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UNIQUENESS OF THE SOLUTION TO QUASILINEAR ELLIPTIC EQUATIONS

UNDER A LOCAL CONDITION ON THE DIFFUSION MATRIX

OLIVIER GUIBÉ

ABSTRACT. We prove the uniqueness of the renormalized solution to the elliptic equa-
tion −div(A(x,u)Du) = f +div(g ). The data f +div(g ) belongs to L1 +H−1 and we as-
sume a local condition on the diffusion matrix A(x, s) with respect to s.

1. INTRODUCTION

The present paper is concerned with the uniqueness of the solution to the quasilin-
ear elliptic boundary–value problem on Ω

(1.1)

{ −div(A(x,u)Du) = f +div(g ) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of R
N , f ∈ L1(Ω), g ∈ (L2(Ω))N and A(x, s) is a

Carathéodory function with matrix values.
When f belongs to L2(Ω) (i.e. the right-hand side of (1.1) lies in H−1(Ω)) the vari-

ational solution of (1.1) is unique under a global Lipschitz condition on the function
A(x, s) with respect to the variable s (or a global and strong control of the modulus
of continuity), see Artola [1986], Carrillo and Chipot [1985] and for more general and
nonlinear operators Boccardo et al. [1992], Chipot and Michaille [1989]. Moreover in
Carrillo and Chipot [1985], Chipot and Michaille [1989] the authors show that if A(x, s)
is Hölder continuous in s with a Hölder exponent greater of equal to 1/2 and if A(x, s) is
Lipschitz continuous in x then the solution is unique. For this last result the quasilinear
character of the equation and the regularity of A(x, s) in x are crucial.

In the case where f lies in L1(Ω) and if A is uniformly coercive we cannot expect
to have a solution of (1.1) in the sense of distributions without any growth condition
on A(x, s) with respect to s. Moreover it is well know that, in the simple case where A

does not depend on s, a solution in the sense of distribution exists (see e.g. Boccardo
and Gallouët [1989]) but it is not unique in general (see the counter example in Ser-
rin [1964]). In the present paper we use the framework of renormalized solution (see
Dal Maso et al. [1999], Murat [1993, 1994]) which insures the existence of such a solu-
tion when f belongs to L1(Ω), A is uniformly coercive and A ∈ L∞(Ω×]−K ,K [)N×N for
any K > 0.

Uniqueness results have been recently obtained in Blanchard et al. [2005] in the
framework of renormalized solutions and in Porretta [2004] in the very close frame-
work of entropy solutions for equations (1.1) with f belonging to L1 with very general
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2 O. GUIBÉ

and global conditions on the matrix field A. Roughly speaking the modulus of continu-
ity of A with respect to s has to be controlled by exp(c|s|) (c > 0) in Porretta [2004] and
by a function which satisfies an appropriate differential inequality in Blanchard et al.
[2005].

In the present paper we state in Theorem 3.2 that the renormalized solution of (1.1)
is unique if A is locally Hölder continuous in s with a Hölder exponent greater or equal
to 1/2 and under a global control of the modulus of continuity of A with respect to the
space variable x. The main novelty between our and known uniqueness results is the
very local condition on A, i.e. we do not assume any control on the growth of the mod-
ulus of continuity of A in s as in the above cited papers. The price to pay to get rid of
this global behavior is to assume a regularity with respect to x. The results obtained in
the present paper rely on the mixing of the assumptions and the techniques developed
in Carrillo and Chipot [1985] (see also Chipot and Michaille [1989]) with those used to
study L1–problems with the help of renormalized solutions (see Lemma 3.3 and Remark
3.4).

At last the question of the uniqueness under a local condition is s remains still open
in general.

The paper is organized as follows. In Section 2 we give the assumptions on the data
and we recall the definition of a renormalized solution of (1.1). Section 3 is devoted to a
comparison result stated in Theorem 3.1 which implies the uniqueness of the solution
given in Theorem 3.2.

2. ASSUMPTIONS AND DEFINITIONS

In the whole paper we assume that A : Ω×R 7→R
N×N is a Carathéodory function with

A(x, s) = (ai j (x, s))1≤i , j≤N and such that

∃α> 0, A(x, s)ξ ·ξ≥α|ξ|2, ∀ξ ∈R
N , ∀s ∈R, a.e. in Ω;(2.1)

∀K > 0, ∃CK > 0 |A(x, s)| ≤CK , ∀s ∈ [−K ,K ], a.e. in Ω;(2.2)

for any r in R and any 1 ≤ i , j ≤ N , the function ai j (r, ·) belongs to W 1,∞(Ω) and there
exists M > 0 such that

∣

∣

∣

∂ai j

∂xk
(x,r )

∣

∣

∣≤ M
∑

1≤i , j≤N

ai , j (x,r ), ∀r ∈R, ∀1 ≤ i , j ≤ N , a.e. in Ω.(2.3)

Moreover we assume that for any K > 0 there exists a nonnegative, non decreasing con-
tinuous function ωK such that

|A(x, s)−A(x,r )| ≤ωK (|s − r |) ∀r, s ∈R with |s| ≤ K , |r | ≤ K , a.e. in Ω;(2.4)
∫

0+

d s

ω2
K

(s)
=+∞.(2.5)

The data f and g are such that

f ∈ L1(Ω);(2.6)

g ∈ (L2(Ω))N .(2.7)
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Remark 2.1. Assumptions (2.1) and (2.2) are classical in the framework of renormalized
solutions and allow to obtain the existence of such a solution with a data belonging to
L1 +H−1. Conditions (2.4) and (2.5) concern a local condition on the modulus of con-
tinuity of the matrix field A(x, s) in s. If the matrix field A(x, s) does not depend on
x and is locally Hölder continuous with an exponent greater or equal to 1/2 then as-
sumptions (2.3), (2.4) and (2.5) are satisfied. Assumption (2.3) is crucial when A(x, s)
depends on x. As an example, if b is an element of W 1,∞(Ω) and h is a non nega-
tive locally Hölder continuous function with an exponent greater or equal to 1/2, then
A(x, s) = (exp(s2)+b(x)h(s))I verifies (2.1)–(2.5).

Remark 2.2. Since ωK is a nonnegative, non decreasing continuous function satisfying
(2.5) we can assume without loss of generality that there exists CK such that

(2.8) ∀0 < r < 1,
r

ω2
K

(r )
≤CK .

Indeed it is sufficient to take ωK (r )+
p

r in place of ωK in (2.4) which also verifies con-
dition (2.5).

For any K > 0 we denote by TK the truncation function at height ±K ,
TK (s) = max(−K ,min(K , s)) for any s ∈R and we define the continuous function hn by

(2.9) hn(s) = 1−
∣

∣

∣

T2n(s)−Tn(s)

n

∣

∣

∣.

We now recall the definition of the gradient of functions whose truncates belong to
H 1

0 (Ω) (see Bénilan et al. [1995]).

Definition 2.3. Let u : Ω 7→R be a measurable function, finite almost everywhere in Ω,
such that TK (u) ∈ H 1

0 (Ω) for any K > 0. Then there exists a unique measurable vector
field v : Ω 7→R

N such that

DTK (u) = 1{|u|<K }v a.e. in Ω.

This function v is called the gradient of u and is denoted by Du.

Following Dal Maso et al. [1999] (see also Murat [1993, 1994]) we now recall the defi-
nition of a renormalized solution to (1.1).

Definition 2.4. A measurable function u defined from Ω into R is called a renormalized
solution of (1.1) if

∀K > 0, TK (u) ∈ H 1
0 (Ω);(2.10)

if for any function h ∈W 1,∞(R) such that supph is compact, u satisfies the equation

(2.11) −div
[

h(u)A(x,u)Du
]

+h′(u)A(x,u)Du ·Du

= f h(u)+div(g h(u))−h′(u)g ·Du in D
′(Ω),

lim
n→+∞

1

n

∫

n<|u|<2n
A(x,u)Du ·Dud x = 0(2.12)
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Remark 2.5. Condition (2.10) and Definition 2.3 allow to define Du almost everywhere
in Ω. In (2.11) which is formally obtained by the point-wise multiplication of (1.1) by
h(u) every terms are well defined. Indeed since supp(h) is compact, we have supp(h) ⊂
[−K ,K ] for K > 0 sufficiently large. It follows that h(u)A(x,u)Du = h(u)A(x,TK (u))DTK (u)
almost everywhere inΩ and then it belongs to (L2(Ω))N . Similarly h′(u)A(x,u)Du ·Du is
identified to h′(u)A(x,TK (u))DTK (u) ·DTK (u) which belongs to L1(Ω). The same argu-
ments imply that the right hand side of (2.11) lies in L1(Ω)+H−1(Ω). Condition (2.12) is
classical in the framework of renormalized solutions and gives additional information
on Du for large value of |u|.

It is well know that under assumptions (2.1), (2.2), (2.6) and (2.7) there exists at least
one renormalized solution to equation (1.1), see e.g. Blanchard et al. [2005], Lions and
Murat, Murat [1993, 1994].

3. MAIN RESULT

In Theorem 3.1 below we give a comparison result from which it follows a unique-
ness result.

Theorem 3.1. Assume that (2.1)–(2.5) hold true. Let f1 and f2 belong to L1(Ω) and let

g1 and g2 belong to (L2(Ω))N such that

(3.1) f1 +div(g1) ≤ f2 +div(g2) in D
′(Ω)

Let u1 be a renormalized solution of (1.1) with ( f1, g1) in place of ( f , g ) and let u2 be

a renormalized solution of (1.1) with ( f2, g2) in place of ( f , g ). Then u1 ≤ u2 almost

everywhere in Ω.

An immediate consequence is the uniqueness of the solution for a fixed data f +
div(g ) ∈ L1(Ω)+H−1(Ω).

Theorem 3.2. Assume that (2.1)–(2.7) hold true. Then the renormalized solution of

(1.1) is unique.

To prove Theorem 3.1 we mix the methods developed by Chipot and Carillo in Car-
rillo and Chipot [1985] (see also Chipot and Michaille [1989]) together with the tech-
niques of renormalized solutions. The main tool is the following lemma which is a
truncated version to Theorem 4 in Carrillo and Chipot [1985].

Lemma 3.3. For any ϕ belonging to C
1(Ω)

(3.2) lim
n→+∞

∫

{u1−u2>0}

(

hn(u1)A(x,u1)Du1 −hn(u2)A(x,u2)Du2
)

·Dϕd x = 0.

Remark 3.4. In Carrillo and Chipot [1985] (see also Chipot and Michaille [1989]) when
f +div(g ) belongs to H−1(Ω) and under more restrictive conditions on the matrix field
A(x, s) (roughly speaking A(x, s) is bounded) the authors state that

∫

{u1−u2>0}

(

A(x,u1)Du1 −A(x,u2)Du2
)

·Dϕd x = 0.

In the L1(Ω)+H−1(Ω) case, since we do not have any growth assumption on A(x, s) with
respect to s, we cannot expect to have A(x,u1)Du1 in L1

loc(Ω). It follows that the above
equality does not have any sense or equivalently that the limit in (3.2) cannot be written
in terms of u1 and u2.
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Proof of Lemma 3.3. Let ϕ belong to C
1(Ω) with ϕ ≥ 0 on Ω and let n be a positive

integer. Assume without loss of generality that ω2n+1(r ) > 0 ∀r > 0. Following Chipot
and Michaille [1989] let us define for any 0 < ε< 1

In(ε) =
∫1

ε

1

ω2
2n+1(s)

d s,(3.3)

F ε
n(r ) =



















1 if r ≥ 1,

1

In(ε)

∫r

ε

1

ω2
2n+1(s)

d s if 1 > r > ε,

0 if r ≤ ε.

(3.4)

From the definition of F ε
n and the regularity of ω2n+1 it follows that F ε

n is a nonnegative
Lipschitz continuous function such that F ε

n(s) = 0 ∀s ≤ ε.
Let us consider the test function W ε

n = F ε
n(T1(T2n+1(u1)−T2n+1(u2)))ϕ which belongs

to L∞(Ω)∩H 1
0 (Ω) due to (2.10) and the regularities of F ε

n and ϕ. Moreover we have

DW ε
n = F ε

n(T1(T2n+1(u1)−T2n+1(u2)))Dϕ+ϕT ′
1(T2n+1(u1)−T2n+1(u2))

× (F ε
n)′(T1(T2n+1(u1)−T2n+1(u2)))(DT2n+1(u1)−DT2n+1(u2))

almost everywhere in Ω.
Choosing h = hn in (2.11) written in u1 yields

(3.5)
∫

Ω

hn(u1)A(x,u1)Du1 ·DW ε
n d x +

∫

Ω

h′
n(u1)A(x,u1)Du1 ·Du1W ε

n d x

=
∫

Ω

hn(u1) f1W ε
n d x −

∫

Ω

hn(u1)g1 ·DW ε
n d x −

∫

Ω

h′
n(u1)g1 ·Du1W ε

n d x.

Since supp(hn) = [−2n,2n] we have hn(u1)F ε
n(T1(T2n+1(u1)−T2n+1(u2))) = hn(u1)F ε

n(T1(u1−
u2)) almost everywhere in Ω and

hn(u1)1{|T2n+1(u1)−T2n+1(u2)|<1}(DT2n+1(u1)−DT2n+1(u2)) = hn(u1)1{|u1−u2|<1}(Du1 −Du2)

almost everywhere in Ω. It follows that (3.5) can be rewritten as

∫

{|u1−u2|<1}
hn(u1)A(x,u1)Du1 · (Du1 −Du2)(F ε

n)′(T1(u1 −u2))ϕd x

+
∫

Ω

hn(u1)A(x,u1)Du1·DϕF ε
n(T1(u1−u2))d x+

∫

Ω

h′
n(u1)A(x,u1)Du1·Du1F ε

n(T1(u1−u2))ϕd x

=
∫

Ω

hn(u1) f1W ε
n d x −

∫

Ω

hn(u1)g1 ·DW ε
n d x −

∫

Ω

h′
n(u1)g1 ·Du1F ε

n(T1(u1 −u2))ϕd x.
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Subtracting the equivalent equality written in u2 gives
∫

{|u1−u2|<1}
(hn(u1)A(x,u1)Du1 −hn(u2)A(x,u2)Du2) · (Du1 −Du2)(F ε

n)′(T1(u1 −u2))ϕd x

+
∫

Ω

(hn(u1)A(x,u1)Du1 −hn(u2)A(x,u2)Du2) ·DϕF ε
n(T1(u1 −u2))d x

+
∫

Ω

(h′
n(u1)A(x,u1)Du1 ·Du1 −h′

n(u2)A(x,u2)wDu2 ·Du2)F ε
n(T1(u1 −u2))ϕd x

=
∫

Ω

(hn(u1) f1 −hn(u2) f2)W ε
n d x −

∫

Ω

(hn(u1)g1 −hn(u2)g2) ·DW ε
n d x

−
∫

Ω

(h′
n(u1)g1 ·Du1 −h′

n(u2)g2 ·Du2)F ε
n(T1(u1 −u2))ϕd x,

which reads as

(3.6) An,ε+Bn,ε+Cn,ε = Dn,ε+En,ε+Fn,ε.

In the following we pass to the limit in (3.6) as ε tends to 0, and then as n tends to +∞.
We claim that

liminf
ε→0

An,ε ≥ 0,(3.7)

lim
n→+∞

limsup
ε→0

|Cn,ε| = 0,(3.8)

limsup
n→+∞

limsup
ε→0

(Dn,ε+En,ε) ≤ 0,(3.9)

lim
n→+∞

limsup
ε→0

|Fn,ε| = 0.(3.10)

Proof of (3.7). We split An,ε into

(3.11) An,ε = A1
n,ε+ A2

n,ε+ A3
n,ε

with

A1
n,ε =

∫

{|u1−u2|<1}
hn(u1)A(x,u1)(Du1 −Du2) · (Du1 −Du2)(F ε

n)′(T1(u1 −u2))ϕd x,

A2
n,ε =

∫

{|u1−u2|<1}
hn(u1)(A(x,u1)−A(x,u2))Du2 · (Du1 −Du2)(F ε

n)′(T1(u1 −u2))ϕd x,

A3
n,ε =

∫

{|u1−u2|<1}
(hn(u1)−hn(u2))A(x,u2)Du2 · (Du1 −Du2)(F ε

n)′(T1(u1 −u2))ϕd x.

Since hn , ϕ and (F ε
n)′ are nonnegative functions the coercivity of the matrix field A(x, s)

yields that

(3.12) liminf
ε→0

A1
n,ε ≥ liminf

ε→0
α

∫

{|u1−u2|<1}
hn(u1)|Du1 −Du2|2d x ≥ 0.

Recalling that supp(hn) = [−2n,2n], assumption (2.4) implies that

1{|u1−u2|<1}hn(u1)|A(x,u1)−A(x,u2)| ≤ 1{|u1−u2|<1}hn(u1)1{|u1|<2n+1}

× 1{|u2|<2n+1}|A(x,u1)−A(x,u2)|
≤ 1{|u1−u2|<1}hn(u1)1{|u1|<2n+1}

× 1{|u2|<2n+1}ω2n+1(|u1 −u2|),

(3.13)
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almost everywhere in Ω. Young’s inequality and (3.13) then lead to

|A2
n,ε| ≤

α

2

∫

{|u1−u2|<1}
hn(u1)|Du1 −Du2|2(F ε

n)′(T1(u1 −u2))ϕd x

+
1

2α

∫

{|u1−u2|<1}∩
{|u1|<2n+1}∩{|u2|<2n+1}

|Du2|2ω2
2n+1(|u1 −u2|)(F ε

n)′(T1(u1 −u2))ϕd x.

Assumption (2.1), the definition (3.4) of F ε
n and (3.12) give that

|A2
n,ε| ≤

1

2
A1

n,ε+
‖ϕ‖L∞(Ω)

2αIn(ε)

∫

Ω

|DT2n+1(u2)|2d x.

Since limε→0 In(ε) =+∞, from (3.12) and the above inequality we get

(3.14) liminf
ε→0

(A1
n,ε+ A2

n,ε) ≥
1

2
liminf
ε→0

A1
n,ε ≥ 0.

As far as A3
n,ε is concerned, due to Remark 2.2 we can choose ω2n+1 such that

∀0 < r < 1
r

ω2n+1(r )
≤C , with C > 0.

Because the function hn is Lipschitz continuous we deduce that

‖A3
n,ε‖ ≤

C

nIn(ε)

∫

{|u1|<2n+1}∩{|u2|<2n+1}
|A(x,u2)Du2|(|Du1|+ |Du2|)ϕd x

from which it follows that

(3.15) lim
ε→0

|A3
n,ε| = 0.

From (3.11), (3.12), (3.14) and (3.15) we conclude that (3.7) holds.

Proof of (3.8). Due to the definitions of In(ε) and F ε
n we have 0 ≤ F ε

n(T1(u1 −u2)) ≤ 1
almost everywhere in Ω. Therefore we have
∣

∣

∣

∣

∫

Ω

h′
n(u1)A(x,u1)Du1 ·Du1F ε

n(T1(u1 −u2))ϕd x

∣

∣

∣

∣

≤
‖ϕ‖L∞(Ω)

n

∫

{n<|u1|<2n}
A(x,u1)Du1·Du1d x

and condition (2.12) allows to obtain (3.8).

Proof of (3.9). Since W ε
n belongs to H 1

0 (Ω)∩L∞(Ω) and since hn(u1) belongs to H 1(Ω)∩
L∞(Ω) we have

(3.16)
∫

Ω

(hn(u1) f1 −hn(u2) f2)W ε
n d x −

∫

Ω

(g1hn(u1)− g2hn(u2)) ·DW ε
n d x

=
∫

Ω

( f1 − f2)hn(u1)W ε
n d x −

∫

Ω

(g1 − g2) ·D(hn(u1)W ε
n )d x

+
∫

Ω

f2(hn(u1)−hn(u2))W ε
n d x−

∫

Ω

(hn(u1)−hn(u2))g2·DW ε
n d x+

∫

Ω

h′
n(u1)W ε

n (g1−g2)·Du1d x.

Due to the definitions of hn and W ε
n , the field hn(u1)W ε

n is a non negative element of
H 1

0 (Ω)∩L∞(Ω). Assumption (3.1) on f1 +div(g1) and f2 +div(g2) leads to

(3.17)
∫

Ω

( f1 − f2)hn(u1)W ε
n d x −

∫

Ω

(g1 − g2) ·D(hn(u1)W ε
n )d x ≤ 0.

We now prove that the third, forth and fifth terms of (3.16) tend to zero as ε goes to zero
and then as n goes to infinity.
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Recalling the definition of W ε
n we have

(3.18)

∣

∣

∣

∣

∫

Ω

f2(hn(u1)−hn(u2))W ε
n d x

∣

∣

∣

∣

≤ ‖ϕ‖L∞(Ω)‖F ε
n‖L∞(Ω)

∫

Ω

| f2||hn(u1)−hn(u2)|d x.

Since hn → 1 in L∞ weak-∗ and almost everywhere in Ω as n goes to infinity and since
f2 ∈ L1(Ω) the Lebesgue convergence theorem and the fact that |F ε

n | ≤ 1 uniformly with
respect to ε and n imply that

(3.19) lim
n→+∞

limsup
ε→0

∣

∣

∣

∣

∫

Ω

f2(hn(u1)−hn(u2))W ε
n d x

∣

∣

∣

∣

= 0.

We now turn to the forth term of (3.16). Since hn is a Lipschitz continuous function
we obtain (recalling the definition of W ε

n )

(3.20)

∣

∣

∣

∣

∫

Ω

(hn(u1)−hn(u2))g2 ·DW ε
n d x

∣

∣

∣

∣

≤
1

n

∫

{|u1|<2n+1}∩{|u2|<2n+1}
|u1 −u2||g2|(F ε

n)′(T1(u1 −u2))|Du1 −Du2|ϕd x

+
∫

Ω

|hn(u1)−hn(u2)||g2||Dϕ||F ε
n(T1(u1 −u2))|d x.

On the one hand, due to arguments already used we know that

(3.21) lim
n→+∞

limsup
ε→0

∫

Ω

|hn(u1)−hn(u2)||g2||Dϕ||F ε
n(T1(u1 −u2))|d x = 0.

On the other hand, Remark 2.2 yields that

1

n

∫

{|u1−u2|<1}∩
{|u1|<2n+1}∩{|u2|<2n+1}

|u1 −u2||g2|
|Du1 −Du2||ϕ|

In(ε)ω2n+1(|u1 −u2|)
d x

≤
C

nIn(ε)
‖g2‖(L2(Ω))N

[

‖DT2n+1(u1)‖(L2(Ω))N +‖DT2n+1(u2)‖(L2(Ω))N

]

.

Because In(ε) → +∞ as ε goes to zero, from (3.20), (3.21) and the above inequality it
follows that

(3.22) lim
n→+∞

limsup
ε→0

∣

∣

∣

∣

∫

Ω

(hn(u1)−hn(u2))g2 ·DW ε
n d x

∣

∣

∣

∣

= 0.

For the last term in the right-hand side of (3.16), Hölder’s inequality gives

∣

∣

∣

∣

∫

Ω

h′
n(u1)W ε

n (g1 − g2) ·Du1d x

∣

∣

∣

∣

≤ ‖W ε
n‖L∞(Ω)‖g1 − g2‖(L2(Ω))N

(

1

n2

∫

{|u1|<2n}
|Du1|2d x

)1/2

and condition (2.12) then implies

(3.23) lim
n→+∞

limsup
ε→0

∣

∣

∣

∣

∫

Ω

h′
n(u1)W ε

n (g1 − g2) ·Du1d x

∣

∣

∣

∣

= 0.

Gathering (3.16), (3.17), (3.19), (3.22) and (3.23) we conclude that (3.9) holds true.
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Proof of (3.10). We have

∣

∣

∣

∣

∫

Ω

(h′
n(u1)g1 ·Du1 −h′

n(u2)g2 ·Du2)W ε
n d x

)

≤ ‖W ε
n‖L∞(Ω)

(

‖g1‖(L2(Ω))N

1

2n
‖DT2n(u1)‖(L2(Ω))N +‖g2‖(L2(Ω))N

1

2n
‖DT2n(u2)‖(L2(Ω))N

)

.

Recalling that W ε
n is bounded in L∞(Ω) uniformly with respect to n and ε, condition

(2.12) implies (3.10).

We are now in a position to prove Lemma 3.3. With arguments already used we know
that

(3.24) lim
ε→0

Bn,ε =
∫

{u1−u2>0}
(hn(u1)A(x,u1)Du1 −hn(u2)A(x,u2)Du2) ·Dϕd x.

From equality (3.6) together with (3.7)–(3.10) and (3.24) it follows that

(3.25) limsup
n→+∞

∫

{u1−u2>0}
(hn(u1)A(x,u1)Du1 −hn(u2)A(x,u2)Du2) ·Dϕd x ≤ 0.

Taking M −ϕ in place of ϕ in (3.25), with M sufficiently large so that M −ϕ≥ 0, gives

(3.26) liminf
n→+∞

∫

{u1−u2>0}
(hn(u1)A(x,u1)Du1 −hn(u2)A(x,u2)Du2) ·Dϕd x ≥ 0.

At last (3.25) and (3.26) allow to conclude that (3.2) holds true. The proof of Lemma 3.3
is complete. �

With the help of Lemma 3.3 we now turn to Theorem 3.1.

Proof of Theorem 3.1. We use Lemma 3.3 with ϕ(x) = exp(c
∑N

i=1 xi ), where c > 0.
Since hn(s) = 0, ∀|s| ≥ 2n, we have

hn(u1)A(x,u1)Du11{u1−u2>0} = hn(T2n(u1))A(x,T2n(u1))DT2n(u1)1{T2n (u1)−T2n (u2)>0}

almost everywhere in Ω. To shorten the notations we denote by u2n
1 the field T2n(u1)

and by u2n
2 the field T2n(u2). It follows that (3.2) can be rewritten as

(3.27) lim
n→+∞

∫

{u2n
1 −u2n

2 >0}

(

hn(u2n
1 )A(x,u2n

1 )Du2n
1 −hn(u2n

2 )A(x,u2n
2 )Du2n

2

)

·Dϕd x = 0.

Let us define

ãn
i , j (x,r ) =

∫r

0
ai , j (x, s)hn(s)d s.

Due to the regularity (2.10) of TK (u1) and TK (u2), assumption (2.3) implies that both
ãn

i , j
(u2n

1 ) and ãn
i , j

(u2n
2 ) belong to H 1

0 (Ω) and for l = 1,2

∂ãn
i , j

(u2n
l

)

∂xk
= hn(u2n

l )ai , j (u2n
l )

∂u2n
l

∂xk
+

∫u2n
l

0
hn(s)

∂ai , j

∂xk
(x, s)d s.(3.28)
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Since ∂ϕ
∂xk

= cϕ, using (3.28) we have
∫

{u2n
1 −u2n

2 >0}

(

hn(u2n
1 )A(x,u2n

1 )Du2n
1 −hn(u2n

2 )A(x,u2n
2 )Du2n

2

)

·Dϕd x

= c

∫

{u2n
1 −u2n

2 >0}

∑

1≤i , j≤N

(∂ãn
i , j

(u2n
1 )

∂x j
−
∂ãn

i , j
(u2n

2 )

∂x j

)

ϕd x

+ c

∫

{u2n
1 −u2n

2 >0}

∑

1≤i , j≤N

∫u2n
2

u2n
1

hn(s)
∂ai , j

∂x j
(x, s)d sϕd x.

Let us define w2n = (u2n
1 −u2n

2 )+ which belongs to L∞(Ω)∩H 1
0 (Ω) and is such that u2n

1 =
w2n +u2n

2 almost everywhere on {u2n
1 −u2n

2 > 0}. Since ãn
i , j

(u2n
2 +w2n)− ãn

i , j
(u2n

2 ) lies in

L∞(Ω)∩H 1
0 (Ω), a few computations and the integration by part formula give

∫

{u2n
1 −u2n

2 >0}

(

hn(u2n
1 )A(x,u2n

1 )Du2n
1 −hn(u2n

2 )A(x,u2n
2 )Du2n

2

)

·Dϕd x

= c

∫

Ω

∑

1≤i , j≤N

(∂ãn
i , j

(u2n
2 +w2n)

∂x j
−
∂ãn

i , j
(u2n

2 )

∂x j

)

ϕd x

+ c

∫

Ω

∑

1≤i , j≤N

∫u2n
2

u2n
2 +w2n

hn(s)
∂ai , j

∂x j
(x, s)ϕd x

=−c2
∫

Ω

∑

1≤i , j≤N

(

ãn
i , j (u2n

2 +w2n)− ãn
i , j (u2n

2 )
)

ϕd x

+ c

∫

Ω

∑

1≤i , j≤N

∫u2n
2

u2n
2 +w2n

hn(s)
∂ai , j

∂x j
(x, s)ϕd x

=−c

∫

Ω

∫u2n
2 +w2n

u2n
2

hn(s)
(

c
∑

1≤i , j≤N

ai , j (x, s)+
∑

1≤i , j≤N

∂ai , j

∂x j
(x, s)

)

d sϕd x.

Because ϕ≥ 0 in Ω, from assumption (2.3) and the coercivity (2.1) of the matrix field A

we obtain for c sufficiently large independently of n (c > 2N 2M for example) that

(3.29)
∫

{u2n
1 −u2n

2 >0}

(

hn(u2n
1 )A(x,u2n

1 )Du2n
1 −hn(u2n

2 )A(x,u2n
2 )Du2n

2

)

·Dϕd x

≤−
αc

2

∫

Ω

∫u2n
2 +w2n

u2n
2

hn(s)d sϕd x.

Since u1 and u2 are finite almost everywhere in Ω while hn converges to 1 almost ev-
erywhere in R and is bounded by 1 we obtain

(3.30) lim
n→+∞

∫u2n
2 +w2n

u2n
2

hn(s)d s =
∫u2+w

u2

d s = w almost everywhere in Ω,

where w = (u1 −u2)+.
Finally from (3.27), (3.29), (3.30) and Fatou lemma it follows that

∫

Ω

wd x ≤ 0,
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which leads to u1 ≤ u2 almost everywhere in Ω.
The proof of Theorem 3.1 is complete. �
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