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December 29, 2008

Abstract

We study integral operators related to a regularized versighe classical Poincaré path
integral and the adjoint class generalizing Bogovskiitegral operator, acting on differential
forms inR™. We prove that these operators are pseudodifferentiabtgrsrof order1. The
Poincaré-type operators map polynomials to polynomiats@n have applications in finite
element analysis.

For a domain starlike with respect to a ball, the special sugroperties of the operators
imply regularity for the de Rham complex without boundarpditions (using Poincaré-type
operators) and with full Dirichlet boundary conditionsifigsBogovskii-type operators). For
bounded Lipschitz domains, the same regularity resulid, lawid in addition we show that the
cohomology spaces can always be representédByunctions.

2000 Mathematics Subject Classificatidtrimary 35B65, 35C15; Secondary 58310, 47G30
Key words and phrasestExterior derivative, differential forms, Lipschitz domaiSobolev
spaces, pseudodifferential operator

1 Introduction

In [B], BogovskiT introduced an integral operafbiwith two remarkable properties:

- If fis a function satisfying[ f(z)dz = 0, thenu = T'f solves the partial differential equation
divu = f, and

- If the bounded domai2 C R" is starlike with respect to an open bd, thenT maps the
Sobolev spacéV)"~"?(£2) boundedly toV"?(€2)" for all m > 0 and1 < p < co.

This implies for a large class of domaifs including all bounded Lipschitz domains, the
solvability in W (Q)™ of the equationlivu = f for f € Wg”‘l’f”(Q) satisfying the integrability
condition | fdxz = 0. This means that there is no loss of regularity, and the stijgppreserved.

This operator is now a classical tool in the theory of the &qnoa of hydrodynamicq]5]. It
was recently noticed that its range of continuity can bereddd to Sobolev spaces of negative
order of regularity[[B], and the study of more refined mapgngperties has been instrumental in
obtaining sharp regularity estimates for powers of the &akperator{[32].

Bogovskil's integral operatdf makes use of a smoothing function

06, °(R"), suppb C B, /Q(x) der =1 (1.2)
when(? is starlike with respect to an open ball and is defined by
T — & x— _
Tf(z) = / Fly)——L / o(y+ro—2 ) drdy. (1.2)
Q ’1’ - y’ |z—y| ’1’ - y‘
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Applying the change of variableg),r) — (a,t) = (z + leizl’ 1— '“"”;y|), one sees that the
formally adjoint integral operatdf'’ is given by a smoothed-out path integral which defines the
potentialv = T''u of a conservative vector field thus giving a solution of the equatigrad v =

1
T 'u(z) = —/H(a)Jau(ac) da, Jyu(z)=(r—a)- /0 u(a+t(x —a))dt. (1.3)

The standard proof of Poincaré’s lemma in differentialrgetry via “Cartan’s magic formulaf]15,
Theorem 13.2] uses a generalization of the path integrah (fL.3) to construct a right inverse of
the exterior derivative operator for closed differentiainfis. A typical example ifR? is the path
integral

1
Rou(z) = —(z —a) X /0 u(a+t(x —a))tdt (1.4)

which provides a solution of the equationrl v = u for a divergence-free vector field Under
the name “Poincaré map”, this integral operator has récdeien used in the analysis of finite
element methods for Maxwell's equatiofis [7, 4]. Three proee of the operatoR,, are important
for this application:
- R, maps polynomial vector fields to polynomial vector fields
- If Q is starlike with respect ta, then the restriction oR,u to €2 depends only on the restriction
of uto
- R, mapsL?(Q)? boundedly to itself.

One of the results of the present paper is that the reguthvieesionR of R,, given by

Ru(z) = /H(a)Rau(x) da ,

while still preserving polynomials and the local domainmffuence, defines a bounded operator
from W5P(Q) to WsHP(Q) forall s € Rand1 < p < oo, if Q is starlike with respect to the
ball B. Such an operator was used in Section 4]of [2] to obtain ansevie the exterior derivative
operator inL? spaces.

In [[L7], Mitrea studied the generalization of both the Bogkilrtype and the regularized
Poincaré-type integral operators acting on differeritains with coefficients in Besov or Triebel-
Lizorkin spaces. In[[10], Mitrea, Mitrea and Monniaux exded this analysis to show that these
operators are regularizing of order one on a large classobf function spaces and to obtain sharp
regularity estimates for the “natural” boundary value peofs of the exterior derivative operator
on Lipschitz domains. There the non-smoothness of the myraf the domain implies that the
solutions of these boundary value problems are singulat,tlagrefore the solution operator is
bounded for certain intervals of the regularity indedepending on the exponept whereas for
certain critical indices the boundary value problem dodsiefine an operator with closed range.

In this paper, we prove that the Bogovskil-type and the lergqued Poincaré-type integral
operators are classical pseudodifferential operatorgdagre-1 with symbols in the Hormander
cIassSljé (R™). As is well known [IJf, Chapter 6], this implies immediatehat the operators
act as bounded operators in a wide range of function spacksling Holder, Hardy or Sobolev
spaces, or more generally the Besov spaBgsfor 0 < p,q < oo, and the Triebel-Lizorkin
spaces,, for 0 < p < 00, 0 < ¢ < co. In each case, the operators map differential forms with
coefficients of regularity boundedly to differential forms of regularity+ 1 and, if$2 is bounded
and starlike with respect to a ball, the Bogovskil-typerapm's act between spaces of distributions



with compact support if2, and the Poincaré-type operators act between spacestriétiess to
Q.

As a consequence, we obtain regularity results for the iextderivative operator on bounded
Lipschitz domains, either in spaces with compact suppority spaces without boundary condi-
tions, and these regularity results hold without restittbn the regularity index. In particular,
we show that the cohomology spaces of the de Rham complex onraded Lipschitz domain,
either with compact support, or without boundary condgioran be represented independently of
the regularity index by finite dimensional spaces of differential forms w#ii° coefficients.

Thus, by the end of the paper, we will have employed the Bdgbtyge and the regularized
Poincaré-type integral operators to construct finite disienal spaces;(Q) C €°>°(Q, AY) and
Hg,(R") C %go(R",AZ), each independent of the degree of regulasityguch that all of the
following direct sum decompositions hold true. To do this wse finitely many coverings @2,
each by finitely many starlike domains. (A similar procedwald work for a Lipschitz domain
in a compact Riemannian manifold.) See the next sectiondfinitions.

Theorem 1.1 Let2 be a bounded Lipschitz domaini¥, and let0 < ¢ < n. Then for the spaces
without boundary conditons,

ker(d GO, AL — T, A“l)) —de=@QAY @ #40Q),
ker(d CHS(Q,AY) — Hs—l(Q,A“l)) = dH* QAN @ H4(Q)
where theH* (—oco < s < o) denote Sobolev spaces, and, more generally,
ker (d: B, (2, A%) — By (@A) = d By (2,47 © #4(Q)
ker(d LS (2, M) — F;;l(Q,A“l)) — dFSHN(Q, A & 4(@)

where theB;, (—oo < s < 00, 0 < p, g < o) denote Besov spaces, and the
Fj, (—00 <8 < 00,0 <p<o0,0 < g < oco)denote Triebel-Lizorkin spaces.
For the spaces with compact support, and the same valugpa@ind ¢, we have

ker(d L (R, AY) — %BO(R",A”l)) = dEXRATY) @ A (R

ker(d: Hy(R", A) — HE\(R", ™)) = dHE (R AT & o4, (),

. RS n AL s ¢ s n Al— n
ker(d.B (R AY) = B L(R", A ) = d B R AT @ o, (R,
ker(d F o(R"AY) — Fo LR Af+1) AR, AY) @ A (R).

We remark without further discussion that this result hagliegtions for the local Hardy

spaces; (Q, AY) = F{,(Q,AY) andh}(Q,A") = F), o (R, AY).

2 Notation and definitions

For a bounded domaif2 in R™, we consider four spaces of infinitely differentiable fuoos.
Besidess (1), the space of all infinitely differentiable functions{iy and%;*(2), the functions
with compact support if2, we also use the space of restrictiong$xo

Fo @) = {u e €°(Q) | Fa € €°[R") : u=aonQ}



and the space of functions with supportin

G (R") = {u € €°(R") | suppu C Q} .
Thus€>°(Q) is a quotient space &> (R") (or ¢5°(R™)) modulo functions vanishing of?,
and¢5°(R™) is a subspace aF>°(R™) (or 5 (IR")). Likewise, for functions or distributions of
regularitys € R, we consider spaces of restrictions(t@nd spaces with compact supportin

By the termbounded Lipschitz domain in R™ we mean a connected bounded open set which
is strongly Lipschitz in the sense that in the neighborhob@axh point ofQ = Q U 99 it
is congruent to the domain below the graph of a scalar Ligsauntinuous function of, — 1
variables.

A domain( is starlike with respect to a seB if for every x € Q) the convex hull of z} U B is
contained ir2. From the definitions, it is not hard to see that a bounded domhich is starlike
with respect to an open ball is Lipschitz, and that convgr&slery bounded Lipschitz domain is
the union of a finite number of domains, each of which is $tarlith respect to an open ball.
For the latter, one can choose, for example, domains congtog¢he domain below the graph of
a Lipschitz continuous function of Lipschitz constdntbounded below byd > 0, defined on a
ball of radiusR in R*~!. Such a domain will be starlike with respect to an open baitered at
the origin as soon aBL < H.

To keep the notation simple, we use the Sobolev sgate= 17?2 as representative for a
space of regularitg. But, as already mentioned, many of the following argumesnsain valid if
the L2?-based Sobolev spadé® is replaced by the Sobolev-Slobodeckii sp&iéé? or the Bessel
potential spacdi; (1 < p < oc) or, more generally, by any aB;, (0 < p,q < o0) or F,
0O<p<oo0,0<qg<o0).

We let H*(2) denote the quotient space BF (R™) by the subspace of distributions vanishing

in 2, while we let H5(R") denote the subspace &f°(R™) consisting of all distributions with
support inQ. ThusH*(12), for which also equivalent intrinsic definitions exist, daaconsidered
as a space of distributions éh whereas7;(R") is a space of distributions dR'".

Let us mention some well-known properties of these spa@shthid if Q2 is a bounded Lip-
schitz domain. Proofs (for the spacd$’?, s € R, 1 < p < oo) can be found in[[|8, Chapter
1]: The intersection of al7*(Q), s € R, is €>°(Q) and the union of ali7*(Q) is the space of
all distributions orf that allow an extension to a neighborhood(bf Likewise, the intersection

of all H%(]R{”) is ¢5°(R") and the union of allH%(]R{”) is the space of all distributions dR"
with support inQ. It is also well known that2(R™), for which also Triebel's notatiol* () is
commonly used, can be identified with the spa£H(2), the closure of65°(2) in H*(Q), if s is
positive ands — 7 is not an integer. For any € R, HZ(R") is the closure 0% () in H*(R").

In our Hilbert space setting, for allc R the spaceH%(R") is in a natural way isomorphic to the
dual space off —*(12).

For differential forms we use standard notation which is, égample, defined if 13, 115].
The exterior algebra aR” is A0 < ¢ < n, whereA® and A! are identified withR and R",
respectively, and we sét’ = {0} if £ < 0 orf > n.

Differential forms of orde¥ with coefficients inf7* are denoted by7* (€2, A?) andHZ(R", AD).
With the exterior derivativel satisfyingd o d = 0 we then have thele Rham complex without
boundary conditions

0— HY(Q,A% % g1, A & ..o S g (Q,A") — 0 (2.1)



and thede Rham complex with compact support
0 — HR",A%) % HEUR™AY L L HET(RYA™) — 0 (2.2)

Besides these complexes we also consideexttendedle Rham complexes without boundary
conditions

0— RS H(QA) S F QA S L g5 (Q,A") = 0 (2.3)
and with compact support
0 — H(R™A%) % HEURY AL S L HETR AN SR -0 (2.4)

Here the mapping denoted byn (2.3) is the natural inclusion of constant functions, and
in (2.4) is the generalization to distributional coeffidemvith compact support of the integral
U — Ly = fRn u for ann-form « with integrable coefficients.

The extended de Rham complexgs](2.3) dnd (2.4) are exact kftrend becaus® is con-
nected, and their exactness at the right end is the subjegbgbvskil’'s theorem mentioned in
the introduction. We will show in Sectidh 4 below that for nded domains starlike with respect
to a ball, both complexe$ (2.3) and (2.4) are exact for any R, and that for bounded Lip-
schitz domains both complexds {2.1) ahd](2.2) have finiteedsional cohomology spaces whose
dimension does not depend sn

We will make use of the following standard algebraic operaiin the exterior algebra which
then also extend as pointwise operations to differentiathfoon domains oR":

the exterior product: A AP AT — AT
the interior product or contraction: g 0 AP x A — At
the euclidean inner product: (a,b) : A*x A —R

the Hodge star operator: * o A At

We now give a list of well-known properties of these operaiovhich will be sufficient for
verifying the arguments used in our proofs below.

In particular we need the exterior product and the contractiith a vector € R", identified
with al-form. Fora = (a1,...,a,) andu = dx;, A...adzxj, with j; < --- < j,, the contraction

is given by
¢

asu= Z(—l)k_lajkdwjl AiiA @jk A..ondzy,
k=1
where the notatio@jk means that the corresponding factor is to be omitted. Inpkeial case
of R3, this corresponds to the following classical operationgeator algebra:

u scalar, interpreted asform: a AUy =ua asu=20

u scalar, interpreted ésform: arnu=0 aJu=ua

u vector, interpreted asform: anu=aXxu aJu=a-u

u vector, interpreted a&form: AANU=0a" U a1UuU=—aXxXu

Some useful formulas far,v € AY, w € A1, a € Al are:

*oxu = (—1)1n=0y (2.5)
*anu) = (1) a1 (xu) (2.6)
(u,v) = *(u A *v) = (xu,*v) (2.7)

(wya nu) = (u,a Jw) (2.8)



We note the product rule of the exterior derivative for/éiorm « and anm-form v
d(urv) = (du) Av + (1) un (dv).

Finally, with the L? scalar product fof-forms« andv,

(u,0) = /Q (u(z), v(z)) da

and the co-derivative, there holds

*x0 = (=1)d» and +d = (-1 "'6x on/-forms.

3 The Bogovski and Poincaré integral operators

In this section, we fix a functiofl € §°(R") with support in a balB satisfying [0(z) dx

3.1 Definition, support properties

For? € {0,...,n}, define the kernelz, by

Go(z,y) = /loo(t — 1)"_£t£_19(y +t(z—y))dt.

Definition 3.1 For a differential formu € 5°(R", A*), define two integral operators:

Reula) = [ Guinp,2) (o = 9) sul)dy (1< €<n)
Taa) = [ Gilay) (o =9) su)dy (1< E<n)
We refer toR, as Poincaé-type operators, and t6, as Bogovskitype operators.

In order to see that the integrals in Definiti@ 3.1 exist, werite the kernelGy:

Go(z,y) = /OOO T+ )02+ T(x - y)) dr
o 00
=> (" /0 TR (2 + T(x —y)) dr

oo —
= (521) |z — y|k_"/ Rl (2 4 r2 Y ) dr .
=0 0 |z —y|

This representation as a finite sum of homogeneous funajives a bound

|Go(z,y) (z — y)| < C(x) |z —y| 7",

(2.9)

(2.10)
(2.11)

=1.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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whereC'(x) depends or|#|| - and the size of the balB, and is uniformly bounded far in a
bounded set. Hence the integrals in Definitjor} 3.1 are wesikiyular and therefore convergent.

As one can readily see from the definitions, the two integparators are related by duality:
If we introduce operatorg), and S, by Hodge star duality, so that fd&r < ¢ < n — 1 and
u € C°(R™, AY)

*Quu=(-1)""TR,_s(xu) and xSpu=(—1)"1T,_,(xu), (3.6)
then we have for € €§5°(R", A*+1)
(U,Q[LL) = (Tg+1v,u) and (’U,Sgu) = (Rgﬂv,u) . (3.7)
Denoting the formal adjoint operator with respect to fifeduality by a prime, we have therefore
*Rp=(—=1)"T) _, 1% (3.8)

In order to see other properties of the operators, we appiffexeht change of variables. Let us
write this in detail for the operataR,. We use the change of variables= = + t(y — x) and then
replace(t — 1)/t by t.

Rou(z // 1)1 ZQ(w—i—t(y z)) (z —y) su(y)dtdy
// D19(a) (v — a) su(x + (a — 2)/t) dt da
1
:/H(a) (x—a)J/O té_lu(a—l—t(x—a)) dt da . (3.9)

From this form ofR,, one sees immediately that it maps differential forms wilypomial coeffi-

cients to differential forms with polynomial coefficientscaalso?> (R”, AY) to °°(R"™, A*~1),

and thatR,u(z) depends only on the values®in the convex hull ofB U {z}, that is, the starlike

hull of {2} with respect to the balB. This implies in particular that  is open and starlike with

respect taB, thenR, mapsz>(Q, A%) to >°(Q, A1) and alsag™> (2, AY) to > (Q, A~ 1).
RewritingTy in the same way, we get

Tou(x /9 (x —a) / t“u(a+t(r —a))dtda. (3.10)

From this form ofT}, because of the unbounded interval of integration, inone cannot immedi-
ately conclude thal; maps%> functions to¢™> functions. But ifu € °(R", A), one sees
that Tyu is €>° onR™ \ supp 6, and thatl,u(z) = 0 unlessz lies in the starlike hull okupp u
with respect taB. Thus ifQ) is open and starlike with respect & thenu € %(g’o(Q,AZ) implies
supp Tyu C 2, and, ifQ) is bounded, them € %gj(R",AZ) impliessupp Tyu C Q. The fact that

T, indeed map&$° (R, AY) to 65°(R", A*~1) will be a consequence of Theordm]3.2 below.

3.2 Homotopy relations

Cartan’s formula for the Lie derivative of a differentialrfio with respect to a vector field can be

written as d
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where F}* denotes the pull-back by the flow, associated with the vector field;. Here we
consider the special case of the dilation flow with center

Fi(z) =a+t(x —a) withvector fieldX; =z —a,
which gives a pull-back of
Fru(z) =t u(a+t(x —a)) foranl-formu .
This leads to the formula

%(teu(a+t(as —a)) = d(té_l(:n —a)ou(a+t(z— a))) +t'(x—a) sdu(a+t(r—a)) (3.11)
which can also be verified elementarily from the formulas weegin Sectiofi]2.
Integrating [3.1]1) frond to 1 and comparing with (39), we find the homotopy relationsidval

for all u € €5°(R™, AY)

dReu + Ryy1du = u (1<t<n-1);
Ridu=u— (0,u) (£=0); (3.12)
dRyu =u (L=mn).

One could be tempted to integrate Cartan’s formula fioto oo and compare with[(3.10), thus
formally obtaining a similar homotopy relation f@y directly. The result is indeed true except for
¢ = n, but for a rigorous proof we prefer to use the duality relaif®.8) to deduce corresponding
anticommutation relations fdF, from the relations[(3.12) which are already proved. Herehiatw
one obtains fou € €5°(R™, AY):

dTyu + Tppdu = u (1<t<n-1);
Tidu = u (£=0); (3.13)
dhhau=u— (fu)x0 (L=n).

Here we considef as an element o&>°(R", A), so that for anothed-form « we have thel.?
scalar productd, u) = [ 6(a)u(a)da, andxf is then-form 6(z)dz1 A ... A dzy,.

The formulas for the endpoints= 0 and/ = n correspond to the two extended de Rham
complexes without boundary conditions and with compacpsttp see [(2]3) and (2.4). To see
this, let us extend the definition of the exterior derivatiyewriting d for all the mappings of the
complex

0 RS E°QA) L @A) L L@@ A") =0
andd for all the mappings of the complex
0 — ¢([R",A%) L gR®R, AN L. L EPRL A SR -0

where is the inclusion mapping for constant functions ahe- ()’ denotes the integral — [u
for n-forms.
If we correspondingly extend the definitions &f andT; by

Rou := (0,u) for 0-formsu, R,i1:=0,
Thi1u = *(ub) foru e R, Ty =0,
then we can write the relationg (31 12) ahd (B.13) simply as
dRu+Ryidu=v and dTyu+Tpdu=u forall 0</<n. (3.149)
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3.3 Continuity

The most important result about analytic properties of ategral operators is the following.

Theorem 3.2 The operatorsk, and 7, defined in Definitior} 3]1 are pseudodifferential operators
onR" of order —1 with symbols in the Brmander symbol cIasSljé(R").

Proof:  For basic facts about pseudodifferential operators, seextample [T¥[ 6], 18]. We are
using here the local symbol cIaSgé(IR{") that consists of functions € °°(R" xR"™) satisifying
for any compact set/ C R™ and any multi-indicesy, 3 € N7, estimates of the form

020 a(z, )] < Cap(M) (1 +1€)T V1 V(a,6) € M xR (3.15)

The proof will show that the constants,s are polynomially bounded im € R", but this is not
important here, since we are only interested in the locahbien

We give the proof for the operatdi,. For R, the result then follows from[(3.8) by applying the
Hodge star operator which is a purely algebraic operatiohamis vectors in the exterior algebra
and does not change coefficients of differential forms, anthking L? adjoints, which according
to the calculus of pseudodifferential operators does ramt @t of this class.

Thus we consider the integral operator defined by

Tyu(z) = /Ge(ﬂc, y) (r —y) su(y)dy

with the kernelG, given in (3.1). Writing the differential forms in componentve see that for
J,¢ €{1,...,n} we need to study the following operatar acting on scalar functions:

Kulz) = [ bz~ y)uly)dy
with k(z, z) = z; /000 s" s+ 1)10(x + s2)ds forz,z € R™. (3.16)
We write k(z, z) = ko(x, z) + ki1 (z, z) with
ko(z,z) = z; /01 s+ 1) 10(x + s2) ds,
ki(z,z) = z; /100 s+ 10z + s2) ds .
It is clear thatky € € (R?"), and therefore only:; needs to be analyzed. dfipp# C B.(0),

then
ki(z,z) =0 for|z| > |z| +e,

and we have already seen [n {3.5) that- ki (z, z) is weakly singular. It is therefore integrable
overR™, so we can write its Fourier transform as the convergengrate

b, €) = / 6D (, 2) dz

:/ s (s + 1)5_1/6_"(5’”2]-9(36 + sz)dzds,
1
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and we can represent the operatbors

n

Kulz) = [ oo =) uy)dy+ 0" [ 6, ale) de

The proof will be complete once we show that the symbplof the operatork™ satisfies the
estimates[(3.15), namely for any multi-indices3 € N andx, £ € R™:
070k (2,€)] < Capla) (1 + €)1 (3.17)

whereC,3(x) is bounded for: in any compact set.
With the change of variablgg, y) = (1/s,x + sz) we can write

l%l(ac,f) = /Ol(t + 1)6_16“@’”> /e_"t@’y> (yj —;)0(y) dy dt
- / l(t + 1)t Leitlen) (i(ﬁjé)(tf) - xjé(t§)> dt . (3.18)
0

Hered is the Fourier transform of € %5°(R™), thus a rapidly decreasirfg™ function. The
representatior] (3.]18) shows that

ki € °([R?*™) and |ki(x,£)] < Co(1 + |z|) (3.19)

whereCjy depends only oA. Writing 7 = ¢|¢| andw = £/[¢|, we find

) 6 ) )
Fa(2,€) = [¢]! /0 (1+@)4 L (i(9,0) (rw) — 20(7w) ) dr (3.20)

and hence
[ (2,)] < \6!‘125‘1/0 (10;0)(rw)| + |z;8(rw)]) dr < (1 + ||) Cy [¢| 7" .
Thus we have showf (3]17) fax| = |5]| = 0.
Similarly, by taking derivatives iff (3.]18), we can write famy multi-indices, (3:
1
030k (2,€) = / (t+ 1)1 eMEI (o, 16, 0)0) () dt | (3.21)
0

wherep,s(z, &, 0) is a partial differential operator of ordés| + 1 with polynomial coefficients
of degree< || + 1in x and< |af in &. We obtain an immediate estimate

020, k(. €)] < Capla) (1 + (€)1, (3.22)
and after the change of variables= ¢|¢| with w = £/|¢]:
. €] 4 .
0200 (2,€) = / (1+ é)“e”wmﬁl (Pas(r.70.0)0) (rw) dr || 171 (3.2)
0

This gives a second estimate

10907 k1 (2, €)| < Cagla) |71 (3.24)
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In (3:22) and [3.34)C,,5(z) is bounded forz in any compact set. (One can see thag(z) <
Capa - (1 + |z])+18 whereC, 5 4 depends only on, 3 andf.)
This shows|[(3.317) and completes the proof. O

An immediate consequence of the theorem is that the tworitegerators map differential
forms with 67 coefficients to differential forms witle"> coefficients. Taking into account the
support properties deduced above from the representdficdjsand [3.70), we get the following
statements, where we use the standard topologies for thedarspaces. These statements follow
also from the results if [10, Theorem 4.1].

Corollary 3.3 The integral operators defined in Definitipn]3.1 define cardirs mappings
Ry : €®(R",A") — €>°(R", A1), Ty : 65°(R™, AY) — €5°(R*, A1)

If & Cc R™is a bounded domain starlike with respect to a b&licontainingsupp 6, then the
operators define continuous mappings

Ry : 670, AY) — €°(Q,AY), Ry : €7 (Q,A) — €°(Q, A,
Ty - €5°(Q,AY) — €°(Q, A1), T 6 (R",AY) — (R A

Either by duality or by extension using standard contingitgperties of pseudodifferential
operators, the two operators can be defined on differemiatd with distributional coefficients,
in the case of the Poincaré-type operatfiysfor arbitrary distributions fromz’(R”, A*) and in
the case of the Bogovskil-type operat@isfor distributions with compact support iR™.

For finite regularity, the standard continuity properti€pseudodifferential operators together
with the support properties immediately imply results @& tollowing type.

Corollary 3.4 LetQ2? ¢ R” be a bounded domain starlike with respect to a balcontaining
supp 6. Then the two integral operators define bounded operatararig s € R:

Ry H*(Q,AY — H5TH(Q, A, Ty : Hy(R™,AY) — HEH(R™, AT,

Remark 3.5 Corollary[3.% remains valid wheH is replaced by3,, (0 <p < 00,0 < g < 00),
orby F5 (0 < p < 00,0 < ¢ < o0). The spacesB;, (2, A) and F5 (2, A) are defined as
quotient spaces, and the spa@;%ﬁ(R",AZ) and F;qﬁ(R”,AZ) are defined as subspaces, in
an analogous way to the spacHs(f2, AY) and H%(R",AZ). They include the special cases of
Sobolev space®/*? = F3,, and local Hardy spaces (2, AY) = F{,(©, A’) andhl(Q,A") =

P21
0 n AL
FYyq(R", A%). See Chapter 6 of [1.6]. A

In all these cases, the commutation relatigns |3.12)J(3eivain valid. What this implies for
the regularity of the de Rham complex and its conomologyesstibject of the next section.

4 Regqularity of the de Rham complex

4.1 Starlike domains

The homotopy relationg (3]14) together with the mappingertes from Corollary 3}4 imply the
existence of regular solutions of the equatibn= 0, as we now state. There are similar results in
the ¥ spaces which follow from Corollary 3.3.
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Proposition 4.1 LetQ) € R" be a bounded domain, starlike with respect to a lll
(i) Foranys € Rand? € {1,...,n}, letu € H*(Q, A?) satisfydu = 0 in Q. Then there exists
v € H5TH(Q, A1) such thaidv = u, and there is a constard independent of, such that

vl sty < Cllullgs ) -

For ¢ = n the conditiondu = 0 is always satisfied.

(i) Foranys € Rand/ € {1,...,n}, letu € HE(R", A’) satisfydu = 0in R", and [u = 0
if £ = n. Then there exists € H%“(R“,Ag‘l) such thatdv = u, and there is a constar@
independent of; such that

vl s+ ey < C'llull s rny -

Proof: With du = 0 (du = 0 in case (ii)), the relationg (314) reduce to
u=dRmuu and wu=dTu.

Therefore in case (i) we take= R,u and in case (iiy = Tyu. The estimates are a consequence
of the boundedness of the operatésand} as given in Corollary 3]4. O

In the cases = 0, there is a natural isomorphism (extension by zero outQdbetween the
spaced.?(Q2, AY) and LZ(R", A*). Thus for a differential form. € L?(Q2, A%), both (i) and (ii) of
the Proposition can be applied, giving a solutioaf dv = u with coefficients inf! (Q2) for case
(i) and — apparently stronger — i3 (2) for case (ii). It is important to notice, however, that the
conditiondu = 0 does not mean the same thing in both cases:

In case (i), it simply meangu = 0 in the sense of distributions in the open Setin case (ii),
the condition isdu = 0 in the sense of distributions dR™, and this is stronger: It includes not
only du = 0 inside(?, but also a boundary conditiona v = 0 on 92 in a weak sense.

4.2 Differential forms with polynomial coefficients

As we have seen, the Poincaré-type operdtpipreserves the class of differential forms with
polynomial coefficients. This class has recently attrasmae attention in the field of finite ele-
ment methods. For quite a while already in relation with nrica¢ methods for electromagnetism
[B], but more recently also in other applications includeigsticity theory [[L], finite dimensional
subcomplexes of the de Rham complex generated by polyromaake been studied.

For the following, we assume we have a piece of such a complaxely for somel €
{1,...,n} two spacesP(A’~!) and P(A?) of differential forms of order — 1 and ¢ with co-
efficients which are polynomials in4, ..., z,, which we require to satisfy the following two
conditions:

1. The spaceP(A?) is invariant with respect to dilations and translationsy i

Foranyt € R,a € R": If u € P(A"), then(z — u(tz +a)) € P(A").

2. The interior product (“Koszul” multiplication)_ : u — = 1 u mapsP(Af) to P(A*1).

Then, as in Sectiofi 3, we fix a functighe ;°(R™) with support in a ballB satisfying
J0(x) dx = 1, and we define the Poincaré-type operatpias in Definition| 3]1.
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Proposition 4.2 The operatorR, mapsP(A’) into P(A*~'), and for any bounded domain
R™ that is starlike with respect to the balt and for anys € R there is a constant’ such that for
all u € P(AY)

[ Rewl| sty < Cllullgs) -

In addition, we have for all: € P(AY)

u =dRu + Ryyidu .

Proof:  That R, mapsP(A%) into P(A“"!) is a consequence of the representation| (3.9) and
conditions 1. and 2. The estimate follows from the continstated in Corollary 3]4. O

In [f], complexes of polynomial differential forms are siedithat satisfy conditions 1. and 2.
above, and in fact a more restrictive condition than 1., fgingariance with respect to all affine
transformations. The latter condition is suitable for Brelements on simplicial meshes, but our
more general condition 1. covers also some cases of polwi®med in finite elements on tensor
product meshes. A well-known example in 3 dimensions is tmptex studied for example in
[A]], which uses spaceg?'P>?3 of polynomials of partial degreg; in the variabler;, j = 1,2, 3.
The complex is then for a giveme N

P(A%) 2% P(AY) & P(A?) % P(A?)
with

P(A") = QPPP(A°),
P(Al) — {uldxl + ugdry + ugdrs | uy € QPLPP yy € QPPTLP gy € Qp,p,p—l} 7
P(Az) = {Uldxz A dxs + ugdrs A dxy + usdry A dxy |

uy € an,p—l,p—I’ Uy € Qp—l,p,p—I’ us € Qp—l,p—l,p} 7

PA%) = @ lr ol (47)

It is clear that these spaces form a subcomplex of the de Rloamplex, and that they satisfy
conditions 1. and 2. above.

4.3 Bounded Lipschitz domains

In this subsection we draw some conclusions from Thedrepth@a@are valid for bounded Lip-
schitz domains. The main property of a bounded Lipschitzaomf that is relevant here is the
existence of a finite covering &1 by open set$/;, i = 1,...,m such that eac/; N () is star-
like with respect to a balB;, and a subordinate partition of unity;);=1,.... This means that
Xi € 6§°(R™), supp x; C U;, andd>_" | x;(x) = 1 for all z in a neighborhood of?.

Foreachh = 1,...,m we can choose a smoothing functiénsupported inB; and satisfying
J0i(x)dz = 1 and define the integral operataRs ; and7; ; accordingly. By Theorerp 3.2, these
are all pseudodifferential operators of ordet on R™. They all satisfy the homotopy relations
(B-13), but they do not have good support properties witheesstoS?, only with respect to their
respectivel/; N 2. We then define operator, and7T, according to

Ryu = inRMu andTyu = ZTé,z‘(XiU) foru e %@O(R”,AZ), 1</<n. (4.2)
i=1 =1



4.3 BOUNDED LIPSCHITZ DOMAINS 14

These operators are still pseudodifferential operatorerdér —1 on R”, but they have better
support properties with respectfb

If u € €5°(R", AY) vanishes in2, then it vanishes i/; N 2, and sincd/; N Q2 is starlike with
respect taB;, Ry ;u vanishes inU; N €2 and thereforey; R, ;u vanishes in all of). HenceR,u
vanishes if). In other words, the restriction dt,u to 2 depends only on the restriction ofto
Q.

For T, the argument is similar: Kuppu« C Q, thensupp x;u C U; N Q, and therefore
supp 17, (x;u) C U; N Q2 C Q. Hencesupp Tyu C L.

As a result, we immediately get the same mapping propersiés @orollaried 3]3 and 3.4.

Lemma 4.3 Let2 ¢ R" be a bounded Lipschitz domain and let the operatBysand T for

1 < ¢ < n be defined from a finite starlike open cover(bfs in (f.1). ThenR, defines con-
tinuous mappings fror@ > (2, A%) to €>°(Q, A*~1), from > (Q, A?) to °°(Q, A*~1), and for
any s € R from H*(Q, AY) to H*t1(Q, A"1). The operatorT; defines continuous mappings
from €5° (2, AY) to 65°(Q, A1), from 62°(R™, A*) to €2°(R™, A*~"), and for anys € R from
HE(R™, AY) to HIMH(R?, AT,

On the other hand, the simple anticommutation relatiprisdj3are, of course, no longer valid
for these composite operatals andT). Instead we have far < ¢ <n — 1

(dR¢ + Rprd)u=d Z Xilgiu + Z XiRey1:du
i1 i1

= Z Xi(dRg; + Ret1d)u + Z[d, Xi] Ry iu
i—1 =1

= Z xiu — Kpu  with Kpu = — Z[d, Xi|Reiw .
i=1 i=1
On a neighborhood d®, this reduces to (dRy + Rep1d)u = u — Kyu .
From the product rulel(x;u) = (dx;) A v + x;du we obtain the commutatdel, x;|u =
(dx:) » u, and hence the expression fhy:

Ko = — Z(dXi) ANRpu, 1<0<n. (4.2)
i=1

This shows immediately thak, is a pseudodifferential operator of orde on R™, and that it
has the same support properties as the opefytor

To complete the family for the endpoints= 0 and¢ = n, we notice that for &-form «

Ridu = Z Xilt1 idu = Z Xi (u — (0, U))
i=1 i=1

and for amn-form w

dRpu = di XiBRniu = i Xid Ry ju + i[da Xi]Rnitt = i Xiu + i”: dxi A Rpiu
=1 =1 =1 i—1 =1



4.3 BOUNDED LIPSCHITZ DOMAINS 15

Therefore if we setd*(Q,A™!) = H*(Q,A"T!) = {0}, Rou = 0, Ko = >, (0i,u)xi,
R, +1 = 0, we obtain the homotopy relation for the de Rham complexautivoundary conditions

()

dRyu+ Ryy1du=u— Kyu forall 0<¢<n. 4.3)

Note that this relation is now valid only in a neighborhoodXhot in all of R™. As a consequence

of (¢.3) we get
dKu = du — dRyy1du = Kyp1du  forall0 <4 <n.

For the operatoi; we obtain similarly, when < /¢ <n — 1,

m

(dTy + Tyad)u = OO xi)u— Leu  with Leuw = > Ty 4[d, xiu.
-1 i=1

On a neighborhood d®, this reduces tqdT}; + Ty11d)u = u — Lyu with the pseudodifferential
operatorL, of order—1 given by

Leuw=Y Tri((dxi)ru), 0<L<n—1. (4.4)
i=1

We complete this withf7S(R", A~") = HZ(R™, A"*!) = {0}, Ty = 0, Thy1 = 0, andLyu =
> ([ xiu) * 6; and obtain the homotopy relation for the de Rham complex wdthpact support

®.2

dTyu+Tp1du=u— Lyuw forall 0 <4 <n. (4.5)

This relation is valid in a neighborhood ©f, but now if we apply it to a: with support in, it
will be valid in all of R™. Again as before we obtain

dLyu = Lyyqdu  forall0 </ <n.

Remark 4.4 In this subsection on Lipschitz domains, we are using theneldd de Rham com-
plexes [2]1) and (3.2), rather than the sequer{cels (2.3Padidas we did for starlike domains. For
this reason, we now havg, = 0, 7o = 0, R,,.1 = 0andT,,.1 = 0. A

Before drawing conclusions, we prove a stronger versiohefelations[(4]3) and (4.5), where
the perturbations of the identiti{, and L, are not just of order-1, but in fact infinitely smoothing
in a neighborhood of?.

Letzp € R". We shall say that the family of functiorts;)i=1.... is flat at z, if eachy; is
constant in a neighborhood of. We will also call an open covering/;);—.... m Of Q by a slight
abuse of languagstarlikeif eachU; N Q2 is starlike with respect to some open b}l

Lemma 4.5 Let () be a bounded Lipschitz domain. Then there exists a finite eunftstarlike
finite open coveringSUi(J))izl,___vm(j) ,j =1,...,k, of Q and subordinate partitions of unity, such
that for anyxzy € R™ at least one of the partitions of unity is flat ag.
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Proof: In afirst step we show that for a givey € R"™ there exists a starlike finite open covering
(Ui)i=o,....m Of Q and a partition of unity subordinate to this covering whisffiat atz,.

Let firstzy € Q. LetU, be a neighborhood afy such that/, N is starlike with respect to a ball,
Vo another neighborhood afy such thafl’, C Uy andy, € 6§°(R™) such thasupp xo C U
andxo = 1 on a neighborhood of ,. We may assume th&t \ V| is still Lipschitz. Choose a
finite open coveringU; );=1,...» of Q \ Vj such that each/; N 2 is starlike with respect to a ball.
Let{x; |i=1,--- ,m} be a subordinate partition of unity which therefore satsfie

Y Xi(z) =1 forallzinaneighborhood of2 \ Vj .
i=1

Then defining for = 1,--- ,m:

Xi = (1= Xo0)Xi
we have a starlike coverinfl;)i—o....» of Q and a subordinate partition of unity;)i—o....m
which is flat atx.

If now zg € R™ \ Q, then from any partition of unity subordinate to an open cimgeof 2 we get
another one which is flat aty by multiplying with a cut-off function which ig on a neighborhood
of 2 and vanishes on a neighborhoodgf

In a second step we chooge> 0 such that? C Br(0). To anyx, € Bg(0) there exists, as we
have proved in the first step, a neighborhd6@:() and a starlike open coverir(gfi(“))i of Q with

a subordinate partition of unityxl(.m))i which is flat at any point o¥/(z(). The open covering
(V(20)),, B (o) Of the compact seB(0) contains a finite subcovering associated with points
ro = 11,...,7, € Bg(0). The corresponding family of open coverin@éi(xj)) and partitions of
unity (XZ(.IJ')) for j = 1,...,k will have the required properties for all pointg € B (0). For
the remaining points;y € R™ \ Br(0), one adds one of the previous partitions of unity, after

multiplying each of its functions by @ cut-off function that isl in a neighborhood of? and
has its support itBr(0). O

Theorem 4.6 Let 2 C R™ be a bounded Lipschitz domain. Then foe 0,1, ... ,n, there exist
pseudodifferential operatorB,, T, of order—1 and K, L, of order—oo on R™ with the following
properties:

() The operators define continuous mappings

Ry : €°(Q, AY) — €>(Q,AY) and T, : 6 (R",AY) — C€X(R", AT,
and for anys € R
Ry : HS(Q,AY — HTH(Q, A and Ty : HE(R",A") — HZM (R, A,
Ky : H*(Q,A) — €>°(Q, A and L : HE(R",AY) — € (R", AY) .
(i) On a neighborhood d®, there holds fo¥ = 0, 1, ..., n and any/-form« on R™ with compact

support
dRyu+ Rypydu=u—Kpu and dTyu+ Tppqdu=u— Lyu . (4.6)

(iii) In particular, K, is a finite-dimensional operator mappitg® (2, A°) continuously &> (2, A%)
foranys € R, L,, is afinite-dimensional operator mappim%(R", A™) continuously td%’o(R", A™)
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for anys € R, and one has in a neighborhood Qf:

Ridu=u—Kou, Tiydu=u— Lou, when{=0,
dR,u=u—Ky,u, dT,u=u-—L,u, whenl{=n.

Proof: We give the details of the proof for the Poincaré-type ofesal,. For the Bogovskil-
type operatorgd, the proof is the same.

The crucial observation is that in the definitiofis](4.2) @& gerturbation operatds, and (4.4) of
Ly, the factorsdy; are all zero in a neighborhood of any poinf in which the partition of unity
(Xi)i=1,..,m is flat. The imaged<,u and L,u are thereforeg> in the neighborhood of such a
point (in fact, K,u is even zero there).

We choose now a finite number of starlike finite open cover(rig@)izlwm(,ﬂ),j =1,...,k,
of Q and subordinate partitions of uni(ygl(.j))izlv___,mm,j = 1,...,k which exist according to
Lemma[4.p in such a way that for amy € R™ at least one of the partitions of unity is flatzaf.
Foreachj = 1,...,k, we construct the operatoféj ) andK é” ) associated with the corresponding
partition of unity. They satisfy the equivalent ¢f (4.3) oneighborhood of2, namely
(dRY + RY), d)u=u—KPu, “n
dKu = K, du. '
We can then define
Ro=RY + KM RP + kKW KD RY . 4 kD kY RP
K=K ... k"
Using the relations[(4.7), one can easily verify that on ghigorhood of2 we have
(ng—i—Rz.H d)u:u—Kgu and dK,u = Ky 1du . (4.8)

In addition, we find that the operatdt, is not only a pseudodifferential operator of ordek
as a product of pseudodifferential operators of ordér but actually of order—oo, that is, an
integral operator witle>° kernel, continuously mapping’(R™) to > (R™). The reason for this

is that for anyzry € R, at least one of the partitions of uni@xﬁj))izlwm<j) is flat atzg, and that

therefore the corresponding factb’réj) maps to functions which afé€*° in a neighborhood afy.
The other factors in the definition &f, are pseudodifferential operators, hence pseudo-locdl, an
therefore the produdk’, maps to functions that af€*° in a neighborhood af, too. O

The relations [(4]6) imply regularity results for tideoperator. These can be expressed as
existence of solutions of maximal regularity if the soN#piconditions are satisfied. We consider
this first for the inhomogeneous equatidn = » and then for the homogeneous equatian= 0.
Finally we obtain a regularity result for the cohomology & of the two de Rham complexes

(22) and [ZR2).

Corollary 4.7 Let$2 be a bounded Lipschitz domainlii.
For1 </ < mnandanys,t € R we have:
(@ If u € H*3(Q,A") satisfiesu = dv for somev € H!'(Q, A*1), then there existsy €
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H*1(Q, A*~1) such thatu = dw, and there is a constar independent of. and v with
wll grs+1) < C (lullg=) + vl g @) -

(b) If u € HE(R", A") satisfiesu = dv for somev € HL(R™, A1), then there exists €
H%“(R“, A~1) such thatu = dw, and there is a constard independent ofi andv with

[wllgs+1gny < C (Jlull grs@ny + [[0]| e rny) -

Proof: (a) If u = dv, then withv = dRy_1v + Rydv + K;_qv we getu = d (Ryu + K;—_qv),

andw = Ryu + K, v belongs toH s+ (Q, A1) if u € H*(Q, A?). The estimate follows from

the fact thatR, is of order—1 and thatK,_; mapsH* (2, A*~1) continuously tof7s+1(Q, A*~1)

for any s andt.

(b) Likewise,u = dv impliesu = dw with w = Tyu + Ly_1v € H%H(R",Ae_l) if u e

HE(R™, AY). O
Next we consider the special case of relating (4.6) where 0.

Corollary 4.8 Let(2 be a bounded Lipschitz domainRi*. For anys € Rand1 < ¢ < n we
have:

(@ weH(QUAY), du=01inQ = wu=dRwu+Kmu in
Here Ryu € H*1(Q, A1) and Kyu € €°(Q, AY).

(b) we H%(R",Af), du=0inR" = w=dlyu+Liuu in R"
HereT,u € HZ (R™, A*~!) and Lyu € €°(R™, AY).

For a bounded Lipschitz domaii, we consider now the cohomology spaces of regulardy
the two de Rham complexes, without boundary conditipng) (2rid with compact supporft (2.2).
Thus we introduce the corresponding two variants of the cwlogy spacesyithout boundary

conditions
_ ker(d: Hs(Q,A%) — H71(Q, A1)

J6°(Q) = 4.9
PO @ (@A) — (@, AD) (49
andwith compact support
ker(d : HE(R™, AY) — HEY(R™, A+
KB = s g )~ iy ) (4.10)

im(d: HZ (R A — HE(R?,AY)

Here we can consider the full range< ¢ < n, if we complete the complexes liyas we did in

() and 2.

Theorem 4.9 Let() be a bounded Lipschitz domainkf, and let0 < ¢ < n.
(a) For any s € R, the exterior derivatives

d: HPHQ, A — H3(Q, A and d:HZ(R", A" — HE(R", A"

define bounded operators with closed ramgé* ! (2, A“~!) and dH%“(R”, ALY
(b) The dimension of7;°(Q2) is a finite numbew, independent of € R. Moreover there is a
be-dimensional subspace;(Q2) of €>°(Q2, AY) such that, for alls € R,

ker(d L HY(Q,AY) — Hs‘l(Q,A”l)) = dHTHQ, AT @ A4 Q). (4.11)
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That is, for anyu € H*(Q, AY) satisfyingdu = 0 in Q, there existy ¢ H*1(Q,A*"!) and a

uniquew € J;(12), such that
u=dv+w With |[v|gst1q) + |wllgs @) < Csllullgs) -

(c) The dimension Qf}fﬁsz(R") is a finite numbeb, independent of € R. Moreover there is a
by-dimensional subspaces, ,(R") of £2°(R", A’) such that, for alls € R,

ker(d : HE(R™, AY) — H%‘l(R”,A“l)) = dHZ' R A @ 5, (RY). (412)

Thatis, for anyu € H:(R", A*) satisfyingdu = 0 in R", there exists € H%“(R“,Ag‘l) and
a uniquew € J%; ,(R"™), such that

u=dv+w with ||U||H5+1(Rn) + ||'LU||HS(RTL) < CSHUHHS(R”) .
(d) The dimensions, andb, are related by

bp—e = by .

Proof: We give the proof for the case without boundary conditiontse Pproof for the case with
compact support is similar if one takes into account the rimgpproperties of the operatof&
andL,.

Fix ¢ € {0,...,n}. Fors € R, define
N; =ker(d: H*(Q,A") — H71(Q,AT))

with in particular, N = H*(Q2, A™). This is a closed subspace BF (2, A?), and for the study of
the range ofl, we can replacéZ**1(Q2, A“~!) by the quotient space

X;H = QA /NG
with its natural quotient norm. We will now study the propestofd as a mapping
d: Xt — Ng . (4.13)

We know from [4.B) that the nullspace @fs an invariant subspace of the operakar, and K is
a compact operator ifV;. By the same tokeni(,_; is defined in a natural way on the quotient
spaceX ;jll, and it is a compact operator there.

Also from (4.B) follows that fors € H5T1(Q2, A*~1) we have
Rydu =u— Ky_qu—dRy_jv =u— K;_ju mod N;jll ,

and forv € N;j we have
dRyw =v — Kypv .

Together, this means that if we consider as a bounded operator frofd; to X;™/, it defines
a two-sided regularizer (inverse modulo compact operptufrthe operatorl in (¢.13). By the
well-known theory of Fredholm operators, this implies tian (4.13) is a Fredholm operator. Its
image is therefore closed, which proves point (a), and iffiméte codimension, which shows that
7¢,°(12) is finite dimensional.
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Let us now define the direct summaw (). Letb, = dim 7. Itis a consequence of the above
results thatt ' (2, A*~1) has ab,-dimensional direct summand, sa (2, A) in N. That is

NY = dHY(Q, A1) @ 2(Q,AY) .
Define )
H5(Q) = Ko (Q,A) € €°(Q,A") .
Then, by [48).7,(Q) c N; for all s. MoreoverdH**!(Q, A*~1) N () = {0}. To see
this, suppose thatv = K,w wherev € HT1(Q, A*~1) andw € 2#(Q, A?). Thus, using[(4]6),

d(Redv + Ky_1v) = w — dRyw and hencelu = w whereu = RyKyw + Ky 1v + Ryw €
€>°(Q, A1) c HY(Q, A1), So, by the definition of# (2, A*), w = 0 and then againjv =

Kyw = 0. In a similar way, we can show thaf, is one—one ow#;({2), so thatdim J#;(2) = b,.

We next prove [(4.31). Given € N}, write u = dRyu + K¢(dReu + Kpu). Now Keu €
> (Q, AY) ¢ H°(Q2, AY), so by the definition 0£7 (2, A?), we can write

Ku=dv+w with o € H(Q,AY), v € 2(Q,A) .
Henceu = dv +w with v = Rgu—l—Kg_leu—l—Kg_lvl € HS—H(Q,AZ_l), w = ng’ € jﬁ(ﬁ),
and||v[| gs+1 + [lwl| s < Cllullas.
It is a consequence of (4]11) that;*(2) is isomorphic tos7;(Q2), and hencelim .7*(Q) = by
for all s.
To prove part (d), observe that
1
{ker(d L H(Q,AY) — Hs—l(Q,A“l))} = GHZ*TL(R", AT
_ *dHﬁ_s—H(Rn,An_é_l)
and
S - 1 —S n n— —S— n n—
{dH=H (0, A1)} = *ker(d:Hﬁ (R",A™) — H=*"'(R", A 4+1)) .
Therefore, by duality,

ker(d : H¥(Q, AY) — Hs—l(Q,MH))
bg = dim

im(d: H5T1(Q, A1) — H5(Q, AY))

= Bn—f .

ker(d : Hg*(R™,A"™") — Ho*~H(R", An=H))
= dim « - £ — g
1m(d: ﬁs (Rn,An—Z—l) — HES(RTL,A”_Z))

Remark 4.10 When?¢ = 0, then
() =ker(d: H*(Q,A") — H*71(Q,A')) =R (the constant functions) and
Aoy o(R") = ker(d - HY(R", A%) — HEy'(R", A1) = {0)
so, by duality,
A QA = H QA" A,(Q) = {0},
dHZIT (R, A1) = {u € HE(R",A"): [u=0},
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and.’% ,,(R™) can be taken to bécL, 15 | ¢ € R} wherelg is the characteristic function o1
Thereforeby = b,, = 1 andb,, = by = 0.

Whenl < ¢ < n — 1, we can take#Z(Q2, A’) to be the orthogonal complementafl (€, A*~1)
in Ny, so that

H5(Q) = Kp{u € L*(Q,A") | du = 0,6u = 0 andv Ju = 0 0n 9N},
Similarly we can take
Hey o(R") = Le&y{u € L*(Q,A%) | du = 0,6u = 0 andv A u = 0 ondQ}

whereé; : L?(Q, AY) — L%*(R, A*) denotes extension by zero.
The integerd, are the Betti numbers &1. A

Note that the sequence of Betti numbégs. . ., b, will in general be different from the se-
quenceby, . .., b,. For example, for the standard torus embedde®3inone finds without diffi-
culties the two sequencésl, 0,0 and0,0, 1, 1, and for the ball with a holé3,(0) \ B;1(0), one
gets the two sequenceéso, 1,0 and0, 1,0, 1.

Classically, one considers the de Rham complexes for difteal forms with smooth coeffi-
cients

0— QA% L @A) L ... L E>@ A" =0 (4.14)
and J J J
0 — E°(R"A%) S CXR AN S - S E°(RY,A") — 0 (4.15)

With the same arguments as in the preceding proof one caraethé associated cohomology
spaces are isomorphic to those with finite regularity casrsid in Theorenf 4.9. It suffices to
notice that pseudodifferential operators n¥dy functions to%’>° functions.

Corollary 4.11 Let) be a bounded Lipschitz domainRf* and0 < ¢ <n .
(a) The cohomology space without boundary condition

ker(d L E°(Q, AN — 2, A“l))

im(d : €°(Q,A1) — €(Q,AY))

of the de Rham complé}.14) has dimensiom, and is isomorphic ta’;(Q2). There is a splitting
ker(d L E(Q, A — ¢, A“l)) = AL A @ H4(Q).
(b) The cohomology space with compact support

ker(d : €2°(R™, AY) — €°(R", A1)
im(d : €2°(R", A1) — (R, AY))

of the de Rham complefd.13) has dimensiorb, and is isomorphic totg ,(R™). There is a
splitting

ker(d L G (R", L) — %go(R",A“l)) = dEXR"ATY) © Ay, RY).
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Remark 4.12 All the results of this section remain valid whéf?* is replaced byB, (0 < p <
00,0 < g < o0),0rbyFj (0 <p<o0,0<g<o0).
We make the following additional comments.

In Corollary[4., all that is required afis that, in part (a)y be the restriction t6) of a distribution
(with compact support) o™, while in part (b),v be a distribution orR™ with support in€.
Indeed, it is well known that distributions with compact pag are of finite order, so there exists
then a finite index such thaty belongs to one of the spaces required in the corollary.

The dimension of the cohomology spac#$’(€2) andc%%sz, defined using3,, or I}, in place of

H?#, are still equal td; andb;. A

We conclude by mentioning that we have now proved Thedrejrstafied in the Introduction.
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