defining:
C+
Q=M=9 9 (A1)
L g C+g

we obtain a particular solution:

— -P— — p—
v,= DfxuipA e "+ E+Ng5pB e
1 "2 ' Q+1 Q-1 Y x Q+1 Q-1 (Al2)
. Py B —1x Pul _ X
12——C e D—N—z A N—Z upA +e E+N ) B-N 5 upBD

Rc being the characteristic impedance of the line 1 taking into account the line 2:

L
Re=y—— (A13)
C+g

To resolve this system we consider the matched case. A step function is applied on the line

16



1. If the step function is U(p), V1 is then equal to U delayed of x/u. In this case A=U, B=0,
i;=V/Rc. The system becomes:

-1 X X
(V2:(D—NQ—EPA e “4Ee "
2 u (Al4)
~_L[ fpg( S LQ+1 . Q-1x )_ pg}
l12—RCe D-N 5 U-N 5 upU Ee
D and E can be defined from the limit conditions, at x=0:
1 +1
v,(0)=D+E=-Rci, (0) L, (0)=5— D—NQ—U) (A15)
Rc 2
and at x=X:
1 o> +1 - X
v,(X)=Rci, (X) iz(X)zﬁ epu —NQZ U NQT—pU}—Eep“ (A16)
From these relations we conclude that:
+1 +1 —2p2
D:NQTU(p) E:—NQTU(p)e " (A17)
Finally:
1 X _ 2X-x 71 X
vzsziU e vog v —N—EpUep
4 2 u
T R T e = (A18)
tiZ—R—C{NTU(—e Pupe !’ —NTHpUep

This last system of equations is the solution of our problem.
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Appendix B

#This software compute for typical values of diameter of wires

characteristic impedance using the Ianov's book formulas

from cmath import *

from math import *

1=1

pi=3.14

de=10E-3

di=0.5E-3

v=3E8

Zc=[]

e=0 #e 1is the distance to change when the wire go to external

er=1

eo=1/(36*3.14*1E9)

for e in range(1,11):
C=eo*er*2*pi*l/acosh( (de**2+di**2-4*(e*1E-3)**2)/(2*de*di))
Zc.append(abs(1/(v*C)))

Ce=eo*er*2*pi*l/(log(2*(di+0.1E-3)/di+sqrt((2*(di+0.1E-3)/di)**2-1)))
Zc.append(abs(1/(v*Ce)))

Zc_fichier=open('Zc_fichier.csv','w")
a=0
for a in range(1,11):
Zc _fichier.write(str(a)+', '+str(Zc[al)+'\n")

Zc fichier.close()

18

the



	1. Introduction
	2. Frame, location and geometry of the cable
	3. Characteristic impedance
	4. Group speed
	5. Transmission
	6. The temporal Branin's model
	7. Cross talk between wires
	8. Complete model
	9. Splices on power supply
	10. Conclusion
	References
	Appendix A
	Appendix B

