N

HAL

open science

Markov paths, loops and fields
Yves Le Jan

» To cite this version:

‘ Yves Le Jan. Markov paths, loops and fields. 2010. hal-00311435v4

HAL Id: hal-00311435
https://hal.science/hal-00311435v4

Preprint submitted on 10 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00311435v4
https://hal.archives-ouvertes.fr

Yves Le Jan

Département de Mathématiques
Université Paris Sud 11
yves.lejan@math.u-psud.fr

MARKOV PATHS, LOOPS
AND FIELDS






Contents

1 Symmetric Markov processes on finite spaces ............. 7
1.1 Graphs. . ... 7
1.2 Energy .. ..o 11
1.3 Feynman-Kac formula............. .. ... .. ... .. ..... 14
1.4 Recurrent extension of a transient chain ................... 15
1.5 Transfer matrix ...........oo it 16
2 LoOp MeasUres. . ... ...ttt 19
2.1 A measure on based 1oops . ...... ... .. . i 19
2.2 First properties ........ ... 21
2.3 Loops and pointed loops. ........ ... 21
2.4 Occupation field .. ...... ... .. 25
2.5 Wreath products ........ ... .. .. 30
2.6 Countable SPaces . .. .....oit it 31
2.7 Zeta functions for discrete loops ........... ... .. ... ... ... 32
3 Geodesic loopSs. ... ...t 35
3.1 Reduction ....... ... 35
3.2 Geodesic loops and conjugacy classes ..................... 36
3.3 Geodesics and boundary........... ... .. i 37
3.4 Closed geodesics and associated Zeta function.............. 38
4 Poisson process of loops ........... ... .. i 43
4.1 Definition . ... 43
4.2 Moments and polynomials of the occupation field ........... 46
4.3 Hitting probabilities ....... ... .. . . i 50
5 The Gaussian free field ........... ... .. ... ... ... ... 53
5.1 Dynkin’s Isomorphism ........ ... .. ... . . 53
5.2 Wick products . ... 55
5.3 The Gaussian Fock space structure ....................... 56
5.4 The Poissonian Fock space structure ...................... 58
6 Energy variation and representations ..................... 63
6.1 Variation of the energy form ....... ... ... .. .. ... ..... 63
6.2 One-forms and representations ........................... 66



10

Contents
Decompeositions......... ... .. . 71
7.1 Traces of Markov chains and energy decomposition ......... 71
7.2 Excursion theory ........ .. .. ... .. i 73
7.3 Conditional expectations .......... .. ... .. .. .. . ... 75
7.4 Branching processes with immigration..................... 7
7.5 Another expression for loop hitting distributions ........... 78
Loop erasure and spanning trees. ......................... 81
8.1 LOOp €rasure. ... ... ..ot 81
8.2 Wilson algorithm ....... .. ... .. . . 84
8.3 The transfer current theorem ............................ 87
8.4 The skew-symmetric Fock space .............. ... ... .... 91
Reflection positivity ...... ... ... ... .. 95
9.1 Mainresult ... ... 95
9.2 A counter example . ........ .. 99
9.3 Physical Hilbert space and time shift: .................. ... 99
The case of general symmetric Markov processes ......... 103
10.1 OVEIVIEW ..ottt e e 103
10.2 Isomorphism for the renormalized occupation field .......... 106
10.3 Renormalized powers . .............c.ooiiiiininea... 109

References . . ... . 117



Introduction

The purpose of these notes is to explore some simple relations between Marko-
vian path and loop measures, the Poissonian ensembles of loops they de-
termine, their occupation fields, uniform spanning trees, determinants, and
Gaussian Markov fields such as the free field. These relations are first studied
in complete generality in the finite discrete setting, then partly generalized
to specific examples in infinite and continuous spaces.

These notes contain the results published in [29] where the main emphasis
was put on the study of occupation fields defined by Poissonian ensembles
of Markov loops. These were defined in [20] for planar Brownian motion
in relation with SLE processes and in [21] for simple random walks. They
appeared informally already in [54]. For half integral values % of the intensity
parameter «, these occupation fields can be identified with the sum of squares
of k copies of the associated free field (i.e. the Gaussian field whose covariance
is given by the Green function). This is related to Dynkin’s isomorphism (cf
(8], [36], [25]).

As in [29], we first present the theory in the elementary framework of sym-
metric Markov chains on a finite space. After some generalities on graphs and
symmetric Markov chains, we study the o-finite loop measure associated to a
field of conductances. Then we study geodesic loops with an exposition of re-
sults of independent interest, such as the calculation of Ihara’s zeta function.
After that, we turn our attention to the Poisson process of loops and its occu-
pation field, proving also several other interesting results such as the relation
between loop ensembles and spanning trees given by Wilson algorithm and
the reflection positivity property. Spanning trees are related to the fermionic
Fock space as Markovian loop ensembles are related to the bosonic Fock
space, represented by the free field. We also study the decompositions of the
loop ensemble induced by the excursions into the complement of any given

set.
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Then we show that some results can be extended to more general Markov
processes defined on continuous spaces. There are no essential difficulties for
the occupation field when points are not polar but other cases are more prob-
lematic. As for the square of the free field, cases for which the Green function
is Hilbert Schmidt such as those corresponding to two and three dimensional
Brownian motion can be dealt with through appropriate renormalization.

We show that the renormalized powers of the occupation field (i.e. the self
intersection local times of the loop ensemble) converge in the case of the two
dimensional Brownian motion and that they can be identified with higher
even Wick powers of the free field when « is a half integer.

At first, we suggest the reader could omit a few sections which are not
essential for the understanding of the main results. These are essentially some
of the generalities on graphs, results about wreath products, infinite discrete
graphs, boundaries, zeta functions, geodesics and geodesic loops. The section
on reflexion positivity, and, to a lesser extent, the one on decompositions are
not central. The last section on continuous spaces is not written in full detail
and may seem difficult to the least experienced readers.

These notes include those of the lecture I gave in St Flour in July 2008 with
some additional material. I choose this opportunity to express my thanks to
Jean Picard, to the audience and to the readers of the preliminary versions
whose suggestions were very useful, in particular to Juergen Angst, Cedric
Bordenave, Cedric Boutiller, Antoine Dahlqvist, Thomas Duquesne, Michel
Emery, Jacques Franchi, Liza Jones, Adrien Kassel, Rick Kenyon, Sophie
Lemaire, Thierry Levy, Gregorio Moreno, Jay Rosen (who pointed out a mis-
take in the expression of renormalization polynomials), Bruno Shapira, Alain

Sznitman, Vincent Vigon, Lorenzo Zambotti and Jean Claude Zambrini.



Chapter 1

Symmetric Markov processes on finite
spaces

Notations: functions and measures on finite (or countable) spaces are often
denoted as vectors and covectors, i.e. with upper and lower indices, respec-
tively.

The multiplication operator defined by a function f acting on functions
or on measures is in general simply denoted by f, but sometimes, to avoid
confusion, it will be denoted by M. The function obtained as the density of

a measure 4 with respect to some other measure v is simply denoted £.

1.1 Graphs

Our basic object will be a finite space X and a set of non negative conduc-
tances Cyp 4y = Cy 4, indexed by pairs of distinct points of X. This situation
allows to define a kind of discrete topology and geometry. In this first section,
we will briefly study the topological aspects.

We say that {z,y}, for z # y belonging to X, is a link or an edge iff
Cz,y > 0. An oriented edge (z,y) is defined by the choice of an ordering in
an edge. We set —(x,y) = (y,z) and if e = (z,y), we denote it also (e, e™).
The degree d, of a vertex x is by definition the number of edges incident at
x.

The points of X together with the set of non oriented edges E define a
graph (X, E). We assume it is connected. The set of oriented edges is denoted
E°. Tt will always be viewed as a subset of X2, without reference to any
imbedding.

The associated line graph is the oriented graph defined by E° as set of
vertices and in which oriented edges are pairs (e, e2) such that ef =e;.

The mapping e — —e is an involution of the line graph.
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An important example is the case in which conductances are equal to zero
or one. Then the conductance matrix is the adjacency matrix of the graph:
Coy = Yayler

A complete graph is defined by all conductances equal to one.

The complete graph with n vertices is denoted K,. The complete graph
K, is the graph defined by the tetrahedron. K5 is not planar (i.e. cannot be
imbedded in a plane), but Ky is.

4 § K
O

A finite discrete path on X, say (xo,x1, ..., ;) is called a (discrete) geodesic
arc iff {x;,x;41} € E (path segment on the graph) and z;_1 # 2,11 (without
backtraking). Geodesic arcs starting at xo form a marked tree T, rooted in
xo (the marks belong to X: they are the endpoints of the geodesic arcs).
Oriented edges of ¥, are defined by pairs of geodesic arcs of the form:
(o, 1y ooy T )y (O, X1y ooy Ty Tnt1)) (the orientation is defined in reference
to the root). T, is a universal cover of X [35].

A (discrete) loop based at xg € X is by definition a path § = ({1, ..., &p(e)),
with & = xo, and {&,&+1} € E, for all 1 < i < p with the convention
&p+1 = &1 On the space £, of discrete loops based at some point g, we can
define an operation of concatenation, which provides a monoid structure, i.e.
is associative with a neutral element (the empty loop). The concatenation
of two closed geodesics (i.e. geodesic loops) based at z( is not directly a
closed geodesic. It can involve backtracking ”in the middle” but then after
cancellation of the two inverse subarcs, we get a closed geodesic, possibly
empty if the two closed geodesics are identical up to reverse order. With this
operation, closed geodesics based at xo define a group Iy,. The structure of
I';, does not depend on the base point and defines the fundamental group I'
of the graph (as the graph is connected: see for example [35]). Indeed, any
geodesic arc 71 from xg to another point yy of X defines an isomorphism

between I;, and I},. It associates to a closed geodesic v based in zy the
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closed geodesic [y1] 171 (here [y1]~! denotes the backward arc). In the case
where xg = g9, it is an interior isomorphism (conjugation by ~1).

There is a natural left action of I, on %,,. It can be interpreted as a
change of root in the tree (with the same mark). Besides, any geodesic arc
between xp and another point yo of X defines an isomorphism between ¥,
and T, (change of root, with different marks) .

We have just seen that the universal covering of the finite graph (X, F)
at xp is a tree T, projecting on X. The fiber at zy is I,. The groups
I'y,,z0 € X are conjugated in a non canonical way. Note that X = I'; \ %4,

(here the use of the quotient on the left corresponds to the left action).

Ezxample 1. Among graphs, the simplest ones are r—regular graphs, in which
each point has r neighbours. A universal covering of any r—regular graph is

isomorphic to the r—regular tree T(").

Ezample 2. Cayley graphs: a finite group with a set of generators S =
{91, ..gx} such that SN S~ is empty defines an oriented 2k-regular graph.

A spanning tree T is by definition a subgraph of (X, E) which is a tree
and covers all points in X. It has necessarily | X| — 1 edges, see for example

two spanning trees of Kjy.

Two spanning trees of K4

The inverse images of a spanning tree by the canonical projection from
a universal cover T,, onto X form a tesselation on ¥,,, i.e. a partition of
T2, in identical subtrees, which are fundamental domains for the action of
I';,. Conversely, a section of the canonical projection from the universal cover

defines a spanning tree.
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Fixing a spanning tree determines a unique geodesic between two points
of X. Therefore, it determines the conjugation isomorphisms between the

various groups [, and the isomorphisms between the universal covers %, .

Remark 1. Equivalently, we could have started with an infinite tree ¥ and a
group I' of isomorphisms of this tree such that the quotient graph I'\T is
finite.

The fundamental group I is a free group with |E|—|X|+1 = r generators.
To construct a set of generators, one considers a spanning tree 1" of the graph,
and choose an orientation on each of the r remaining links. This defines r
oriented cycles on the graph and a system of r generators for the fundamental

group. (See [35] or Serres ([43]) in a more general context).
Ezxample 3. Consider K3 and Kj.

Here is a picture of the universal covering of K, and of the action of the

fundamental group with the tesselation defined by a spanning tree.

Universal cover and tesselation of Ky

There are various non-ramified coverings, intermediate between (X, E) and

the universal covering. Non ramified means that locally, the covering space
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is identical to the graph (same incident edges). Then each oriented path
segment on X can be lifted to the covering in a unique way, given a lift of its
starting point.

Each non ramified covering is (up to an isomorphism) associated with a
subgroup H of I, defined up to conjugation. More precisely, given a non
ramified covering X, a point xp of X and a point Zg in the fiber above
xg, the closed geodesics based at xy whose lift to the covering starting at
Zo are closed form a subgroup Hz, of I}, canonicaly isomorphic to the
fundamental group of X represented by closed geodesics based at . If we
consider a different point g, any geodesic path segment 47 between Ty and g
defines an isomorphism between I, and Iy, which exchanges Hz, and Hy,.
Denoting ~; the projection of 47 on X , it associates to a closed geodesic y
based in xo whose lift to the covering is closed the closed geodesic [y1]~1yy1

whose lift to the covering is also closed.

Ezample 4. By central symmetry, the cube is a two fold covering of the tetra-

hedron associated with the group Z/27Z.

Conversely, if H is a subgroup of I, the covering is defined as the quotient
graph (Y, F) with Y = H\T,, and F the set of edges defined by the canonical
projection from ¥, onto Y. H can be interpreted as the group of closed
geodesics on the quotient graph, based at H,,, i.e. as the fundamental group
of Y.

If H is a normal subgroup, the quotient group (also called the covering
group) H\ I, acts faithfully on the fiber at 2. An example is the commutator
subgroup [I;,, I'z,]- The associate covering is the maximal Abelian covering

at zg.

Exercise 1. Determine the maximal Abelian cover of the tetrahedron.

1.2 Energy

Let us consider a nonnegative function x on X. Set A, = Kk, + Zy Cy,y and

Py = C;;y. P is a (sub) stochastic transition matrix which is A-symmetric
(i-e. such that A\, Py = A, PY) with Py =0 for all z in X.

It defines a symmetric irreducible Markov chain &, .

We can define above it a continuous time A-symmetric irreducible Markov
chain z;, with exponential holding times of parameter 1. We have z; = £y,
where N; denotes a Poisson process of intensity 1. The infinitesimal generator

is given by Ly = PJ —d;.
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We denote by P its (sub) Markovian semigroup exp(Lt) = 3 %Lk. L and
P, are A-symmetric.

We will use the Markov chain associated with C| k, sometimes in discrete
time, sometimes in continuous time (with exponential holding times).

Recall that for any complex function 2%, x € X, the “energy”

e(z) = (~Lz,7), = Y —(L2)"Z"\,

reX

is nonnegative as it can be easily written
Z)\zz —ZC 42"2Y =~ ZC,yz —2¥)( +ZI€IZZ

The Dirichlet space ([12]) is the space of real functions equipped with the

energy scalar product
Zczy fy g *g +Z’i fz v Z/\zfz Ifzcz,yfmgy
T z,y

defined by polarization of e.
Note that the non negative symmetric ” conductance matriz” C and the
non negative equilibrium or “killing” measure k are the free parameters of

the model.

Exercise 2. Prove that the eigenfunction associated with the lowest eigen-
value of —L is unique and has constant sign by an argument based on the
fact that the map z — |z| lowers the energy (which follows easily from the

expression given above).

In quantum mechanics, the infinitesimal generator —L is called the Hamil-
tonian and its eigenvalues are the energy levels.

One can learn more on graphs and eigenvalues in [2].

We have a dichotomy between:

- the recurrent case where 0 is the lowest eigenvalue of —L, and the corre-
sponding eigenspace is formed by constants. Equivalently, P1 = 1 and &
vanishes.

- the transient case where the lowest eigenvalue is positive which means
there is a ”Poincaré inequality”: For some positive e, the energy e(f, f)
dominates € (f, f), for all f. Equivalently, as we are on a finite space, &
does not vanish. Note however these equivalences doe not hold in general

on infinite spaces, though the dichotomy is still valid.
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In the transient case, we denote by V the associated potential operator
(—=L)~! = [;° Pudt. It can be expressed in terms of the spectral resolution of
L. We will denote »° V7 f¥ by (V f)® or V f(x).

Note that the function V f ( called the potential of f) is characterized by
the identity

G(Vf, g) = <fa g>)\

valid for all functions f and g. The potential operator diverges on positive
functions in the recurrent case. These properties define the dichotomy tran-
sient /recurrent on infinite spaces.

We denote by G the Green function defined on X? as G®Y = ‘;—y: =
A—ly[(I — P)7'7 ie. G = (My — C)~'. Tt induces a linear bijection from
measures into functions. We will denote >, G*¥Ypy by (Gu)® or Gu(z).

Note that the function Gu ( called the potential of 1) is characterized by

the identity
e(f,Gp) = (f, 1)

valid for all functions f and measures p. In particular Gk = 1 as e(1, f) =

Zfz“x = <f’1>n'

Ezample 5. The Green function in the case of the complete graph K, with

uniform killing measure of intensity ¢ > 0 is given by the matrix

1 1
I1+-J
n—l—c( +c )

where J denotes the (n,n) matrix with all entries equal to 1.
Proof. Note first that My — C = (n+ ¢)I — J. The inverse is easily checked.

See ([12]) for a development of this theory in a more general setting.

In the recurrent case, the potential operator V can be defined on the space
AL of functions f such that (f,1), = 0 as the inverse of the restriction of
I — P to A\. The Green operator G maps the space of measures of total
charge zero onto A\: setting for any signed measure v of total charge zero
Gv = V%, we have for any function f, (v, f) = e(Gv, f) (as e(Gv,1) = 0)
and in particular f* — f¥ = e(G(6z — dy), f)-

Exercise 3. In the case of the complete graph K,,, show that the Green

operator is given by:
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Remark 2. Markov chains with different holding times parameters are asso-
ciated with the same energy form. If ¢ is any positive function on X, the
Markov chain with y; holding times parameter ¢*, z € X is obtained from
x¢ by time change: y; = x,,, where o; is the right continuous increasing
family of stopping times defined by f ~L(xs)ds = t. Tts semigroup is ¢~ \-
symmetric with infinitesimal generator given by L. The potential opertor
is different but the Green function does not change. In particular, if we set
q® = A, for all x, the duality measure is the counting measure and the po-
tential operator V' is given by the Green function G. The associated rescaled

Markov chain will be used in the next chapters.

1.3 Feynman-Kac formula

A discrete analogue of the Feynman-Kac formula can be given as follows: Let
s be any function on X taking values in (0, 1]. Then, for the discrete Markov
chain &, associated with P, it is a straightforward consequence of the Markov

property that:

n—1

Ez(H 5(§j)1{£n:y}) = [(MSP)”];C

§=0
Similarly, for the continuous time Markov chain z; (with exponential holding
times), we have the Feynman-Kac formula:
Proposition 1. If k(z) is a nonnegative function defined on X,

Eo(e Jo M1, ) = lexp(t(L — My)];.

Proof. Tt is enough to check, by differentiating the first member V(¢) with
respect to t, that V'(t) = (L — M)V ().

Precisely, if we set (V;)y = Ex(e” s k(ms)dsl{mt:y}), by the Markov prop-
erty,

(Ve a)y = By (€™ o HOI R (e S Ky )

— ZE rs)dsl{ Y o o i k(xs)dsl{Mt:y})
zeX
— [At k(z)ds
= Y (V)IE(em S Keddon ).
zeX

Then one verifies easily by considering the first and second times of jump that
as At goes to zero, E,(e” J5 Meads1 o —yy) — 1 is equivalent to —(k(y) +
1)At and for z #y, E.(e= /o Rrddsy o —y}) is equivalent to PZAL.

Exercise 4. Verify the last assertion of the proof.



1.4 Recurrent extension of a transient chain 15

For any nonnegative measure x, set V, = (=L + M,)™! and G, =
ViMy = (Mx + My — C)7'. It is a symmetric nonnegz;tive function on
X x X. Gy is the Green function GG, and G, can be viewed as the Green
function of the energy form e, = e+ || ||2L2(x)'

Note that e, has the same conductances C' as e, but x is added to the
killing measure. Note also that V), is not the potential of the Markov chain
associated with e, when one takes exponential holding times of parameter 1:

the holding time expectation at x becomes But the Green function is

1
I+x(z)
intrinsic i.e. invariant under a change of time scale. Still, we have by Feynman

Kac formula

> — [t X(x s x
/0 E, (e Jo XE)dsy, D)t = [V]0.

We have also the ”generalized resolvent equation” V' —V, = VMxV, =
Vi Mx V. Then,
G-G,=GM Gy =G MG (1.1)

Exercise 5. Prove the generalized resolvent equation.

Note that the recurrent Green operator GG defined on signed measures of

zero charge is the limit of the transient Green operator Gy, as x — 0.

1.4 Recurrent extension of a transient chain

It will be convenient to add a cemetery point A to X, and extend C, A
and G to X2 = {X U A} by setting , Ap = Y owex bz, Coa = Ky and
G*A = GAT = A2 =0 for all z € X. Note that A(X2) =3 v, x Cupy +
2> v ke = AX) + Aa.

One can consider the recurrent ”resurrected” Markov chain defined by
the extensions of the conductances to X2. An energy e? is defined by the
formula

() = %ZX Cny (" — )z =)
From the irreducibility assumption, it follows that e? vanishes only on con-

stants. We denote by P? the transition kernel on X4 defined by

Cry _ Cyy
ZyEXA Cay Az

P4 =

Note that P21 = 1 so that \ is now an invariant measure.with A, [PA]i =
Ay [PA]Y on X4, Also

eA(fag) = <f_PAfag>A
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Denote V4 and G4 the associated potential and Green operators.
Note that for p carried by X, for all x € X, denoting by €4 the unit point

mass at A,

po = e2(G2(n— p(X)ea), 1) = A (I = PA)G? (1 — p(X)ea) (@)
= A ((I = P)G2 (= (X)) (2) — keGP (1 — p(X )e2)(4).

Hence, applying G , it follows that on X2,
G = G (n—p(X)ea) =G (u—p(X)ea)(A)Gr = G (n—p(X)ea) =G (u—p(X)e ) (A).
Moreover, as G2 (1 — u(X)e ) is in A+, integrating by ), we obtain that

S AG()" = —GA (- p(X)ea) (AAX2).

rzeX

Therefore, G2 (1 — u(X)ea)(A) = _A<(’\)’(Ci’;> and we get the following:

Proposition 2. For any measure p on X, GA(,u—u(X)EA) = —% +Gu.

This type of extension can be done in a more general context ( See [27]
and Dellacherie-Meyer [6])

Remark 3. Conversely, a recurrent chain can be killed at any point z¢ of X,

defining a Green function GX~{#o} on X — {zo}. Then, for any u carried by
X - {:CO})

GX = Gp = p(X)ewy) = Qi — (X )ewy) (0)-

This transient chain allows to recover the recurrent one by the above proce-

dure.

Exercise 6. Consider a transient process which is killed with probability p

at each passage in A. Determine the associated energy and Green operator.

1.5 Transfer matrix

Let us suppose in this section that we are in the recurrent case: We can define
a scalar product on the space A of functions on E° (oriented edges) as follows

(w,my =3 > zy Coyw®¥n™Y. Denoting as in [31] df*" = f — f*, we
note that (df,dg), = e(f,¢). In particular

<dfa dG(éy - 51)>A =df*"?
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Denote A_, (A}) the space of real valued functions on E° odd (even) for
orientation reversal. Note that the spaces A and A_ are orthogonal for the
scalar product defined on A. The space A_ should be viewed as the space of
”discrete differential forms”.

Following this analogy, define for any « in A_, define d*« by (d*a)® =
— > ex Pja®¥. Note it belongs to A* as 3, Cy ,a™¥ vanishes.

‘We have

(a, dfy, = % ZAIP;ar,y(fy — £
.,y

1 " 1 ¥
LS - L LR = T o,
rzeX x,y rzeX
as the two terms of the difference are in fact opposite since « is skew sym-
metric. The image of d and the kernel of d*are therefore orthogonal in A _.

We say a in A_ is harmonic iff d*a = 0.

Moreover,

e(f, )= (df.df), = Y (d"df)" f"Ns

rzeX

Note also that for any function f ,
d*df = —-Pf+ f=—-Lf.

d is the discrete analogue of the differential and d* the analogue of its
adjoint, depending on the metric which is here defined by the conductances.

L is a discrete version of the Laplacian.

Proposition 3. The projection of any « in A_ on the image of d is dVd*(a).

Proof. Indeed, for any function g, (a,dg), = (d*a,g), = e(Vd*a,g) =
(dVd*(a),dg) -

We now can come to the definition of the transfer matrix: Set a(zfv) =
iﬁw if (z,y) = £(u,v) and 0 elsewhere. Then Ayd* oy ) () = 6§ — 67 and
dVd* (e u,v)) = dG(6, — 0,). Note that given any orientation of the graph,
the family {af, , = V/Cuv®u,w), (u,v) € ET} is an orthonormal basis of
A_ (here ET denotes the set of positively oriented edges).

The symmetric transfer matrix K @):(4?) indexed by pairs of oriented

edges, is defined to be
K@) = [dG(8,-8,)]%Y = G(6,—04)" —G (0, —0,)" =< dG(5y—0z), dG(6,—8,) >a

for z,y,u,v € X, with C, ,Cy , > 0.
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As dG((d*a)\) = dVd*(«a) is the projection IT(«) of o on the image of d

in A_, we have also:

< Q(y,p)s H(a(u/m/)) >Aa=< Q(y,v), dG((SUI — (Sur) >A= K(u’v)’(u,’vl)

For every oriented edge h = (z,y) in X, set K" = dG(6Y — 7). We have
<Kh, K9>A = K9 We can view dG as a linear operator mapping the space
measures of total charge zero into A_. As measures of the form d, — d, span
the space of measures of total charge zero, it is determined by the transfer
matrix.

Note that d*dGv = v/ for any v of total charge zero and that for all «
in A_, (d*a)A has total charge zero.

Consider now, in the transient case, the transfer matrix associated with
GA.
We see that for z and y in X, G2(6; — 8,)" — G2 (0, — 6,)” = G(6, — 6,)* —
G(05 — 6y)".
We can see also that G2 (0, — 64) = Go, — <;‘(’g‘i“)>. So the same identity
holds in X 4.

Therefore, as G*4 = 0, in all cases,

K(z,y),(u,v) = GUY 4 GV — BV — GYu

Exercise 7. Cohomology and complex transition matrices.

Consider, in the recurrent case, w € A_ such that d*w = 0. Note that the
space H' of such w’s is isomorphic to the first cohomology space, defined as
the quotient A_/Im(d). Prove that P(I +iw) is A—self adjoint on X, maps 1
onto 1 and that we have EI(H;:Ol(l Fw(&, 1)) e, =yy) = (P +iw))"]

x
y*



Chapter 2
Loop measures

2.1 A measure on based loops

We denote by P* the family of probability laws on piecewise constant paths
defined by P;.

P?(y(t1) = 21, ..., Y(tn) = ) = Py, (x,21) Py, (x1,22) ... Py 4, (Th1,21)

The corresponding process is a Markov chain in continuous time. It can also
be constructed as the process &n¢, where &, is the discrete time Markov
chain starting at x, with transition matrix P, and N; an independent Poisson
process.

In the transient case, the lifetime is a.s. finite and denoting by p(v) the

number of jumps and T; the jump times, we have:

P*(p(y) = k,yr, = 1y oy y1, = Tk, T1 € dity, ..., T) € dity,)

Copzy--Cop 1 oKy,
== —L 1 e tedty...dt
DNV e

For any integer p > 2, let us define a based loop with p points in X as a
couple I = (£,7) = (¢, 1 <m < p), (T, 1 <m <p+1))in XP x Riﬂ, and
set £p41 = &1 (equivalently, we can parametrize the associated discrete based
loop by Z/pZ). The integer p represents the number of points in the discrete
based loop § = (&1, ..., &p(¢)) and will be denoted p(€), and the 7, are holding
times. Note however that two time parameters are attached to the base point
since the based loops do not in general end or start with a jump.

Based loops with one point (p = 1) are simply given by a pair (£,7) in
X xR;.

Based loops have a natural time parametrization [(¢) and a time period
T() = ffl)ﬂ 7. If we denote Y " | 7 by Ton: U(t) = &m on [Ti—1,Tm)

(with by convention Ty = 0 and & = &p11)-

19
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Let Py"Y denote the (non normalized) ”bridge measure” on piecewise con-
stant paths from z to y of duration t constructed as follows:

Ifty <to<...<tp <t,

1
Ptm’y(l(tl) = .’L'l, aeey l(th) = .’L'h) = [Ptl];’f [PtZ—tl]ié‘“[Pt_th]zhA_
Y
Its mass is p; 'Y = []/D\tj: . For any measurable set A of piecewise constant paths

indexed by [0 t], we can also write

PP (A) = P, (AN {2, y})%y_

Exercise 8. Prove that Py is the image of P;"Y by the operation of time

reversal on paths indexed by [0 ¢].

A o-finite measure p is defined on based loops by

<1
o= Z/ —P At
zex 0
Remark 4. The introduction of the factor % will be justified in the following.
See in particular formula 2.3. It can be interpreted as the normalization of

the uniform measure on the loop, according to which the base point is chosen.

From the expression of the bridge measure, we see that by definition of p,

ift) <ty <..<tp<t,

p(l(ty) = w1, l(tn) = op, T € dt) = [Py rt—t, [or [Pro—ty Jan [Py —tn_1Jzp %dt.
(2.1)
Note also that for k& > 1, using the second expression of P;"Y and the
fact that conditionally on N; = k, the jump times are distributed like an

increasingly reordered k—uniform sample of [0 ]

)\mpf’l(p =k& =21,8 =22,...,§ =z, 11 €dty,..., T} € dﬁk)

:1{1:11}6 tHPzgl 132"'P11k1{0<t1<---tk<t}t_kdtl"'dtk

= l{z:zl}P;; PII; Pfk 1{O<t1<...tk<t}€7tdt1 ...dty,

Therefore,

[L(p =k & =21, ., & =x, 11 €dty, .., T, € dty, T € dt) (22)

1
— PP Me’tdtl...dtkdt (2.3)

for k > 1.
Moreover, for one point-loops, pu{p(§) = 1,& = z1, 71 € dt} = et;tdt.
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It is clear on these formulas that for any positive constant ¢, the energy

forms e and ce define the same loop measure.

2.2 First properties

Note that the loop measure is invariant under time reversal.

If D is a subset of X, the restriction of u to loops contained in D, denoted
u? is clearly the loop measure induced by the Markov chain killed at the exit
of D. This can be called the restriction property.

Let us recall that this killed Markov chain is defined by the restriction of
A to D and the restriction PP of P to D? (or equivalently by the restriction
ep of the Dirichlet form e to functions vanishing outside D).

As [ 1t:!le_tdlf = 1, it follows from (2.2) that for k > 1, on based loops,

M(p(f) = k/’,fl =T, ...,fk = .Tk) —PII...P;IK'. (24)
In particular, we obtain that, for k > 2
1 k
wp = k)= LTr(P)

and therefore, as Tr(P) = 0, in the transient case:
— 1
1) — —log(det({ — P log(det(G Az)  (2.5)
p(p > ;k og(det(I — P)) = log(det( H

since (denoting M the diagonal matrix with entries \;), we have

det(M)\ — C)

det(I — P) = et (V)

Note that det(G) is defined as the determinant of the matrix G*¥. It is
the determinant of the matrix representing the scalar product defined on
RIX! (more precisely, on the space of measures on X) by G in any basis,
orthonormal with respect to the natural euclidean scalar product on RIXI,

Moreover

/ (D)1 gps1ypa(dl) ZTT (P*) = Tr((I — P)"'P) = Tr(GC)

2.3 Loops and pointed loops

It is clear on formula (2.1) that p is invariant under the time shift that acts

naturally on based loops.
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A loop is defined as an equivalence class of based loops for this shift.
Therefore, 1 induces a measure on loops also denoted by p.
A loop is defined by the discrete loop ¢ formed by the &; in circular order,

(i.e. up to translation) and the associated holding times. We clearly have:

w(& = (x1, 29, ap) ) = Py .. Pk
However, loops are not easy to parametrize, that is why we will work
mostly with based loops or with pointed loops. These are defined as based
loops ending with a jump, or equivalently as loops with a starting point. They
can be parametrized by a based discrete loop and by the holding times at
each point. Calculations are easier if we work with based or pointed loops,

even though we will deal only with functions independent of the base point.

The parameters of the pointed loop naturally associated with a based loop
are {1,...,&, and

T+ Tpr=71,T=7,2<i<p

An elementary change of variables, shows the expression of p on pointed loops

can be written:

t
plp =k, & =, 7 €dt,) = P;;...sz—lefzt"dtl...dtk. (2.6)

Trivial (p = 1) pointed loops and trivial based loops coincide.

Note that loop functionals can be written

D) = > 1oy Pu((&, 77 )i = 1,00 K)

with @, invariant under circular permutation of the variables (&, 7).
Then, for non negative @y

t1
Dot

/@k(lo),u(dl) = /@k((aci,ti)i = 1, ...,/{J)P;;...P;Ikeizti dtl...dtk

and by invariance under circular permutation, the term t; can be replaced

by any t;. Therefore, adding up and dividing by k, we get that

o 1
/@k(l Yu(dl) = /E@c((%,tz)l =1,.., k)P;CZl...P;fe*Etidtl...dtk.

The expression on the right side, applied to any pointed loop functional
defines a different measure on pointed loops, we will denote by p*. It induces

the same measure as p on loops.
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We see on this expression that conditionally on the discrete loop, the

holding times of the loop are independent exponential variables.

1 Ce. .
prp=k & =1 edt) = [ —5e bt (2.7)
k, &
€L/ pZ

Conditionally on p(§) = k, T is a gamma variable of density %e*t

on R4 and (%, 1 <4 < k) an independent ordered k-sample of the uniform
distribution on (0,7) (whence the factor +). Both are independent, condi-
tionally on the number of points p of the discrete loop. We see that i on based
loops is obtained from p on the loops by choosing the base point uniformly.
On the other hand, it induces a choice of &; biased by the size of the 7;"’s,
different from p* for which this choice is uniform (whence the factor %) But
we will consider only loop functionals for which p and p* coincide.

It will be convenient to rescale the holding time at each &; by )¢, and set

*
~ T;

T = .
Ag;

The discrete part of the loop is the most important, though we will see
that to establish a connection with Gaussian fields it is necessary to consider
occupation times. The simplest variables are the number of jumps from x to

y, defined for every oriented edge (z,y)

Npy=#{i: & =2,641 =y}

(recall the convention &pr1 =&1) and

Note that N, = #{i > 1 : £, = x} except for trivial one point loops for which
it vanishes.

Then, the measure on pointed loops (2.6) can be rewritten as:

dt
wp=1&=a7edt)= e_’\mt? and (2.8)
x ~ 1 _ .
W=k & =i, 7 € dly) = ¢ [T  TIAN T Aceetdti (2.9)
T,y z i1€L/pL

Another bridge measure pu*¥ can be defined on paths v from x to y:

pean) = [ B
0

Note that the mass of pu®¥ is G*Y. We also have, with similar notations as

the one defined for loops, p denoting the number of jumps
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w(p(y) = ko = 21501y = Tp—1, 11 € dby, L, T € diy, T € dt)
o Cz,zlcmhmz'“cwk—lay
Ao Aas Ay

1{0<t1<...<tk<t}€_tdt1...dtkdt.

From now on, we will assume, unless otherwise specified, that we are in the
transient case.
For any z # y in X and s € [0, 1], setting p = PY if (u,v) # (z,y)

and Py(s)’z = sPJ, we can prove in the same way as (2.5) that:

p(s™Ne v 1pny) = —log(det(I — P©))).

Differentiating in s = 1, and remenbering that for any invertible matrix
function M(s), - log(det(M (s)) = Tr(M'(s)M(s)™"), it follows that:

W(Nay) = (I = P)T'4P) = G™VCyy

and
P(NG) =D Ny y) = AG™" — 1 (2.10)
)

(as G(My — C) = Id).
Exercise 9. Show that more generally
1(Noy(Nyy = 1)ei(Npyy — k4 1)) = (k — DIGTYC, )"

Hint: Show that if M"(s) vanishes,

mn

dd? log(det(M(s))) = (=1)"~"(n — !Tr((M'(s)M (s)~)").

Exercise 10. Show that more generally, if x;, y; are n distinct oriented edges:

IU(H NZi7yi) = H Czivyi% Z H Gyg(i)ymd(#l)

ocES,,

Hint: Introduce [P(51~ S")]g equal to Py if (z,y) # (z4,y:) for all 4, and

We finally note that if C, , > 0, any path segment on the graph starting
at x and ending at y can be naturally extended into a loop by adding a jump

from y to x. We have the following

Proposition 4. For C, , > 0, the natural extension of ™Y to loops coincides
4y Ny (D
with & w(dl).

Proof. The first assertion follows from the formulas, noticing that a loop [ can
be associated to N (1) distinct bridges from z to y, obtained by ”cutting”

one jump from y to x.



2.4 Occupation field 25

Note that a) shows that the loop measure induces bridge measures p*Y
when Cy, > 0. If Cy, vanishes, an arbitrarily small positive perturbation
creating a non vanishing conductance between x and y allows to do it. More
precisely, denoting by (%) the energy form equal to e except for the additional

e<€>|

(e) _ , d
conductance Cy .y =€, pu™Y can be represented as 7-p° |c=o-

2.4 Occupation field

To each loop I” we associate local times, i.e. an occupation field {l;, z e X}

defined by
p(l)

- (1) 1 Z
11:/ Tgi(s)=2 ——ds= 1&:;37/_;
y sy ol = e

for any representative [ = (&, ) of [°.
For a path ~, ¥ is defined in the same way.
Note that

p((1 =M pe) = [ et - e ST —log14 1) (@2)
0

X

-~

The proof goes by expanding 1 — e~ >« " before the integration, assuming first
that « is small and then by analyticity of both members, or more elegantly,
noticing that f;(e’cz - e’dx)df is symmetric in (a, b) and (¢, d), by Fubini’s
theorem.

In particular, u(lAzl{pzl}) = i

From formula (2.7) , we get easily that the joint conditional distribution
of (lA””, x € X) given (N,, x € X) is a product of gamma distributions. In

particular, from the expression of the moments of a gamma distribution, we

get that for any function @ of the discrete loop and k£ > 1,
() o1y ®) = A p((Ny + k= 1)..(Ny + 1)N,®).

In particular, by (2.10) ,u(lAC”) = %[M(Nm) +1] = G**.
Note that functions of { are not the only functions naturally defined on
the loops. Other such variables of interest are, for n > 2, the multiple local

times, defined as follows:

n—1
AI xr 1
[E1esn E /0 L) =g d(tne ) =2n o l(tn) =25 } | | _Amvdti'

j=0 <t1<.. <t <T

It is easy to check that, when the points z; are distinct,
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Prreen = 3° 3 e, —arss} Tir- (2.12)

1
7=0 1< <...<ip, <p(l) I=1

Note that in general [Tk cannot be expressed in terms of lA, but

T JEn l § TEe)r s Ta(n)
n

ocES,,

<)

In particular, [&® = (nil)! [ZAI]” It can be viewed as a n-th self intersec-

tion local time.

One can deduce from the definitions of p the following:

Proposition 5. p(I*1-%n) = GELr2Gr2rs, Qe

In particular, M(Tzliz") =15 cs, GTr)Te@ G Ta@)  GFa(n) o)
n

n

Proof. Let us denote 3~ [P, 2y by pi?Y or pi(z,y). From the definition of

T80 %n and i M(Tzlzn) equals:

n—1
1
Zx\z Z// —pe, (T, T14j) - pt,tn(xnﬂ,x)]:[dtidt.
T 7=0

O<ti<..<tn<t} t

where sums of indices k+j are computed mod(n). By the semigroup property,

it equals

n—1

1
Z// TPta—t (T145, T245) - Prist—tn @iy rpy) [ ] dtadt.
o {0<ts <...<tn <t}

Performing the change of variables vy = to — t1,..,v, = t, — th—1,v1 =

t1 +t —t,, and v = t1, we obtain:

n—1
1
E /{0 . }mpvz (T145: T245) - - - Poy (Tt T145) I I dvidv
=0 <v<wi,0<v; n

= Z/kv o +Unpv2($1+ja$2+j)---pv1($n+ja$1+j)]:[dvi

Z/0<v U1+ .. +’U pv2($1’$2) pvl(‘rn’xl)H Vi

:/ pUZ(xl,xg)...pvl(xn,xl)Hdvi
{0<w;}
=GP TR GET,

Note that another proof can be derived from formula (2.12) .

Exercise 11. (Shuffle product) Given two positive integers n > k, let Py, i be
the family of partitions of {1,2,...n} into k consecutive non empty intervals

I = (il,’il + 1,041 — 1) with 1 =1 <12 < ... <l <igy1 =n+1.
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Show that

m—1 inf(n,m)

E E E /l\zll7yj+J1’m12"“y]+Jk

j=0 k=1 I€Pn i JEPm.r

Ju

Z\Ilr“vznlfyh“wyrn —
where for example the term y;4 s, appearing in the upper index should be

read as j + j1, ..., J+j2 — 1.

Similarly, we can define Nz1,y1), (2 yny 1O be

n—1 n
Z Z H Lie, =iy .6 01=v115}-

§=0 1<y <...<in <p(l) I=1

If (zi,y;) = (x,y) for all i, it equals N“'y(Nm’y_(i)_“l'ﬁv"y_"H).

Notice that

1
HN(Iiﬁyi) = n Z N(%(l)1ya(1))1---(%(n)7y)'

ceS,

Then we have the following;:

.....

The proof is left as exercise.

Exercise 12. For 1 = x5 = ... = x3, we could define different self intersec-
tion local times .
~ .
OIS SIS | FO
1<iy <..<ip<p(l) I=1

which vanish on N, < k. Note that

)
N 1~ ~
7.(2) 5( 2= ie—ay (R)2.
1=1

1. For any function @ of the discrete loop, show that

N, —1)

~ Nw

2. More generally prove in a similar way that

Ny —1)..(Ny — k+1)
!

~ Nz

Let us come back to the occupation field to compute its Laplace trans-

form. From the Feynman-Kac formula, it comes easily that, denoting Mx

the diagonal matrix with coefficients 3=

]P’f’m(e_@@ —1)= )\im(exp(t(P — - M%\( )5 —exp(t(P — I))i)
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Integrating in ¢ after expanding, we get from the definition of p (first for x

small enough):

k—1

[0 =Dy =Y [T - 3 ) - o)) et
k=10 ’

oo

%[Tr((P — M)") = Tr((P))]

=

=—Tr(log(I - P+ ]\4%§ )) + Tr(log(I — P)).
Hence, as Tr(log) = log(det)
/(e*<lA*X> — 1)dp(l) = log[det(—L(—L + M, ,5)"")]
= —logdet( + V Mx) = logdet( + GM,)

which now holds for all non negative x as both members are analytic in y.

Besides, by the "resolvent” equation (1.1):

_ det(Gy)
1_ _ _ X
det(I + GM, )~ = det(I — G, M) Aet(G)

(2.13)

Note that det(I + GM,) = det(I + M xGM s;) and det(I — G M,) =
det(I — M 5GyM /), so we can deal with symmetric matrices. Finally we

have

Proposition 7. /L(€7<T’X> —1) = —log(det({ + M xGM s5)) = log(d(f:t((ccf)))

Note that in particular u(e_thc —1) = —log(1 4+ tG™*). Consequently, the
Gi,m )ds

Considering the Laguerre-type polynomials Dy with generating function

image measure of u by 17 is Lis>0)— exp(—
s

Ztka(u) =t — 1
1

and setting o, = G®, we have:

1

Proposition 8. The wvariables WOJ;D]C(Z—I) are orthonormal in L*(u) for

k > 0, and more generally

AN N
B(o Du(—)7} D3 () = 103 (G7).
T y

Proof. By proposition 7 |
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7Ty Y s
/ (1 — T ) (1 — €T ) u(dl)

t tGTY
ozt OyS - 1? t  1togt
= log(1 — + log(1 — — log det ( e g
( 1+ O—zt) ( 1+ O'yS) - isfays - 1-7-:’:;'28

= —log(1 — st(G™Y)?).
The proposition follows by expanding both sides in powers of s and ¢, and
identifying the coefficients.
Note finally that if x has support in D, by the restriction property

det(GQ) )

‘u'(l{l/ZX\D):O}(ei<l1X>71>> = flog(det(IJrMﬂGDMﬂ)) = IOg (W

Here the determinants are taken on matrices indexed by D and G denotes
the Green function of the process killed on leaving D.
For paths we have Pf’y(e_<l’x>) = /\_1&, exp(t(L — M, ))z,y. Hence
A

e 1 _ z
1Y (e (%X>) - /\_y(([ > +Mx//\) 1)Z7y — [Gx] Y

In particular, note that from the resolvent equation (1.1), we get that

Gy@ — [GESI]%Z + E[GESI]%ZGE’I.

[Gesg 1" _ 1
Gvr T 14eGET

Hence and therefore, we obtain:

Proposition 9. Under the probability %, lAz follows an exponential distri-

bution of mean G**.

Also E*(e=0X)) = 37 [G]" Yk, ie. [Gyr]".
Finally, let us note that a direct calculation shows the following result,

analogous to proposition 4 in which the case z = y was left aside.
Proposition 10. On loops passing through x, u**(dl) = ’l\Zu(dl).

An alternative way to prove the proposition is to check it on multiple local
times, using exercise 11. It can be shown that the algebra formed by linear
combinations of multiple local times generates the loop o-field. Indeed, the
discrete loop can be recovered by taking the multiple local time it indexes
and noting it is the unique one of maximal index length among non vanishing
multiple local times indexed by multiplets in which consecutive points are
distinct. Then it is easy to get the holding times as the product of any of

their powers can be obtained from a multiple local time.

Remark 5. Propositions 4 and 10 can be generalized: For example, if x; are
n points, Tt *nu(dl) can be obtained as the the image by circular con-

catenation of the product of the bridge measures p®"®i+1(dl) and HlA”“ w(dl)
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can be obtained as the sum of the images, by concatenation in all circu-
lar orders, of the product of the bridge measures p¥s@ *eG+v(dl). If (z;,y;)
are n oriented edges, [] %ﬁ;?u(dl) can be obtained as the sum of the
images, by concatenation in all circular orders o, of the product of the
bridge measures p¥e»®<(+1(dl).One can also evaluate expressions of the
form []1% [ %3,251) u(dl) as a sum of images, by concatenation in all circu-

lar orders, of a product of bridge measures .

2.5 Wreath products

The following construction gives an interesting information about the number
of distinct points visited by the loop, which is more difficult to evaluate than
the occupation measure.

Associate to each point z of X an integer n,. Let Z be the product of
all the groups Z/n,7Z. On the wreath product space X x Z, define a set of

conductances 5'(9672)7(96/12/) by:

1

T Mgt

Cla2),(@2) = Coa I] Leo=epp

yF,z’
and set K(, ) = k. This means in particular that in the associated Markov
chain, the first coordinate is an autonomous Markov chain on X and that in
a jump, the Z-configuration can be modified only at the point from which or
to which the first coordinate jumps.
Denote by € the corresponding energy form. Note that X(m,z) = Az-
Then, denoting & the loop measure and P the transition matrix on X x Z

defined by e, we have the following

Proposition 11. [,y 7z [ 1>y [1,) Na()>0 %u(dl) =n(p > 1) = —log(det(I—
P)). In particular, if n, =n for all x,

e /1{p>1}n_#{m’ NeW>04 y(dl) = Ji(p > 1) = — log(det(I — P)).

Proof. Each time the Markov chain on X x Z defined by ¢ jumps from a point
above z to a point above y, 2, and z, are resampled according to the uniform
distribution on Z/n,Z x Z/n,Z, while the other indices z,, are unchanged.
It follows that

pki(x,z 1

[PF(®2) — N I1 —.

(z,2) — T1" @2 ny
T1yeesTh—1 ye{z,z1,..., Ti—1}
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Note that in the set {z,z1,...,xx—1}, distinct points are counted only once,

even if the path visit them several times. There are [| ng possible values

rzeX
for z. The detail of the proof is left as an exercise.

In the case where X is a group and P defines a random walk, P is as-
sociated with a random walk on X x Z equipped with its wreath product
structure (Cf [40]).

2.6 Countable spaces

The assumption of finiteness of X can of course be relaxed. On countable
spaces, the previous results extend easily under spectral gap conditions. In
the transient case we consider here, the Dirichlet space H is the space of all
functions f with finite energy e(f) which are limits in energy norm of func-
tions with finite support, and the energy defines a Hilbertian scalar product
on H.

u(f)?

The energy of a measure is defined as supcy R Finitely supported

measures have finite energy. Measures of finite energy are elements of the
dual H* of the Dirichlet space. The potential Gu is well defined for all finite
energy measures y, by the identity e(f,Gu) = (f, u), valid for all f in the
Dirichlet space. The energy of the measure p equals e(Gu) = (Gu, u) (see
[12] for more information).

Most important examples of countable graphs are the non ramified cov-
ering of finite graphs (Recall that non ramified means that the projection
is locally one to one, i.e. that the projection on X of each vertex v of the
covering space has the same number of incident edges as v ). Consider a non
ramified covering graph (Y, F') defined by a normal subgroup H,, of I';,. The
conductances C' and the measure A can be lifted in an obvious way to Y as
H, \I,-periodic functions but the associated Green function G or semigroup

are non trivial. By applying M) — C, it is easy to check the following:

Proposition 12. G*Y = ZveHmo\Fmo Gi@) (W) for any section i of the

canonical projection from'Y onto X.

Let us consider the universal covering (then H,, is trivial). It is easy to
check it will be transient even in the recurrent case as soon as (X, E) is not
circular.

The expression of the Green function G on a universal covering can be
given exactly when it is a regular tree, i.e. in the regular graph case. In fact

a more general result can be proved as follows:
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Given a graph (X, E), set dz = > 11;,1er (degree or valency of the
vertex ), Dy y = dyd,,4 and denote A, , the incidence matrix 1g({z,y}).
Consider the Green function associated with A, = (d; — 1)u + %, with

O<u< inf(ﬁ,x € X) and for {z,y} € E, Cy, = 1.

u
1—u?

Proposition 13. On the universal covering <, , G ©Y = yd@y)

Proof. Note first that as % > d, — 1, Kk, is positive for all x. Then G =
(M —C)~" can be written G = [u='1 + (D — I)u — A]~*.Moreover, since we

are on a tree,

ZAZJUd(I’y) = (d, — 1)udEV+ L dEzy) -1

for z # y, hence > (A0 — A, ,)ud@¥) = 0 for 2 # y and one checks it

equals % —u for z = y.
It follows from proposition 12 that for any section 4 of the canonical pro-
jection from T, onto X,

Z wE@) ) — (l —u)G™Y.

U
Y€l g

2.7 Zeta functions for discrete loops

We present briefly the terminology of symbolic dynamics (see for example
[38]) in this simple framework: Setting f(zo,x1,...,Zn,...) = 10g(Pug.z1), P
induces the Ruelle operator Ly associated with f.

The pressure is defined as the logarithm of the highest eigenvalue 3 of P.
It is associated with a unique positive eigenfunction h (normalized in L2())),

by Perron Frobenius theorem. Note that Ph = h implies AhP = SAh by
1

X))
In continuous time, the lowest eigenvalue of —L i.e. 1 — 8 plays the role of

duality and that in the recurrent case, the pressure vanishes and h =

the pressure

The equilibrium measure associated with f, m = h2X\ is the law of the
stationnary Markov chain defined by the transition probability ﬁP;hy.

If P1 =1, ie. k=0, we can consider a Feynman Kac type perturbation
pler) — PMﬁAm, with € | 0 and s a positive measure. Perturbation theory
(Cf for example [15]) shows that (%) — 1 = ﬁ dow Q\Tﬁiz —1+o0(e) =
—=55) 4 5(e) and that h(F) = —L— 4 o(e).

A(X) VAX)

We deduce from that the asymptotic behaviour of

/ (e==(%) — 1)du=) (1) = log(det (I — PEM)) — log(det(I — PEF+X)))
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which is equivalent to —log(1 — BE*+X))) +log(1 — %)) and therefore to
5(X)
log (S )-
The study of relations between the loop measure p and the zeta function
(det(I — sP))~! and more generally (det(I — M;P))~! with f a function on

[0,1] can be done in the context of discrete loops.

(Y I%sp(f)u(é)) — (det(I — sP))"!
based
discrete loops

can be viewed as a type of zeta function defined for s € [0 1/03)

Primitive non trivial (based) discrete loops are defined as discrete based
loops which cannot be obtained by the concatenation of n > 2 identical based
loops. Loops are primitive iff they are classes of primitive based loops.

The zeta function has an Euler product expansion: if we denote by £° this
discrete loop defined by the based discrete loop &, and set, for £ = (&1, ..., &),
n(€®) = Pg; Pé;....Pél", it can be seen, by taking the logarithm, that:

@arr—sp) " men (Y —mOu@) = I (1= [ Oue)”

based primitive
discrete loops discrete loops






Chapter 3
Geodesic loops

3.1 Reduction

Given any finite path w with starting point xg, the reduced path w’ is defined
as the geodesic arc defined by the endpoint of the lift of w to Ty, .
Tree-contour-like based loops can be defined as discrete based loops whose
lift to the universal covering are still based loops. Each link is followed the
same number of times in opposite directions (backtracking). The reduced path
w? can equivalently be obtained by removing all tree-contour-like based loops
imbedded into it. In particular each loop I based at zo defines an element I7

in I,.

Based loop

This procedure is an example of loop erasure. In any graph, given a path w,

the loop erased path w’¥ is defined by removing progressively all based loops

35
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imbedded in the path, starting from the origin. It produces a self avoiding
path (and we see geodesics in T, are self avoiding paths). Hence any non
ramified covering defines a specific reduction operation by composition of lift,

loop erasure, and projection.

Loop erasure

3.2 Geodesic loops and conjugacy classes

Then, we can consider loops i.e. equivalence classes of based loops under the
natural shift.

Geodesic loops are of particular interest. Note their based loops represen-
tatives have to be "tailess”: If «y is a geodesic based loop, with |y| = n, the tail
of 7 is defined as y1y2...¥iVi—1...71 if ¢ = sup(J, 172 = YnVn—1--Yn—j+1)-
The associated geodesic loop is obtained by removing the tail.

The geodesic loops are clearly in bijection with the set of conjugacy classes
of the fundamental group. Indeed, if we fix a reference point x(, a geodesic
loop defines the conjugation class formed of the elements of I;, obtained by
choosing a base point on the loop and a geodesic segment linking it to xzq.
Any non trivial element of I, can be obtained in this way.

Given a loop, there is a canonical geodesic loop associated with it. It is
obtained by removing all tails imbedded in it. It can be done by removing
one by one all tail edges (i.e. pairs of consecutive inverse oriented edges of
the loop). Note that after removal of a tail edge, another tail edge cannot

disappear, and that new tail edges appear during this process.
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Loop and associated geodesic loop

A closed geodesic based at xg is called primitive if it cannot be obtained
as the concatenation of several identical closed geodesic, i.e. if it is not a non
trivial power in I7,. This property is clearly stable under conjugation. Let 33
be corresponding set of primitive geodesic loops. They represent conjugacy

classes of primitive elements of I" (see [52]).

3.3 Geodesics and boundary

Geodesics lines (half-lines) on a graph are defined as paths without back-
tracking indexed by Z (N).

Paths and in particular geodesics can be defined on (X, E) or on a universal
cover ¥ and lifted or projected on any intermediate covering space. Two

geodesic half lines are said to be confluent if their intersection is a half line.
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Let us now take the point of view described in remark 1. Equivalence
classes of geodesics half lines of ¥ for the confluence relation define the bound-
ary 0% of T. A geodesic half-line on T can therefore be defined by two points:
its origin Or and the boundary point 8 towards which it converges. It projects
on a geodesic half-line on (X, E) = I'\T. The set of geodesic half lines on
(X, E) is identified with I'\(Tx 9%) which projects canonically onto X.

There is a natural o-field on the boundary generated by cylinder sets B,
defined by half geodesics starting with a given oriented edge g.

Given any point zg in T, assuming in this subsection that xk = 0, one can
define a probability measure on the boundary called the harmonic measure
and denoted vy,: vy, (By) is the probability that the lift of the P-Markov
chain starting at xo hits g7 after its last visit to g—.

Note that I" acts on the boundary in such a way that v*(v,) for

= Vy(a)>
all v € I' and « € €. This harmonic measure induces a probability on the

fiber above I'z in I'\ (T x 9%), i.e. on half geodesics starting at the projection
of z on X.

Clearly, in the case of a regular graph, as the universal covering is a

1 1

o -~ ) where d denotes the distance in

r—regular tree, vy, (By) =
the tree. When conductances are all equal, v,,(B,) can also be computed
but is in general distinct from the visibility measure from =, V;}és (By), de-
fined as ﬁ 11 ﬁ, T1,Z2,...2;, ... being the points of the geodesic segment
linking zo to g~. v, is also a probability on J%.

There is an obvious canonical shift acting on half geodesics.
Note also that >

sure on the set of half-geodesics of ¥.

vz 09712 (d0) is a shift-invariant and I'-invariant mea-

It can be shown it induces a canonical shift invariant and I-invariant
probability on half geodesics on X obtained by restricting the sum to any
fundamental domain and normalizing by | X|. It is independent of the choice

of the domain.

3.4 Closed geodesics and associated Zeta function

Recall that B denotes the set of primitive geodesic loops.
Thara’s zeta function I.Z(u) is defined for 0 < u < 1 as

1Z(w) = [ - w®)~
vEP

It depends only on the graph.
Note that
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4 IZ )P

- T = B S = 3 v

yeP n=1

where N, denotes the number of tailess geodesic based loops of length m.
Indeed, each primitive geodesic loop 7 traversed n times still induces p(y)
distinct tailess geodesic based loops. Therefore IZ(u) can also be written as
exp (X2 %)

Similarly, one can define ITI" to be the set of primitive elements of the

fundamental group I" and the I'-zeta function to be:

rzw) = [[ @—w™)!

~yellIl”

Note that u d};(z(;‘ ) Z;O L, u™ where L,, denotes the number of geodesic

based loops of length m. I'Z(u) can also be written as exp(> - _, %)
Recall that A denotes the adjacency matrix of the graph, and D the diagonal
matrix whose entries are given by the degrees of the vertices.

Assume now that 0 < u < inf ( ,x € X). We will use again the Green

function associated with A\, = (d, — 1)u + L and, for {z,y} € E, Cpy = 1.

Theorem 1. a) > 5" Ly,u™ = (1 —u?)Tr([I + (D — Nu? —ud]™) — | X|.
b) IZ(u) = (1 —u?)"Xdet(I — ud + u?(D — I))~! where x = denotes the
Euler number |E| — | X| of the graph.

Proof. We adapt the approach of Stark-Terras ([52])

a) As geodesic loops based in zg are in bijection with I7,,, it follows from
proposition 13 and 12 that
V4> Lpu™ = (2 —u)Tr(G) = (1 —u*)Tr([I + (D — Iu? — ud]™)
b) Given a geodesic loop I (possibly empty) and a base point y of I, let Sy,
be the sum of the coefficients u?(®), where ¢ varies on all geodesic loops
based at x composed with [ and a tail ending at y. If x = y, we have
Syt =PV, Set Sy =0 Su -

Clearly, for any section 4 of the canonical projection from T, onto X,

S Sewi= Y o) (L gee g
u
y,l

y€lx—{I}

On the other hand, considering first the tailess case, then the case where
the tail has length 1, and finally decomposing the case where the tail has
length at least two according to the position of the point of the tail next

to x, (denoted '), we obtain the expression:
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3" Saga =V 4 (dy — 2)urDF2 £ 3" (dyr — 1)u?Syr g
@ z'#y

= ’up(l) — up(l)+2 + Z(dm - 1)/“25%?/71

summing in y, it comes that

stl*p l)+2 +Zd 71USIZ

Then, summing on all geodesic loops {

Z((%fu)cm (1=u®)(> Nypu™ +de1 ——u)G”“” 1).

x

Therefore,
> N =Tr((I = w*(D = D)(L + (D = Dw® = uA] ™" = (1= w?)7'1)
=Tr(I - ( (D I) —uA)I + (D — Iu? —uA] ™
—(1—u*)M I —u*(D-1))

=Tr((2u (D I) —uA)I + (D — Du? —uA]™ + (1 —u?) " (u?(D - 21)).
To conclude note that
% log(det(I+(D—TI)u*—uA)) = Tr((2u(D—I)—A)[I+(D—1)u*—uA]™")

and that u?Tr(D — 2I) = 2u?.

An alternative proof

Other proofs can be found in the litterature, especially the following one due
to Kotani-Sunada ([16]):

On the line graph, we define a transfer operator @@ by Q(z o 6y Lostay-
Then, as log(det(( —uQ)™!) = 3 L-T7(Q") and Tr(Q"™) = N,, we have

IZ(u) = det((I —u@)™!

Define the linear map 7', from A to functions on X by T'a(z) = 3°, «, 1epo(@,y).
Define a linear transformation 7 on A by Ta(e) = a(—e). Define S the lin-

ear map from functions on X to A defined by Sf(z,y) = f(y). Note that
TrS=D,TS=A,and Q = —7+ ST.

Then, for any scalar u, (I —ur)(I —uQ) = (1 — u?)I — (I — ur)uST and

(I —uQ)(I —ur) = (1 —u*)I — ST(I — ur). (3.1)
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Therefore T'(I — ur)(I —uQ) = (1 — u*)T —uT(I —ur)ST) = (I + u*(D —
I) —uwA)T and

T —ur)(I —uQ)(I —ur) = (I +u*(D — 1) —uA)TI — ur).
Moreover (I —uQ)(I —ur)S = S((1 —u?)I —uT(I —ur)S) and
(I —uQ)(I —ur)S =S +u*(D—1)—uA). (3.2)

It follows from these two last identities that Im(S) and Ker(T'(I — ur)) are
stable under (I —u@Q)(I — ur).
Note that S is the dual of —T'7: Indeed, for any function f on vertices and

« on oriented edges,

> alwy)Sfy) = D alzy)fy) = Tray)fy).
(z,y)€EC (z,y)€EC y
Therefore, dim(Im(S)) + dim(Ker(T7)) = 2 |E|.

Note also that dim(Ker(T7)) = dim(Ker(T)) = dim(Ker(T(I —urt))) (as
u<1).

Moreover, except for a finite set of w’s, Im(S) N Ker(T(I —ur)) = {0}.
Indeed T(I — ut)S = A — uD which is invertible, except for a finite set of
u’s.

Note that (3.1) implies that (I —uQ)(I —ur) equals (1—u?)I on Ker(T(I—
ut) and that (3.2) implies it equals S(I +u?(D — I) —uA)S~! on Im(S).

It comes that:
det((I —ur)(I —uQ)) = (1 — u?)HEI=IXI det(I + u?(D — I) — uA)

On the other hand, det((I —u7)) = (1 —u?)I®!, which allows to conclude.






Chapter 4
Poisson process of loops

4.1 Definition

Still following the idea of [20], which was already implicitly in germ in [54],
define, for all positive «, the Poissonian ensemble of loops £, with intensity
ap.

Note also that these Poissonian ensembles can be considered for fixed « or
as a point process of loops indexed by the ”time” «. In that case, L, is an
increasing set of loops with stationnary increments. We will denote by £LP the
associated Poisson point process of intensity p(dl) ® Leb(da) (Leb denoting
Lebesgue measure on the positive half-line). It is formed by a countable set
of pairs (I;, ;) formed by a loop and a time.

We denote by P its distribution.

Recall that for any functional @ on the loop space, vanishing on loops of

arbitrary small length,
B(e' Ziee *0) expla [ (€0 - ()
and for any positive functional ¥ on the loops space,
Ble™ Zreen ") —expla [ (0 - Du(a) (4.1)

It follows that if @ is p-integrable, >, . ®(l) is integrable and

E(Y o) = /@(l)au(dl).

el

And if in addition ¢ is u-integrable, Y, . ®(l) is square-integrable and

B(Y 0))) = [ @ Wauta) + ( [ SDand)®

lEL

43
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Recall also ”Campbell formula” (Cf formula 3-13 in [17]): For any system

of non negative or p-integrable loop functionals F;,

E( > Hﬂ(li))ﬁau(ﬂ) (4.2)

Li#ly.. . #lRE€Lq
Note the same results hold for functionals of LP.
Of course, L, includes trivial loops. The periods 7; of the trivial loops
based at any point x form a Poisson process of intensity a%. It follows

directly from this ( [39] and references therein) that we have the following

Proposition 14. The sum of these periods > 7, and the set of "frequencies”

ETLTL (in decreasing order) are independent and follow repectively a I'(c) and

a Poisson — Dirichlet(0, «) distribution.

Note that by the restriction property, L2 = {I € L,,l C D} is a Poisson

process of loops with intensity p”, and that £2 is independent of £, \LE.

We denote by DL, the set of non trivial discrete loops in L. Then,

P(#DL, = k) = e~on>DaE=" 444 conditionally to their number, the
1

discrete loops are independently sampled according to M) #lyp>1y. In par-

ticular, if Iy, o, ..., [ are distinct discrete loops

P(DLy = {l1, 1o, ..., I }) = e *#P>D k(14 pu(ly,)

det(G),,, * Noy(ls -2V Ne(ls
k[H()\)] IR | B

=«
T,y

The general result (when the [;’s are not necessarily distinct) follows from
the multinomial distibution.

We can associate to L, a o-finite measure (in fact as we will see, it is finite

when X is finite, and more generally if G is trace class) called local time or

L.-Y1

leLqn

occupation field

Then, for any non-negative measure y on X

E(e_<LA‘"X>) = exp (a /(e_<lA’X> - 1)du(l)).

and therefore by proposition 7 we have

Corollary 1. E(e_<fa’x>) = det(I + M\/;GM\/;)—O‘ _ (d;:t(%()))a_

Many calculations follow from this result.
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Note first that E(e_tfm) (14+tG**)—, Therefore L." follows a gamma

fer.z3

distribution I'(c, G**), with density 1¢,-01 % F(a) (Gi;)la (in particular an

exponential distribution of mean G** for o« = 1, as 1% under = I) When
we let a vary as a time parameter, we get a family of gamma subordinators,
which can be called a ”multivariate gamma subordinator”®.

We check in particular that E(Z;z) = aG™* which follows directly from
w(lz) = G™.

Exercise 13. If £, = {l;}, check that the set of ”frequencies” z:f = follows a

Poisson-Dirichlet distribution of parameters (0, «).
Hint: use the p-distribution of 1.

Note also that for a > 1,

E((1 - exp(—22)) ) = ¢(a)
For two points, it follows easily from corollary 1 that:
E(e=tCe" e=5Ca") = (1 + tGT)(1 + sGYY) — st(GTY)2) =

This allows to compute the joint density of Z;i and Z;y in terms of Bessel

and Struve functions.

We can condition the loop configuration on the set of associated non triv-
ial discrete loops by using the restricted o-field o(DL,) which contains the
variables N, ,,. We see from (2.11) and (2.8) that

Az + X

E(e—@,@m%):H(L)N;am

The distribution of {N;a), x € X} follows easily, from corollary 1 in terms of

generating functions:

N(CV) 1 175I 175
([T = det(on, + [ 22 =5)g, [ 2ull =)

so that the vector of components N ) follows a multivariate negative bino-

mial distribution (see for example [57]).

(

It follows in particular that N, ) follows a negative binomial distribution

of parameters —a and Note that fora = 1, N3 (M 41 follows a geometric

)\ GIJ:

distribution of parameter W‘

Note finally that in the recurrent case, with the setting and the notations

of subsection 2.7, denoting ngf) the Poisson process of loops of intensity

1 A subordinator is an increasing Levy process. See for example reference [1].
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cau(%) | we get that the associated occupation field converges in distribution
towards a random constant following a Gamma distribution.

Let us recall one important property of Poisson processes.

Proposition 15. Given any bounded functional ® on loops configurations
and any integrable loop functional F, we have:

B(Y FOB(E) = [ B@(La U {1))aPOu(d)

lEL

Proof. This is proved by considering first for &(L,) the functionals of the
form > i, e [1¢ G;(1;)) (with G; bounded and p-integrable) which
span an algebra separating distinct configurations and applying formula (4.2)
: Then, the common value of both members is a? Y ] u(FG;) [ (G +
o () T pl(G)

Exercise 14. Give an alternative proof of this proposition using formula
(4.1) .

The above proposition applied to F(I) = lA””,NgE?;) and propositions 4 and

10 yield the following;:

Corollary 2.
B@(L)E) =a [B@(E.U()F" () = a [ B@(L. U (D@
and if x £y

E(@(£.)N) = a / E(®(LoU{7})Nay(1)pt(dy) = aCs / E(B(L0Ulr )" (d7).

Remark 6. Proposition 15 and corollary 2 can be easily generalized to func-

tionals of the Poisson process LP.

Exercise 15. Generalize corollary 2 to Z;Iz;y, for x # y.

4.2 Moments and polynomials of the occupation field

It is easy to check (and well known from the properties of the gamma dis-
tributions) that the moments of Z;i are related to the factorial moments of
N;a) :

(NS 4+ ) (NS 4 ke — 1) (NS + 1)
TINE

E((La )*|DL.) =

Exercise 16. Denoting £} the set of non trivial loops in £, define
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k m
Z;L(k) _ Z Z Hl’;ma(kj).

m=1ki+...4+kn==k 117512___7517?1652 7j=1

Deduce from exercise 12 that E( |D£ ) = k,)\k 1w, >k}(N( R
1)..(N& — )N

-1)

It is well known that Laguerre polynomials Léa with generating function

ut

#Le Dy = ¢
Z T -0

are orthogonal for the I'(«v) distribution. They have mean zero and vari-

ance —F(O]jk). Hence if we set 0, = G™"and P, (x) = (fa)kL,(f‘_l)(ﬁ),

the random variables P."7* (Z;m) are orthogonal with mean 0 and variance
J%W, for k > 0.
Note that P"7" (Z;I) = Z;I — ooy = Z;I — E(Z;I) It will be denoted

Lo .
Moreover, we have > o t* Py (u) = > (— ot)kL(o‘ 1)(0) = eltot

(14+ot)
Note that by corollary 1,
Z;It Z;ys
E( eltoxt eltoys
(14 o5t)™ (14 0ys)®
ozt )(17 0yS t S (Gm’y)Q)

1+oys 71+O'It1+0'y8
= (1—st(G™Y)?)~

= 1—
(1+O’It)o‘(1+0'y8)a(( 1+ o0,

Therefore, we get, by developping in entire series in (s,t) and identifying the
coefficients:

a+1)..(a+k—-1)

E(P; (Lo, P (L") = 5kﬁl(ley>2k0‘( {

(4.4)

Let us stress the fact that G™* and GYY do not appear on the right hand
side of this formula. This is quite important from the renormalisation point
of view, as we will consider in the last section the two dimensional Brownian
motion for which the Green function diverges on the diagonal.

More generally one can prove similar formulas for products of higher order.

It should also be noted that if we let a increase, (1 + o,t)~* exp( 1::tt)
and P.7" (Z;I) are o(L,)-martingales with expectations respectively equal
to 1 and O.

Note that since G, M, is a contraction, from determinant expansions given

in [56] and [57], we have
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—« — (_1)k
det(I+M xGM 5)~" = 14> o > XXy Pera(Giy iy 1 < Lm < k).
k=1
(4.5)
The a-permanent Per, is defined as desk am(”)Gil,ia(l)...Gik,ia(k) with

m(o) denoting the number of cycles in o. Then, from corollary 1, it follows
that:

E(<a,x>k) = ZXil---XikPWa(Gil,ima 1<l,m<k).

Note that an explicit form for the multivariate negative binomial distribution,
and therefore, a series expansion for the density of the multivariate gamma
distribution, follows directly (see [57]) from this determinant expansion.

It is actually not difficult to give a direct proof of this result. Thus, the
Poisson process of loops provides a natural probabilistic proof and interpre-
tation of this combinatorial identity (see [57] for an historical view of the

subject).

We can show in fact that:

1

Proposition 16. For any (21, ...71) in X*, E(L,
I,m<k)

Z;Ik) = Per,(G*v*m 1 <

Proof. The cycles of the permutations in the expression of Per, are associ-
ated with point configurations on loops. We obtain the result by summing
the contributions of all possible partitions of the points ¢;...i; into a finite
set of distinct loops. We can then decompose again the expression according
to ordering of points on each loop. We can conclude by using the formula
p(lFr-mm) = GererGeaes | Grmet and Campbell formula (4.2) .

Remark 7. We can actually, in the special case i1 = i3 = ... = 1 = «x,
check this formula in in a different way. From the moments of the Gamma
distribution, we have that E((Z;I)") = (G"")"a(a+1)...(a+n—1) and the
a-permanent can be written Y.} d(n, k)a* where the coefficients d(n, k) are
the numbers of n—permutations with k cycles (Stirling numbers of the first

kind). One checks that d(n + 1,k) = nd(n, k) + d(n, k — 1).

Let S,g be the set of permutations of k elements without fixed point. They
correspond to configurations without isolated points.

Set Perd (Giim 1 <l,m<k)= 2 oes ™) Giviem) | Gl Then an
easy calculation shows that:

—~

Corollary 3. E(L. ...Lo ) = Per®(Givin 1< 1,m < k)
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Proof. Indeed, the expectation can be written

oY (yEP ] G Pera(G ab e T)

p<k IC{1,..k},|I|=p lere

and
Pery (G a,be I) = Z H G7I Perl (G'a™ a,b € J).
JCI jeI\J
Then, expressing E(Z;“...Z;lk) in terms of Per’s, we see that if J C
{1, ...k}, |J| < k, the coefficient of Per® (G a,b € J)is Z],];J(_l)k_m [Lcse Gl
which vanishes as (—1)~1I = (=)l = (=1)VI(=1)"\/| and ZQJ(fl)‘I\J| =
(1-1) I =o.

Set Q17 (u) = P (u+ ao) so that P,?”(Z‘,;Z) = QZ“’(Z;JC) This quan-
tity will be called the n-th renormalized self intersection local time or the
n-th renormalized power of the occupation field and denoted E”oi”

From the recurrence relation of Laguerre polynomials

nL Y (u) = (—u+2n+a — 2)L£la:11) —(n+a-— 2)L(a_1)

n—2

we get that
nQu () = (u—20(n — 1)Qn7 (u) — 0 (a +n — 2) Q% (w).

In particular Q57 (u) = 4 (u*—20u—ac?), Q3 (u) = §(u—60u’+3uc?(2—
a) +403a).
We have also, from (4.4)

o (oo By oo (p Y @ ala+ 1. (a+k—1
E(QY7 (Lo ), Q)" (La ) = Sk (G™Y) ( ) k(! )

(4.6)

The comparison of the identity (4.6) and corollary 3 yields a combinatorial
result which will be extended in the renormalizing procedure presented in the
last section.

The identity (4.6) can be considered as a polynomial identity in the vari-
ables o, o, and G™Y.

Set Q7" (u) = YF _ q%Fumoh~™ and denote Ny ., the number of
ordered configurations of n black points and m red points on r non trivial
oriented cycles, such that only 2p links are between red and black points. We

have first by corollary 3:

E((La )"(La ™) =" D 0" Namrp(GZ)?(0,)" (o) 7

v p<inf(m,n)
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and therefore

Z Z Z aqu{kqg’an,m7T,p =O0unless p=1=k. (4.7)
r p<m<kp<n<l

r ok a ala+1)..(a+k—-1

ZO‘ qk’qu’ka,k,r,k _ ( ) ( )

k!

L (48)

Note that one can check directly that q,‘:’k = %, and Ng 1 = kl(k — 1)),

N i ks = k! which confirms the identity (4.8) above.

4.3 Hitting probabilities

Denote by
[H"]? = Pu(zr, =)

the hitting distribution of F' by the Markov chain starting at = (H* is called
the balayage or Poisson kernel in Potential theory). Set D = F'° and denote
by e, PP = P|pxp, VP =[(I — PP)]7! and GP = [(M, — C)|pxp]~* the
energy, the transition matrix, the potential and the Green function of the
Markov chain killed at the hitting time of F'.

Denote by P2 the law of the killed Markov chain starting at x.

Hitting probabilities can be expressed in terms of Green functions. For

y € F', we have

[HTy = Liamyy + ) D _IPP)EP;

0 zeD

As G and GP are symmetric, we have [HF G| = [H" G]Y so that for any
measure v,

HY(Gv) = G(vHT).

In particular, the capacitary potential HF'1 is the potential of the capacitary
measure kHT .

Therefore we see that for any function f and measure v,
e(HFf, GDI/) = e(HFf, GV)—e(HFf, HFGZ/) = <HFf, l/>fe(HFf, G(HFV)) =0

as (HT)? = HF.

Equivalently, we have the following:

Proposition 17. For any g vanishing on F, e(HY f,g) = 0 so that [ — HY

is the e-orthogonal projection on the space of functions supported in D.
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The energy of the capacitary potential of F', e(H¥'1, H¥'1) equals the mass
of the capacitary measure <KH F 1>. It is called the capacity of F and denoted
Cap.(F).

Note that some of these results extend without difficulty to the recurrent
case. In particular, for any measure v supported in D, GPv = G(v — vHT)
and e(HY f,GPv) = 0 for all f. For further developments see for example (
[24]) and its references.

The restriction property holds for £, as it holds for u. The set L2 of loops
inside D is associated with u” and is independent of £, — LZ. Therefore, we

see from corollary 1 that

 — D\« «
e (E-T), _ (45HC) det(G))
det(G) det(G2)
Note that for all z, u(lA”” > () = oo. This is due to trivial loops and it can
be seen directly from the definition of p that in this simple framework the
loops of L, cover the whole space X.

Note however that

o~

u(U(F) > 0,p>1) = p(p > 1) = p(l(F) = 0,p > 1) = p(p > 1) = pP(p > 1)
B det(I — P) B det(GP)
=B et Py T L e @)

It follows that the probability that no non trivial loop (i.e. a loop which is

not reduced to a point) in £, intersects F' equals

exp(—au({l,p(l) > 1,1(F) > 0})) = (%

Recall Jacobi’s identity: for any (n+p, n+p) invertible matrix A, denoting

)%

e; the canonical basis,

det(A™1) det(A;5,1 <i,7 <n) =det(A™ ') det(Aeq, ..., Aen, €ni1, s €nip)
= det(er, ..., en, A eny1, oy A engy)
= det((Ail)kﬁl,n <k/l<n+p).

In particular, det(GP) = —3t(G) ﬁ%.

= TGl So we
have the

we can also denote

Proposition 18. The probability that no non-trivial loop in L, intersects F

equals

TT A det (@
zeF

—<Z;—Z§1X>> _ (detFxF(Gx) )a.

Moreover E(e detrxr(G)



52 4 Poisson process of loops

In particular, it follows that the probability that no non-trivial loop in
L, visits x equals (5—g==)® which is also a consequence of the fact that N,
follows a negative binomial distribution of parameters —a and

Also, if F} and Fy are disjoint,

1
2GEE

~ ~ ~ ~ ~

p((F)I(F) > 0) = p(l(F1) > 0,p> 1)+ p(l(F2) > 0,p > 1) — u(I(FL UF,) > 0,p > 1)
(4.9)

detp, x p, (G) det p, x 1, (G)
detr,um xmuR, (G)

det(G) det(GP11P2)

= o8l eGP det(Gony ) 1O

).
Therefore the probability that no loop in £, intersects F; and F5 equals

-~ e D1y de Dy etr xm et xmy —a
exp(—ap({l, [[UF) > 0})) = ((itt((g) d(jt((l(;[(,ﬁmz)))“ e tgétiu(z)iil<2>(c;)>

It follows that the probability no loop in L, visits two distinct points x and

T, YY _((3TY)2 z,y\2
GPEGYY —(GTY)T P o= 1.

y equals (——gz=gvy——)" and in particular 1 — %

Exercise 17. Generalize this formula to n disjoint sets:

det(G) ], det(GPi"P4) )—a
)

P(Hl € L‘,Q,HZA(FZ-) >0)= (Hdet(GDi) Hi<j<k det(GD:ND;NDr

Note this yields an interesting determinant product inequality.



Chapter 5
The Gaussian free field

5.1 Dynkin’s Isomorphism

By a well known calculation on Gaussian measure, if X is finite, for any

x € R¥
\/ det MA - ZX ( ) det(GX)
“ ze(v I, exd
C emiXiz /RX exar det(G)
and
det(My — 13 e (0)2 —Le(v) det(Gy)
w (v se(v Hu d u G z,y A/
T eniXiz /RX c exdv” = (Gy) det(G)

This can be easily reformulated by introducing on an independent proba-
bility space the Gaussian free field ¢ defined by the covariance Eq4(¢p"¢¥) =
G Y (this reformulation cannot be dispensed when X becomes infinite)

So we have
Eg(e™2<%"%>) = det(I + GM,) "% = |/det(G,G~1)
and
Eg(¢7¢¥e25907) = (Gy)™[det(Gr G71).
Then since sums of exponentials of the form e~2<"X> are dense in continuous
functions on R the following holds:

Theorem 2. a) The ﬁelds El and %qﬁQ have the same distribution.
b) Eg¢((¢" ¢V F (3 = [E(F E; + )Y (dry) for any bounded functional
F of a non negatwe field.

Remarks:

a) This can be viewed as a version of Dynkin’s isomorphism (Cf [8]). It
can be extended to non-symmetric generators (Cf [26]).

b) By corollary 2, if Cy,, # 0, b) implies that

53
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2 —

1 1
Ey(¢"6'F(56%)) = &—E(F(L;)N:3)
z,y

1
2

¢) An analogous result can be given when « is any positive half integer,
by using real vector valued Gaussian field, or equivalently complex fields
for integral values of a (in particular a = 1): If ? = (¢1, b2, ...,0r) are
k independent copies of the real free field, the fields L & and %HE}HQ =
%Z’f ¢3 have the same law and E( <$Z, $y> F81%) = k:fIE(F(Z% +
V)t (dy).

The complex free field ¢1 + i¢2 will be denoted . If we consider k inde-
pendent copies ¢; of this field, L, and i ||$H2 = %Zlf ©;@; have the same
law.

d) Note it implies immediately that the process ¢? is infinitely divisible.
See [11] and its references for a converse and earlier proofs of this last fact.

Theorem 2 suggests the following;:

Exercise 18. Show that for any bounded functional F' of a non negative

field, if x; are 2k points:
e k
B, [[o) = [BE@+ 7)) X ] o)
1 pairings pairs

where >

points z;, in all

pairings €ans that the k pairs y;, z; are formed with all the 2k

(2k)!
2F L

possible ways.

Hint: As in the proof of theorem 2, we take F' of the form e~2<"X>_ Then
we use the classical expression for the expectation of a product of Gaussian

variables known as Wick theorem (see for example [37], [50]).

Exercise 19. For any f in the Dirichlet space H of functions of finite energy
(i.e. for all functions if X is finite), the law of f + ¢ is absolutely continuous

with respect to the law of ¢, with density exp(< —Lf, ¢ >, f% (f))-

Exercise 20. a) Using proposition 17, show (it was observed by Nelson in
the context of the classical (or Brownian) free field) that the Gaussian field
¢ is Markovian: Given any subset F' of X, denote Hp the Gaussian space
spanned by {¢¥,y € F}. Then, for x € D = F°, the projection of ¢* on Hp
(i.e. the conditional expectation of ¢ given o(¢¥,y € F) ) is ZyeF[HFE(by

b) Moreover, show that ¢ = ¢— HF ¢ is the Gaussian free field associated
with the process killed at the exit of D.
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5.2 Wick products

We have seen in theorem 2 that L? functionals of a can be represented in this
space of Gaussian functionals. In order to prepare the extension of this repre-
sentation to the more difficult framework of continuous spaces (which can of-
ten be viewed as scaling limits of discrete spaces), including especially the pla-
nar Brownian motion considered in [20], we shall introduce the renormalized

(or Wick) powers of ¢. We set : (¢%)" := (G**)% H,, (¢ /v/G*=) where H,, in
the n-th Hermite polynomial (characterized by > %Hn(u) = et“’é).These
variables are orthogonal in L? and E((: (¢%)" :)?) = n!G*=.

Setting as before o, = G™7*, from the relation between Hermite polyno-

_1
mials Hs, and Laguerre polynomials Ly, ?,

L2
Han(2) = (=2)"nLa* ()
it follows that: 2\2
(o = 2mp (2,

and
Eo((: (¢7)" 2)*) = ogn!
More generally, if ¢1, @2, ..., ¢ are k independent copies of the free field,

we can define
T (@)™ - =15y ¢ (¢%)™ = Then it follows that:

k k
O = > nl'ni'nk' IT: () -
1 ni+..+ng=n j=1

k
On the other hand, from the generating function of the polynomials P27,

we get easily that

k k
k 1
PO u) =D 11227 ).
1 ni+..+ng=n j=1

Therefore,

e T 1
PR = i e 6.)
Note that in particular, : Zlf(gbf)z s equals (¢%)? — 0" These variables are
orthogonal in L2, Let [* = 1% — 6% be the centered occupation field. Note that
an equivalent formulation of theorem 2 is that the fields  : Zlf qﬁ? and £ &
have the same law.
If we use complex fields Pf’g(m) = g (Zf((pf@f)" i

2 2nn!
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Let us now consider the relation of higher Wick powers with self intersec-
tion local times.

Recall that the renormalized n-th self intersections field Eg" = P,?’U(Z;z) =
Q%"’(Z;m) have been defined by orthonormalization in L? of the powers of
the occupation time.

Then comes the

nlan

Proposition 19. a)The fields EE" and —— (Zlf @3)™ : have the same law.
2
In particular £;" and —5 (Zlf ©;®;)" ¢ have the same law.

nlan

This follows directly from (5.1).

Remark 8. As a consequence, we obtain from 4.6 and 5.1 that:

bt )bt 2n=1) H% (5.2)

2np!

ni+...+ng=n

Moreover, it can be shown that:

E(H QZJGI] (Z:ZJ)) _ Z ™0 QY1 Yo) | Yk Yo (k)
j=1

OTESky ka.... .k

y; = x; for ijl k+1<i< Z{fl ki 4 kj and where Sk, k,,...r; denotes
the set of permutations ¢ of k = " k; such that

a({zz_l ki +1,... Z{_l ki +k;})N {Z{_l ki+1,... Z{_l ki + k;} is empty
for all j.

The identity follows from Wick’s theorem when « is an integer, then ex-
tends to all a since both members are polynomials in «. The condition on
o indicates that no pairing is allowed inside the same Wick power. For the
proof, one can view each term of the form : ((pf@f)k : as the product of k
distinct pairs, in a given order, then the pairings between ¢’s and ¥’s are de-
fined by an element of Sk, ,,...x; and a system of permutations of Sk, ...Sk; -
This system of permutations produces multiplicities that cancel with the ﬁ
factors in the expression. Note finally that E(¢7®;) = 2G™Y to cancel the

27 ki factors.

5.3 The Gaussian Fock space structure

The Gaussian space H spanned by {¢*,x € X} is isomorphic to the dual
of the Dirichlet space H* by the linear map mapping ¢* on d,. This iso-
morphism extends into an isomorphism between the space of square inte-

grable functionals of the Gaussian field and the real symmetric Fock space
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I'©(H*) = @H*®" obtained as the closure of the sum of all symmetric ten-
sor powers of H* (the zero-th tensor power is R). In the case of discrete
spaces, these symmetric tensor powers can be represented simply as sym-
metric signed measures on X" (with no additional constraint in the finite
space case). In terms of the ordinary tensor product ®, the symmetric tensor
product g1 ® ... ® uy is defined as ﬁ tesn Ho(1) @ ... @ fig(n) SO that in
particular, ||;L®"||2 =n!(>> G"Ypauy)". The construction of I'(H*) is known
as Bose second quantization. The isomorphism mentionned above is defined

by the following identification, done for any p in H*:
T 1 T
exp® (i) 2 exp(Y_ 6 e — 5 D GV piapry)
z Ty
which is an isometry as
T 1 x, x , !/ 1 x, ! _ T, /
Eqb(exp(; ¢ ha—3 ; G g piy) exp(; ¢ he—3 > G ,)) = exp(— Y G™Y ).

x,Yy z,y

The proof is completed by observing that linear combination of
1
xXP_ 6 e = 5 D G taity)
xT x,y

form a dense algebra in the space of square integrable functionals of the
Gaussian field.

The n-th Wick power : (¢*)™ : is the image of the n-th symmetric tensor
power 00", More generally, for any g in H*, : (3}, ¢" )™ : is the image of
the n-th symmetric tensor power u©". Therefore, : ¢ ¢%2...¢%" : is the image
of §z, ® ... ® b5, and polynomials of the field are associated with the non
completed Fock space ®H*©".

For any = € X, the anihilation operator a, and the creation operator a,

are defined as follows, on the uncompleted Fock space GH*©™:

Az(f1 © oo © pin) = > Cu()p1 © o © k-1 © phs1 © ooe © fin
k
A1 © oo O fin) =00 O 11 © .. © .

Moreover, we set a;1 = 0 for all x. These operator a, and a} are clearly dual

of each other and verify the commutation relations:

(@, ay] = G*Y ag, ay] = [aq, ay] = 0.

The isomorphism allows to represent them on polynomials of the field as

follows:
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0
Ay = Z Gm,y%
Yy
o 2y 9
az — d)x - Z G %

Therefore, the Fock space structure is entirely transported on the space of
square integrable functionals of the free field.

In the case of a complex field ¢, the space of square integrable functionals
of ¢ and P is isomorphic to the tensor product of two copies of the symmetric
Fock space I'®(H*), denoted by Fp. The complex Fock space stucture is
defined by two commuting sets of creation and anihilation operators:

oy O ¥ oy 0
ax:ﬂZG ya—(py amiﬁf\/ﬁzG ya—ay
Y Y

apv V2

: _ ; 9 _ 0 - 0 9 _ 0 - 0
(Recall that if z = x + iy, 52 = a5 — lpy and E‘%"Ha_y)'

See [50], [37] for a more general description of this isomorphism.

) S A A W e
Yy Yy

Exercise 21. Let A and B be two polynomials in ¢ and @, identified with
finite degree element in Fp. Show by recurrence on the degrees that AB =
> é'yp(A, B) with v0(A,B) = A® B and vp41(A,B) = >, (7p(azA, b, B) +
¥p(bz A, azB)).

5.4 The Poissonian Fock space structure

Another symmetric Fock space structure is defined on the spaces of L2-
functionals of the loop ensemble L£P. It is based on the space h = L2(u%)

where p* denotes p®Leb. For any G € L?(u*) define G(.)(t,1) = G(t,)1{1@)>e} Lig<2y-
Note that G(.) is always integrable. Define

ho = U{G € L>(u"), 3e > 0, G = G(,) and /Gd(uL) = 0}.
e>0
The algebra b is dense in L?(u”) (as, for example, compactly supported
square integrable functions with zero integral are dense in L?(Leb)).

Given any F' in ho, LP(F) = >, 1,)ecp F(ti li) is well defined and
E(LP(F)?) = (F, F) 2,1y By Stone Weierstrass theorem, the algebra gen-
erated by LP(ho) is dense in L?(ul).

By Campbell formula, the n-th chaos, isomorphic to the symmetric tensor

product h®”, can be defined as the closure of the linear span of functions of
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n distinct points of LP of the form

> 1G5y e)

oceS, 1
with Gj in ho.
Denote by tLP the jump times of the Poisson process LP. It follows di-
rectly from formula (4.2) that for

1
Z > HGU(]) 1, t) amdqﬁ’zﬁ > > HGU(J) Liryti)),

- gES, t1<ta<..<tn,€tLP 1 n: O'E'Sn/ t1<t2...<tn/€tl:73 1

with Gj, G;, in o,

E(®d') = 1{n:n/}Per(<Gj, G}’>L2(HL) 1<4,5 <n)

which equals 1(,—,1 (G1 © Ga... © G, G} © G,... © G},,), © denoting the
symmetric tensor product (Cf [4], [37].

This proves the existence of an isomorphism Iso between the algebra gen-
erated by LP(ho) and the tensor algebra ®h$" which extends into an iso-
morphism between the space L?(P.p) of square integrable functionals of the
Poisson process of loops LP and the symmetric (or bosonic) Fock space T
We have

Iso(—= Z > HGU(J) =G 0G0...0G.

'UES t1<to<..<tp€tLP 1

This formula extends to G; € . The closure of the space that functionals of
this form generate linearly is by definition the n-th chaos which is isomorphic
to the symmetric tensor product HhO”.

Note that for any G in b, the image by this isomorphism Iso of the tensor
exponential exp®(G) is [];,¢ppp(1+ G(lis 1))

Note also that for all F in b, [|exp®(F)||> = e/ F*dn*

Proposition 20. For any F in b, the image by Iso of the tensor exponential

exp®(F) is obtained as the limit in L?, as e — 0 of
[ ciop(X+ Foy(li ti))e™ S Foyau®

Proof. Note first that

E( [ (1+ Feoyst))e I Pty =1
tiELLP

and
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E( [ (+Fot)e I Tomp)
tiELtLP

= exp(/[(l + F(E))2 - 1]duL672IF<E>d“L
= eXP(/ FEydp®)

converges towards exp( [ F2dul).
Then note that for any G in by,

: y 1 Voo S Foydu®
ImE( [T (14 G, )1+ Fioy (Ui, ti))e 1 Flotv™)
t, EtLP

=t exp( [ [[1+ GIlL+ F] — 1o P00 "
= Eli_%exp(/ F(E)GduL) = exp(/ FGdu*) = (exp®(F),exp?(Q)).

Exercise 22. For any F' in b, set F<o(l,t) = F(l,t)l{;<q}. Show that
Iso(exp®(F<a)) is a 0(L,)-martingale.

Prove that the o(L,)-martingale (1 + o,t)~ % exp( e

140t

) is in this way
associated with F(I,t) = eTrest — 1.

Deduce from this an expression of P;"7* (Z;I) in terms of o Dy, (g) (the
polynomials defined in section 2.4) ,l; denoting distinct loops in £, and k;

positive integers less than k.

For any G in hp, unbounded annihilation and creation operators s and
2%, are defined on GHO"

AG(G1 @ .. ©CGn) =Y (G, Gr)y G1©® ..Gk1 © Grpr... © Gy
k=1

and

AL(G10...0G) =GOGLO...0 Gy

Note that

[le;,m}] = [QlG’mF] =0
B, Ap] = (F, G>L2(HL)

Moreover, 2, is adjoint to A in L*(Pzp), and the operators ¢ = Ay + Ag
commute.

Note also that the creation operator can be defined directly on the space
of loop configurations: by proposition 15 given any bounded functional ¥ on

loops configurations,

IsoA5Tso "W (LP) = / T(LP UL t})G(1, t)du”
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It is enough to verify it for Iso~'¥ in h".

For any G in hy N L™, note that §g does not represent the multiplication
by LP(G), though we have, for all @ in ®h®™ and G in hg, E(Iso(P)LP(G)) =
(§cl,®) = (1,3c9).

The representation of this operator of multiplication in the Fock space
structure can be done as follows:

Setting Mg F = GF, for all $ in ®h©"

(> Glit)Iso(®) = Iso(Fa® + dI'(M)).
t,EtLP

The notation dI' refers to the second quantisation functor I': if B is any
bounded operator on a Hilbert space b, I'(B) is defined on ®h®" by the
sum of the operators B®" acting on each symmetric tensor product H®™ and
dI'(B) = %I’(etB)h:O. In fact, given any orthonormal basis Ej, of h, we have,
for any @ in ®H®" and G in b

dI'(B) =Y Upp An, = Y Ay, Ap-p,

as
> (F,Bk) 2,0y (BER) =Y (F, BEy) 2,1y B, = BF.






Chapter 6
Energy variation and representations

6.1 Variation of the energy form

The loop measure y depends on the energy e which is defined by the free pa-
rameters C, k. It will sometimes be denoted .. We shall denote Z, the deter-
minant det(G) = det(My —C)~". Then pu(p > 1) =1log(Ze) + >, c x 10g(Az)-
Z¢ is called the partition function of L.
We wish to study the dependance of y on C and . The following result
is suggested by an analogy with quantum field theory (Cf [13]).

Proposition 21. 4) 5’7“ = 7.

ii) If Clpy > 0, 52— = =T with T*¥(l) = (% +1¥) — Zea () - g2 (1),

z,y

Proof. Recall that by formula (2.8): p*(p =1, = 2,7 € dt) = e’/\rt% and

. ~ 1 _ et
wp==Fk¢& =mx,7 €dl;) = EHCGJE\{Z)’yHAmNI H Ae,e”Mitidt;.
z,y T i€Z/pZ.

Moreover we have Cyy = Cy o = AP and Ay = iz + 35, Cay.

The two formulas follow by elementary calculation.

o~

Recall that p(I*) = G** and p(Ny,y) = G*YCy . So we have pu(T*Y) =
G®* 4+ GYY — 2G™Y. Then, the above proposition allows us to compute all

moments of T and [ relative to e (they could be called Schwinger functions).

Exercise 23. Use the proposition above to show that:
/ Fiu(dl) = (G2

/lA””Ty’Z(l)u(dl) = (G™Y — G™*)?

and

/Tm,y(l)Tu,v(l)u(dl) — (Gm,u F GV — GEY— Gy,u)Q — (K(m,y),(u,v))Q

63
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Hint: The calculations are done noticing that for any invertible matrix
function M (s), £ M (s)~! = —M(s)"'M'(s)M(s)~*. The formula is applied
to M =My —C and s = Kk, or Cy .

Exercise 24. Show that [(5°, , Co,T5¥(1) + 32, Kol®)p(dl) = |X| and
that more generally, for any D C X,

1 ~
[G Y Conen™ W)+ X it = 1D+ 30 Cay
z,Y

zeD reD,yeX—-D
Set
. ey N N2
T =" T, (1) = (L% + LY) — =% — 27
x,y Z ,y( ) ( [e7 + a) Cx Y Cz y
leLqn ’ ’
and

T{) =T —E(T%) =T — a(G™" + GYY — 2G™).

z,y z,y 'Y

We can apply proposition 21 to the Poissonnian loop ensembles, to get the

following

Corollary 4. For any bounded functional @ on loop configurations

i) ZE(B(La)) = —E(B(La)L7) = a [E(@(La) = B(La U {7})u""(dv).
ii) If Cypy > 0,

0
0Cy .y

= a / E((P(La )~ B(Lal{7})) 1 (dy) -+ (dy)— a5 (dy) 1 ()]

E(D(La)) = —E(T ) (L))

The proof is easily performed, taking first @ of the form }>; ;. oz, [T G,;(15)).
We apply Campbell formula to deduce the first half of both identities, then
corollary 2 to get the second half.

This result should be put in relation with propositions 4 and 10 and with

the Poissonian Fock space structure defined above.

Exercise 25. Show that using theorem 2, corollary 4 implies that for any

function F' of an non-negative field and any edge (x;,y;):

Ba(y : (0" = 6" F36%) = [ E(P(E
Bo(: 670" s F(50%) =~ [ E(F(ZN.,)

Hint: Express the Gaussian measure and use the fact that — %Log (det(@)) =
z,y
G%* 4+ GYY — 2G*Y

Exercise 26. Setting [* = [* — G* and Tmy(l) =T, () — (G"" + GYY —
2G™Y), show that we have:
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[Tty =@ - GG = der (gg;: ) o gg;)

J LTy Dt =677 = G = Gro(G 4 G - 26
(5T )
[ Fes D@l (Gt G = G = Gy?
— (G"* + G¥YY = 2G™Y) (G + G — 2G™7)
gt <<¢m — ¢, 97— 9) (7 — oV, 4" —¢”>> |
(9" — ", 6" — ¢¥) (¢" — 4", 9" — ")
Exercise 27. For any bounded functional ¢ on loop configurations, give two

different expressions for %Z%E(@(Ea)), ﬁja@m@(ﬁa» and #;CWE(@@Q)).

The proposition 21 is in fact the infinitesimal form of the following formula.

Proposition 22. Consider another energy form e defined on the same

graph. Then we have the following identity:

c! -
8ue/ — eZ Nm,y](’g( c;:z)_Z(A;_Am)lI

Opte
Consequently

C:’c,y _ r_ T Ze/
((eENw,ylog(Cm,y) SO =) 1)) :1Og(Z ). (6.1)

fhe

Proof. The first formula is a straightforward consequence of (2.6). The proof
of (6.1) goes by evaluating separately the contribution of trivial loops, which
equals > 1og(§—f). Indeed,

o’

Na oy log(2% ) =S (N, = A )" LT
pre (e N toslens,) ol 1) = per(p > D= pre(p > 1)+ pre(1peny (202 1)),

The difference of the first two terms equals log(Z.) + > log(\,) —

’
x

log(Z.)—> log(Az)). The last term equals (e~ > ;:I t _1)edt which
g g x JO t

can be computed as before:

r_ T )\;
pre(Lpmy (ST — 1)) = — 3 10g(52) (6.2)

Integrating out the holding times, formula (6.1) can be written equiva-

lently:
Zo
Z.

el TT 22 TIGE* 1) = o

) (6.3)
v X,
(z,y) Coy g

x

and therefore
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Cayin (La) Az 1N, (La)+1 Coyqn (La) = (N =X.La) Zel\a
B[ e e TR = BT [ Moo ) = (55)
(=,y) oy z z (z,y) .y €
(6.4)
Note also that [],, ,\[222]New = ], [ ]New+Ny
ote a (z,y) Cm,y {Iay} Cm,y !

Remark 9. These ZZZ' determine, when e’ varies with % <1 and /\7, =1, the
Laplace transform of the distribution of the traversal numbers of non oriented

links Ny, + Ny.o.

Remark 10. (' h-transforms) Note that if C;yy = h*h¥Cy , and k!, = —h*(Lh)* X\,
for some positive function A on E such that Lh < 0, as X = h2)\ and

c 1 - Ty GrY Ze’ _ 1
[P = A= Pyht, we have (@79 = £52 and & = b,

Remark 11. Note also that [ZZ' ]2 = Egy(e 2l =€) if ¢ is the Gaussian free

field associated with e.

6.2 One-forms and representations

Other variables of interest on the loop space are associated with elements of
the space A~ of odd real valued functions w on oriented links : w®¥ = —w¥7,
Let us mention a few elementary results.

The operator [P(“’)]Z = P7exp(iw™¥) is also self adjoint in L*()). The
associated loop variable can be written >, w™¥Ny ,(l). We will denote it

fl w. This notation will be used even when w is not odd. Note that flw is
[(I—pP“H)~ 2

invariant if w is replaced by w + dg for some g. Set [G(“)]*¥ =
Y

By an argument similar to the one given above for the occupation field, we
have:
Pl o(e' i —1) = exp(t(P“) — 1))2 — exp(t(P - )3

Integrating in ¢ after expanding, we get from the definition of u:

[Tr((P@)") = Tr((P)*)].

NE
> =

[ = aut) -

k

1

Hence [(e'i¥ —1)du(l) = log[det(—L(I — P“))~1)] = log(det(G“)G~1))
We can now extend the previous formulas (6.3) and (6.4) to obtain, setting
det(GW) = 2.,

C;’ — - To4i [ w Ze/w
/ (= Mo ORE) TR TS )y (dl) = log(TH) (65)

€
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and o
.Y iwgy () — D VN Ze' wa
B([[lgteie s Veem 2008 = (222 (6.6)
x,y e

T,y
Remark 12. The a-th power of a complex number is a priori not univo-
quely defined as a complex number. But log[det(I — P“))] and therefore
log(Z...,) are well defined as P() is a contraction. Then Zg,, is taken to be

exp(alog(Z. w)).

Remark 13. Note also that if ¢ = ¢ + i¢5 is the complex Gaussian free field

associated with e,

Eow _ G Ity CAE i
Eo(e : ).
Z,

To simplify the notations slightly, one could consider more general energy
forms with complex valued conductances so that the discrete one form is in-
cluded in €’. But it is more interesting to generalize the notion of perturbation

of P into P“) as follows:

Definition 1. A unitary representation of the graph (X, E) is a family of
unitary matrices [U*¥], with common rank dy;, indexed by E©, such that
U] = Uy~

We set P(U) = P® U (more explicitly [P(U)}Z:Z = Py [U=Y))).

Similarly, we can define C(V) = %P(U), VW = (1 - PO qU) =
‘1U+(U). One should think of these matrices as square matrices indexed by X,
whose entries are multiples of elements of SU(dy).

One forms define one-dimensional representations. The sum and tensor
product of two unitary representations U and V' are unitary representations

are defined as usual, and their ranks are respectively dy + dy and dydy .

Definition 2. Given any based loop [, if p(I) > 2 and the associated discrete
based loop is & = (£1, 2, -..,&p), set Tu (1) = %TT(H USé+1) and (1) = 1
if p(l) = 1.

For any set of loops £, we set 7(£) = [, Tv(1).

Remark 14. a) |ty (1)] < 1.

b) 7y is obviously a functional of the discrete loop ¢ contained in I°.

¢) () = 1if & is tree-like. In particular it is always the case when the
graph is a tree.

d) If U and V are two unitary representations of the graph, 7y v = 7v + 7v

and Tygy = TUTV-

From b) and c¢) above it is easy to get the first part of
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Theorem 3. i) The trace Ty (1) depends only on the canonical geodesic loop
associated with the loop &, i.e. of the conjugacy class of the element of
the fundamental group defined by the based loop &.

it) The variables Ty (1) determine, as U wvaries, the geodesic loop associated

with [.

Proof. The second assertion follows from the fact that traces of unitary repre-
sentations separate the conjugacy classes of finite groups (Cf [44]) and from
the so-called CS-property satisfied by free groups (Cf [53]): given two ele-
ments belonging to different conjugacy classes, there exists a finite quotient
of the group in which they are not conjugate.

Let us fix a base point zp in X and a spanning tree 7. An oriented edge
(x,y) which is not in T defines an element -, , of the fundamental group
Iy, with vy, = 7, . For eny edge (u,v) € T, we set 7,, = I. For any
discrete based loop | = (21, %2, ...,%p), Set Vi = Vay w9 Vap_1,2p Vap,z:- LheN,
if two based loops I3 and [y define distinct geodesic loops, there exists a
finite quotient G = I,/ H of I';, in which the classes of their representatives
~i, are not conjugate. Denote by 7 the class of v in G. Then there exists a
unitary representation p of G such that Tr(p(vy,) # Tr(p(yi,). Then take
Usy = p(Vy,)- We see that 7y (l1) # Tu(l2).

Again, by an argument similar to the one given for the occupation field,

we have:
P (o — 1) = E:wp PW) — )2t — exp(t(P —I))%.
Integrating in ¢ after expanding, we get from the definition of u:

1,1
1) — 1)du( ~[—Tr((PY) Tr((P)")).
0 =ty = 3 ST - TP
We can extend P into a matrix PJiv) = P® I, indexed by X x {1,...,dy}
by taking its tensor product with the identity on R%v.

Then:

—_

1 o0
00 = @) = 7o 3 TP = T (0
Hence, as in the case of the occupation field
1 1
ﬂMWWWF@mmw@WMJW:@mmwmwmmw»

as det(G ® Iy,,) = det(G)%
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Then, denoting Z. 7 the (%)—th power of the determinant of the (| X | dy, | X| dy)
matrix G(Y) (well defined by remark 12), the formulas (6.5) and (6.6) extend

easily to give the following

C;’y _ ’ _ —~ ,
Proposition 23. a) f(eZ Nowlog(e, ) =20 =A0)le Ly 1y (dl) = log(ZEZ;U)_
b B([, , [So|Vew(Eadem TOL-AE 1y (£,)) = (2 ),

z,y

Let us now introduce a new

Definition 3. We say that sets A; of non-trivial loops are equivalent when
the associated occupation fields are equal and when the total traversal num-
bers >, 4. Nuy(l) are equal for all oriented edges (z,y). Equivalence classes
will be called loop networks on the graph. We denote A the loop network
defined by A.

Similarly, a set L of non-trivial discrete loops defines a discrete network

characterized by the total traversal numbers.

The expectations computed in 6.6 determine the distribution of the net-
work L, defined by the loop ensemble L,. We will denote B¢ “(l) the

variables ,
Cy / ~
eE Ny () log(g72) =2 (A —Ae)loti fiw

x

and B®¢“(L,) the variables

/ C! . / —
H B&° ,w(l> _ H[Cquy ezwm,y]Nm,y(La)e—Z()\I_)\m)ﬁa )

l€Lq zy Y

More generally, we can define B4¢ V(1) and B“¢"U(L,) in a similar way
as B¢ “ (1) and B¢ (L), using 7¢/(1) instead of e’ /1. Note that for each
fixed e, when U and ¢’ vary with % <1 and ) = ), linear combinations of
the variables B¢V (L,) form an algebra as B&¢1:U1 Be¢2.Uz — Bee12, 18Uz

’ ! A ’
with C°1.2 = % . In particular, B¢¢1:w1 Be:e2w2 — Be€lzwitws,

Remark 15. Note that the expectations of the variables B&¢“(L,,) determine
the law of the network £, defined by the loop ensemble L.

To work with u, we should rather consider linear combinations of the form
STA(BeUs — 1), with 2 A\; = 0, which form also an algebra.

Remark 16. Formulas (6.5) and (6.6) apply to the calculation of loop indices:
If we have for example a simple random walk on an oriented planar graph,
and if 2’ is a point of the dual graph X', w(®) can be chosen such that for

any loop I, fl w) is the winding number of the loop around a given point 2’
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of the dual graph X'. Then e'™ >ieca J: “* s a spin system of interest. We
then get for example that

1 27 (="
, - _ 2ruw'® ) ~y—1
u(/lwz # 0) _27r/0 log(det(G G™))du

and hence

PO | /l W] = 0) = e I loa(der(@m

lela

’
N a=1))du

Conditional distributions of the occupation field with respect to values of the

winding number can also be obtained.



Chapter 7
Decompositions

Note first that with the energy e, we can associate a time-rescaled Markov
chain Z; in which holding times at any point x are exponential times of
parameters \;: Ty = x,, with 7 = inf(s fo v +——du = t). For the time-rescaled
Markov chain, local times coincide with the time spent in a point and the
duality measure is simply the counting measure. The potential operator then
essentially coincides with the Green function. The Markov loops can be time-
rescaled as well and we did it in fact already when we introduced pointed
loops. More generally we may introduce different holding time parameters
but it would be rather useless as the random variables we are interested in

are intrinsic, i.e. depend only on e.

7.1 Traces of Markov chains and energy decomposition

If D C X and we set F' = D¢, the orthogonal decomposition of the energy
e(f, f) = e(f) into eP(f — HE f) + e(HF f) (see proposition 17) leads to
the decomposition of the Gaussian free field mentioned above and also to
a decomposition of the time-rescaled Markov chain into the time-rescaled
Markov chain killed at the exit of D and its trace on F, i.e. x{ '

SF = inf(s fo 1p(Zy)du = t).

= /x\StF, with

Proposition 24. The trace of the time-rescaled Markov chain on F is the
time-rescaled Markov chain defined by the energy functional elF}(f) =
e(HE f) , for which

CHV =Coy+ Y CraCiylGP1™°

a,beD

A = = Y CoaCha[GP)

a,beD

and

71



72 7 Decompositions

Z, = ZeD elF}-
Proof. For the second assertion, note first that for any y € F,

[HT)? =1amy + 1p(x) Y _[GP]"PCyy,.
beD

Moreover, e(HY f) = e(f, HT f), by proposition 17 and therefore

M = e 1)) = e(lay, H 1)) = Ao = > Caa[H)2 = Ao (1 = pifY)
a€D

where pt' = S0 0 PE[GP1"Chyp = Y ep PEIHT]Z is the probability

that the Markov chain starting at z will first perform an excursion in D and

then return to x.

Then for distinct  and y in F,

O = e 1y, 1)) = —e(lgay, H 1)

=Coy+ Y CoalH)g = Coy+ Y CoaChy[GP]"".
a a,beD

Note that the graph defined on F' by the non-vanishing conductances Cif;}
has in general more edges than the restiction to F' of the original graph.

For the third assertion, note also that G1¥} is the restriction of G to F as
for all z,y € F, e{F}(G(Sy‘F, Lizy) = e(Goy, [HFl{z}]) = 1y3—y}. Hence the
determinant decomposition already given in section 4.3 yields the formula.
The cases where F' has one point was considered as a special case in 4.3.

For the first assertion note the transition matrix [P{#} J; can be computed

directly and equals

Py+ Y prvPolEipph = pry N prigPutthetc, .
a,beD a,beD
It can be decomposed according to whether the jump to y occurs from x or

from D and the number of excursions from z to x:

[PUE =N "(> " PIVPRPHMPy+ Y PrVPIEPY)
k=0 a,beD a,beD

=Y (> PIGPI™Cou)(Py + > PGP Chy).
k=0 a,beD a,beD

. clay . . Lo
The expansion of =% in geometric series yields exactly the same result.
AL

Finally, remark that the holding times of E,;{F} at any point x € F' are
sums of a random number of independent holding times of Z;. This random

integer counts the excursions from x to x performed by the chain Z; during
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the holding time of E,;{F}. It follows a geometric distribution of parameter
{F} 1 1 . . .
1 — py ’. Therefore, TS AT is the expectation of the holding

times of @{F} at .

7.2 Excursion theory

A loop in X which hits F' can be decomposed into a loop in F and its
excursions in D which may come back to their starting point.

More precisely, a loop [ hitting F' can be decomposed into its restriction
IFY = (&,7;) in F (possibly a one point loop), a family of excursions Vei ki
attached to the jumps of I{¥} and systems of i.i.d. excursions (VZah < ng,)
attached to the points of [{¥}. These sets of excursions can be empty.

Let u%" denote the bridge measure (with mass [GP]%?) associated with

D

(&
Set
1 a,b 1 a,b
ng = W[Cz,yé‘@‘f' Z Cr,aCoyip ]a Vg? = T( Z Cz,aChalip )
Czy a,beD AzPa a,beD

and note that v?, (1) = v (1) = 1.

Let pP be the restriction of p to loops in contained in D. It is the loop
measure associated to the process killed at the exit of D. We get a decomposi-
tion of s1— pP in terms of the loop measure p*} defined on loops of F' by the

trace of the Markov chain on F', probability measures v/

.y O1L excursions in D
,

indexed by pairs of points in F' and v? on excursions in D indexed by points
of F. Moreover, conditionally on {3, the integers ng, follow a Poisson distri-
bution of parameter )\;_F}?i (the total holding time in &; before another point
of F is visited) and the conditional distribution of the rescaled holding times
in & before each excursion Wéi is the distribution f,, 7 of the increments of
a uniform sample of ng, points in [0 7;] put in increasing order. We denote
these holding times by 7 , and set | = A(IF}, (7¢, ¢:,1), (n&,'yg_,?iyh)).

Then p — pP is the image measure by A of

{FY g iF} D A [)‘g}?i]k k [, D1®k( .k ~
H (dl ) H(Vfiafi+1 )(d/yfivfﬂrl) H e " Z Téngl [Vz ] (d’}/& )ﬂk,ﬂ (dTi7h)'
- !
Note that for x,y belonging to F', the bridge measure u*¥ can be decom-

posed in the same way, with the same excursion measures.
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The one point case and the excursion measure

If F is reduced to a point xg, and x vanishes on D = {z(}¢, the decomposition

is of course simpler.
First, Azy = >, Cao,a + Kz and )\g{gi‘)} = Ko Then,

x x a ZCI ,a Rz
pioo} = Z PGP Cay = = s =1 )\—0,
Lo o

a,beD

as C_,, is the killing measure of e” and therefore its GP potential equals 1.

{70} ig a trivial one point loop with rescaled lifetime 7 = Two 2ﬂ = 1l1—{010}
o —Pzg
and the number of excursions (all independent with the same distribution

piﬁ”}c) follows a Poisson distribution of parameter x,,7 = )\molAﬂ”".

. . b
The non-normalized excursion measure p© = (Agy—Fao VA = 34 yep Cro,aChaoliD

verifies the following property: for any subset K of D,

pP ({7, 3(K) > 0}) = Cap,o (K).
Indeed, the lefthand side can be expressed as

D CapaCoag [HEGP1 =3~ Coy o[ H 1) = €P(1, H 1),
a,beD a€D

It should be noted that p” depends only of P (i.e. does not depend on ).

Proposition 25. a) Under pP, the non-normalized hitting distribution of
any K C D is the eP-capacitary measure of K. The same property holds
for the last hitting distribution.

b) Under pP(dy), the conditional distribution of the path v between Ty (7)
(the first time in K) and Lk () (the last time in K), given yr, and vy,

1 VT VL

15 —[GD]WTK_WLK D

Proof. a) By definition of p”, the non-normalized hitting distribution of K
is expressed for any z € K by >, e p Cg,aC,ag [GP-KjacC, [GP]*b =
Z(weD Ciro.a[GP~E]%¢C.. .. Cpy.ara € D is the killing measure of e and
[GP=K]ecC, , the eP-balayage kernel on K. The case of last hitting dis-
tribution follows from the invariance of p” under time reversal.

b) Indeed, on functions of a path after Tk,

ab _ D—Kja,c z,b
Hp = E Cao,alG ] ¢,z p
a,ceD,ze K

and therefore on functions of a path restricted to [Tk, Lk, pP equals:
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Z Z GD K]ac c,zMEbe,mo

zeK a,b,ceD

= > ) CopulGPTEIC i CralGP TR Cl .

z,teK a,b,c,deD

Remark 17. This construction of p” can be extended to transient chains on
infinite spaces with zero killing measure. There exists a unique measure on
equivalence classes under the shift of doubly infinite paths converging to
infinity on both sides, such that the hitting distribution of any compact set
is given by its capacitary measure (Cf [14], [58], [48], and the first section of
[55] for a recent presentation in the case of Z¢ random walks). Proposition
25 holds also in this context.

Following [55], the set of points hit by a Poissonian set of excursions of

intensity ap” can be called the interlacement at level a.

0 . .
GIU = can of course be decomposed in the same way, with the

The law
same conditional distribution given 170, Recall that by proposition 9, 10
follows an exponential distribution with mean G*0-*°,

Ego follows a I'(a, G*o*0) distribution, in particular an exponential dis-
tribution with mean G*°*° for &« = 1. Moreover, the union of the excursions
of all loops of £, outside zy has obviously the same Poissonian conditional
distribution, given EZ" = s than p and “GM;—?, given 1% = s. The set of
excursions outside xy defined by the %—distributed bridge and by £; are

therefore identically distributed, as the total holding time in xg.

Remark 18. Note finally that by exercise 13 the distribution of £;/£P can

be recovered from a unique sample of £ by splitting the bridge according

Gwo £
to an independent sample U; of Poisson — Dirichlet(0, ), more precisely,
by splitting the bridge (in fact a based loop) I into based subloops ||,

with o; = inf(s fo Ligoy(ls)ds = PO Uﬂ\zo).

,Tig1])

Conversely, a sample of the bridge could be recovered from a sample of the
loop set £1/L¥ by concatenation in random order. This random ordering can
be defined by taking a projective limit of the randomly ordered finite subset

of loops {l; »} defined by assuming for example that l:zn > 1

7.3 Conditional expectations

Coming back to the general case, the Poisson process i = {1} 1 e L.}
has intensity ¥} and is independent of Lb.
Note that EEYF} is the restriction of Z; to F.
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If x is carried by D and if we set ey = e+ |[2(,, and denote [ey ] 17

by elFx} we have

O = Chy + D CraChy[GR10, pld = N pr[GRI» G,
ab a,beD
and A = ), (1 — pif™),
More generally, if e is such that C# = C on F' x F, and A = \¥ on F

we have:

CHFY = Coy + Y CELCF G0, P = 3 pRe[GHP)bCE,
a,b a,beD
and AFUFY — )\ (1 — pff ),
If x is a measure carried by D, we have:

E(e=(Eax)|£1F}) = E(e’<‘:57><>)( 11 [/ e TOYD ()| New (£E7)
z,yeF

X H ATHLLTNT [(em T —1)2 (dv)

zeF
F, —
(2R T (st ] DA
ZeD z,yeF Clvy zeF

(recall that LEYF} is the restriction of Z; to F). Also, if we condition on the

set of discrete loops D[,iF 4
_ Z b C{F’X} /\{F}
—(Lax)|pLiFty = (25 a ZTy N, (£87) Az aNL(eiFH+1
B (EADel) = (FE1CT] 17 ey I )
r,ycF z,y xeF 7'\T

where the last exponent N, + 1 is obtained by taking into account the loops
which have a trivial trace on F' (see formula (6.2)).

More generally we can show in the same way the following

Proposition 26. If C#* = C on F x F, and A\ = \# on F, we denote Bee”

the multiplicative functional

# ~
H[Q]Nr,yef EmED lr()‘j*/\r)_

x,Y Yy
Then,
oot Zo#D 1, ciF {r} #{F}_\{F}fz
E(B®" | = | (1] [C{_%;}]Nm,ywa VT A

r,ycF z,y zeF

and
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#{F} {F}
e | ppAFH _ (2P 1a 11 Gy " N, (i) 11 Ao N (ei 4
E(B |D£a )_ [ ZeD ] ( [ C{F} ] v [)\#{F}] .
z,yeF z,y zeF \T

These decomposition and conditional expectation formulas extend to in-
clude a current w in C*#. Note that if w is closed (i.e. vanish on every loop)

in D, one can define w” such that [Ce™]{F} = C{F}e¢" Then

Zew = ZeD Ze{F},wF.

)

The previous proposition implies the following Markov property:

Remark 19. If D = D1 U D5 with Dy and D5 strongly disconnected, (i.e. such
that for any (z,y,2) € D1xDyx F, Cy , and Cy, ,C,, ., vanish), the restrictions
of the network £, to D; U F and Dy U F are independent conditionally on
the restriction of £, to F.

Proof. This follows from the fact that as Dy and D, are strongly discon-
nected, any excursion measure uf?y or pf from F into D = Dy U D5 is an

excursion measure either in Dy or in Ds.

7.4 Branching processes with immigration

An interesting example can be given after extending slightly the scope of
the theory to countable transient symmetric Markov chains: We can take
X=N—-{0},Cppy1=1foralln>1 k,=0forn>2and k; =1. Pis
the transfer matrix of the simple symmetric random walk killed at 0.

Then we can apply the previous considerations to check that EAZ is a
branching process with immigration.

The immigration at level n comes from the loops whose infimum is n and
the branching from the excursions to level n+ 1 of the loops existing at level
n. Set F, ={1,2,...,n} and D,, = F¢.

From the calculations of conditional expectations made above, we get that

for any positive parameter -y,

6:1]71, e[)\ii'niflv’“sn}_k

E(e7Ea | L1}y = B(e~be fn-thzn—

n—1 a

-

([,cf"*l]” denotes the occupation field of the trace of £, on D,,_; evaluated
at n).

From this formula, it is clear that L',AZ is a branching Markov chain with
immigration. To be more precise, note that for any n,m > 0, the potential

operator V" equals 2(nAm) that \,, = 2 and that G'! = 1. Moreover, by the
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Ln _ 1
vo1 T 144"
For any n > 0, the restriction of the Markov chain to D,, is isomorphic to the
() = 1)\{F}—1and

generalized resolvent equation, Gghr oy = =Gtr—-Ggh 176‘ ~5, SO that G

original Markov chain. Then it comes that for all n, py

ALFwvOnsad o 1 2041 o that the Laplace exponent of the convolution

T+y 1+
semigroup v; defining the branching mechanism )\{F" 1700} )\;{i"fl}equals
% -1 = m = f (1 — e 7%)e*ds. It is the semigroup of a compound

Poisson process whose Levy measure is exponential.

The immigration law (on R*1) is a Ezgma distribution I'(a, Gb1) =
I(,1). It is the law of £, and also of [C5"*]" for all n. > 1.

The conditional law of EZH given EZ is the convolution of the immigration
law I'(«, 1) with Vin

Exercise 28. Alternatively, we can consider the integer valed process NV, (EéF"})—l—

1 which is a Galton Watson process with immigration. In our example, we find

the reproduction law 7(n) = 27"~ for all n > 0 (critical binary branching).

Exercise 29. Show that more generally, if C,, 11 = |

175", for n > 0 and

k1 = Lwith 0 < p < 1, we get all asymetric simple random walks. Show
that \,, = % and G1! = 1. Determine the distributions of the associated

branching and Galton Watson process with immigration.

If we consider the occupation field defined by the loops whose infimum
equals 1 (Le. going through 1), we get a branching process without immi-
gration: it is the classical relation between random walks local times and

branching processes.

7.5 Another expression for loop hitting distributions

Let us come back to formula 4.9. Setting F' = F} U F5, we see that this result
involves only 17} and e!F} i.e. it can be expressed interms of the restrictions

of the loops to F.

Lemma 1. If X = X; U X5 with X1 N X5 =0,

det(G) &
o )~ 20 gL+ o)

with Hyy = HX?|x, and Hy = HX |, .

Proof.
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T O T
det(GX1) det(GX2)

—G*2Cx, v x, Ix,xx,
Ix, xx, —Hio -
= (e (P~
( 7H21 IX2 x Xo
The transience implies that either His1, either Ho1l is strictly less than

1, and therefore, HioHo1 and HioHo1 are strict contractions. From the ex-

pansion of —log(1 — x), we get that:

log (det(Gi?§Eiiz(GX2)) - ; %TT {(—221 _Igm)k] '

The result follows, as odd terms have obviously zero trace.

Noting finally that the lemma can be applied to the restrictions of G to
Fy UF;,, Fy and F5, and that hitting distributions of F; from F5 and Fs from
F are the same for the Markov chain on X and its restriction to F} U Fy, we

get finally:

Proposition 27. If Fy and F5 are disjoint,

~

pIF)ITE) > 0) = 3 S Tr([HiaHorl* + [Hio i)

with Hio = HF2|F1 and Hay = HF1|F2-

Exercise 30. Show that the k-th term of the expansion can be interpreted

as the measure of loops with exactly k-crossings between F; and F5.

Exercise 31. Prove analogous results for n disjoint sets F;.






Chapter 8
Loop erasure and spanning trees.

8.1 Loop erasure

Recall that an oriented link g is a pair of points (g7, ¢") such that Cy; =
Cy- g+ # 0. Define —g = (g7, 97).

Let p” be the measure induced by C on discrete self-avoiding paths
between x and y: ,U/i’y(l',l‘g, s T=1,Y) = Cp 2,Co wer-Co 1y

Another way to define a measure on discrete self avoiding paths from x
to y from a measure on paths from x to y is loop erasure defined in section
3.1 (see also [18] ,[41], [19] and [33]). In this context, the loops, which can be
reduced to points, include holding times, and loop erasure produces a discrete
path without holding times.

We have the following:

Theorem 4. The image of u®Y by the loop erasure map v — vBF is Wp e de-

fined on self avoiding paths by upw(n) = ui’y(n)% = p" (1) det(G(yx (n})

(Here {n} denotes the set of points in the path n) and by pgg(0) = 6; G x

Proof. Set n = (1 = z,22, ..., =y) and Ny, = (T, ..., Tpy ), for any m > 1.
Then,
prv (PP =) = Y [P P u (v PP = o)
k=0

where u”{”;}y denotes the bridge measure for the Markov chain killed as it hits

x and 0 the natural shift on discrete paths. By recurrence, this clearly equals

det(G)

z px z} 22 n—11°1Tn—1 PTn_1 N -1 _
VP VIV VI g P TN = 1 )

#

as

wim-yqen = U = Pllgnyex o) _ det(Virmml) _ det(Glm) )
Tm det([([ — P]|{UWL71}CX{UWL71}C) det(V{Wm}c) det(G{Um}c)

Tm

forallm<n-—1.

81
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Remark 20. It is worth noticing that, also the operation of loop erasure clearly
depends on the orientation of the path (as shown in the picture below), the

distribution of the loop erased bridge is reversible.

Also, by Feynman-Kac formula, for any self-avoiding path n:

= N det(Gy, x
/6 STy ™Y (dy) = %u () = det(Gx)myx iz (1)
det(GY")

_ 3Gttty
~ det(G ) HpEi:
UG 1} {n}

Therefore, recalling that by the results of section 4.3 conditionally on 7,
51/51{77}“ and E‘l{n}c are independent, we see that under p*¥, the conditional
distribution of 5 given vB¥ = 5 is the distribution of £; — EA}"}C i.e. the
occupation field of the loops of £; which intersect 7.

More generally, it can be shown that

Proposition 28. The conditional distribution of the network 5_7 defined by
the loops of v, giwven that vBE = ), is identical to the distribution of the
network defined by El/ﬁi"}c i.e. the loops of L1 which intersect 0.

Proof. Recall the notation Z, = det(G). First an elementary calculation

using (2.8) shows that p%"(e" fv“’l{vsgzn}) equals

El &Gy el Ag; )
,y 1 - €ir€it1
( ere=n ]I Certon Aél]

ClsChraCh iy i L, (¥ oad)
s n-1Y i), um,y( Y oW Nu,v(‘c'w)e Y 1yp5_ )
CI,IQClel,CEg"'CCEnfl,y ¢ g}[cu,v ] {’Y 77}

/ ~

(Note the term ei<A ~AA) can be replaced by [T, (3 )N M+,
Moreover, by the proof of the previous proposition, apphed to the Markov

chain defined by €’ perturbed by w, we have also
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) ) Zor
pe (e’ fvwl{vBE:n}) = C;,Izcilbl,zz"'cflﬂn—layez fan .
[e1{n°w
Therefore,
() "R Z Z
2 (T[S0 i Vo (£2) =N =AT) | BB _ g ZelneZerw
et (T IEet e WP =) = 22 :
uFv v e@le/ 111w

Moreover, by (6.6) and the properties of the Poisson processes,
]E(H[C:"” eiwu,v]Nu,v(£1/££"}6)6*<)\/7A,E172£n}c>) _ ZetmeZew
ZeZeninme

utv u,v

It follows that the joint distribution of the traversal numbers and the occu-

pation field are identical for the set of erased loops and £/ Ei"} ~

The general study of loop erasure which is done in this chapter yields the
following result when applied to a universal covering X. Let G be the Green

function associated with the lift of the Markov chain.

Corollary 5. The image of u*Y under the reduction map is given as follows:
If ¢ is a geodesic arc between v and y: p™Y ({&,&% = ¢}) =1 Ce; cirn det(é‘{c}x{c}).

Besides, if T and ¥y are the endpoints of the lift of ¢ to a universal covering,
HV({E, €7 = }) = G g,
Note this yields an interesting identity on the Green function G.
Exercise 32. Check it in the special case treated in proposition 13.

Similarly one can define the image of P* by BE and check it is given by

PEE(M) = 07, Caya-Cpy an K, det(Gl ()~ Ax(n}—2)
det(G)

= 07, Corez oyt oty

for n = (z1, ..., xn, Q).
Note that in particular, P p((2, 4)) = V7 (1 = 32, P)) = k.G".
Slightly more generally, que can determine the law of the image, by loop
erasure path killed at it hits a subset F', the hitting point being now the end
point of the loop erased path (instead of A, unless F' is not hit during the
lifetime of the path). If € D = F¢ is the starting point and y € F'4, the
probability of n = (z1, ..., Zp, y) is

det(GP)
T D _ ST
02, CaroaCopy0, Oy AU (G s () —y) = 511Czl,m---cznfl,zncxmym
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Fig. 8.1 Wilson’s algorithm

8.2 Wilson algorithm

Wilson’s algorithm (see [31]) iterates this last construction, starting with the
points x arranged in an arbitrary order. The first step of the algorithm is the
construction of a loop erased path starting at the first point and ending at
A. This loop erased path is the first branch of the spanning tree. Each step
of the algorithm reproduces this first step except it starts at the first point
which is not visited by the already constructed tree of self avoiding paths, and
stops when it hits that tree, or A, producing a new branch of the tree. This
algorithm provides a construction, branch by branch, of a random spanning
tree rooted in A. It turns out, as we will show below, that the distribution
of this spanning tree is very simple, and does not depend on the ordering

chosen on X.

This law is a probability measure P, on the set ST'x 4 of spanning trees
of X rooted at the cemetery point A defined by the energy e. The weight
attached to each oriented link g = (x,y) of X x X is the conductance and the
weight attached to the link (z, A) is k, which we can also denote by Cy a.
As the determinants simplify in the iteration, the probability of a tree 1" is

given by a simple formula:

sr(T) = 2. [] Ce (8.1)
ger
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It is clearly independent of the ordering chosen initially. Now note that, since

we get a probability

Ze Y. I] Cew J] me=1 (8.2)

TYeSTx,a (z,y)ET z,(x,A)ET
or equivalently
> w1l B-g—s
Y [oex AeZe
YeSTx,a (z,y)ET z,(z,A)ET z€e

Then, it follows that, for any e’ for which conductances (including ') are

positive only on links of e,

o T2 ) - e 2
x T ; -
(z,y)ET Py z,(z,A)ET PA HzEX )\z Ze

and

c '
ol TT =2 [ = ZZZG. (8.3)

(z,y)eT Coy o, (z,A)er " F ¢
Note also that in the case of a graph (i.e. when all conductances are equal
to 1), all spanning trees have the same probability. The expression of their
cardinal as the determinant Z, is known as Cayley’s theorem (see for example
[31]).
The formula (8.3) shows a kind of duality between random spanning trees
and £1. It can be extended to Ly, for any integer k if we consider the sum (in

terms of number of transitions) of k independent spanning trees.

Exercise 33. Show that more generally, for any tree T rooted in A,
P%T({T, TCT}H = det(GHT}—AX{T}—A)ngEdges(T) Ce, {T} denoting
the vertex set of T.
(As usual, Cy o = k. Hint: Run Wilson’s algorithm starting from the

leaves of T')

Exercise 34. Using exercise 3, prove Cayley’s Theorem: the complete graph

K, has n"~? spanning trees.
The following result follows easily from proposition 28.

Corollary 6. The network defined by the random set of loops Ly constructed
in this algorithm is independent of the random spanning tree, and independent
of the ordering. It has the same distribution as the network defined by the
loops of L.

Remark 21. Note that proposition 28 and its corollary can be made more

precise with the help of remark 18. The splitting procedure used there with



86 8 Loop erasure and spanning trees.

the help of an auxiliary independent set of Poisson Dirichlet variables allows
to reconstruct the set of loops £ /Eim} ’ by splitting the first erased loop
in the proof of the proposition. Iterating the procedure we can successively
reconstruct all sets £} /£ and finally £,/£8"". Then, by Wilson

algorithm, we can reconstruct £;.

Let us now consider the recurrent case.

A probability is defined on the non oriented spanning trees by the conduc-
tances: PG, ((7) is defined by the product of the conductances of the edges
of T normalized by the sum of these products on all spanning trees.

Note that any non oriented spanning tree of X along edges of E defines
uniquely an oriented spanning tree Ia(7) if we choose a root A. The orienta-
tion is taken towards the root which can be viewed as a cemetery point. Then,
if we consider the associated Markov chain killed as it hits A defined by the
energy form e{4}“  the previous construction yields a probability Pg{TA}C on
spanning trees rooted at A which by (8.1) coincides with the image of Pg by
Ia. This implies in particular that the normalizing factor Z ,,. is indepen-
dent of the choice of A as it has to be equal to (X resry [1(2 y1er Cypy)™ L.
We denote it by Z9. This factor can also be expressed in terms of the recur-
rent Green operator G. Recall it is defined as a scalar product on measures
of zero mass. The determinant of G is defined as the determinant of its ma-
trix in any orthonormal basis of this hyperplane, with respect to the natural
Fuclidean scalar product.

Recall that for any x # A, G(e; —ea) = 7%
fore, for any y # A, (g, —ea,G(ex —ea)) = [GIAT )7,

The determinant of the matrix [G{41], equal to Z?, is therefore also the

e’

+ G1AY ¢, There-

determinant of G in the basis {d, —da,x # A} which is not orthonormal with
repect to the natural euclidean scalar product. An easy calculation shows it

equals
det (<5y — Ga 0 — BA)gixs 2 T,y F A) det(G) = | X| det(G).

Exercise 35. Prove that if we set a,, (T) = H(z,y)eImO(T) Pj then Y e op o (T)
is proportional to A;, as xo varies in X. More precisely, it equals K\, with

K= 1-1272)\ This fact is known as the matrix-tree theorem ([31]).
xeX 7T

Exercise 36. Check directly that Z, is independent of the choice of x.

{=zo}°

Exercise 37. Given a spanning tree T, we say a subset A is wired iff the

restriction of 7 to A is a tree.
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a) Let €4 be the recurrent energy form defined on A by the conductances
C. Show that Pg,(A is wired) = ﬁ (Hint: Choose a root in A. Then
use exercise 33 and identity 8.2).

b) Show that under P%,, given that A is wired, the restriction of the
spanning tree of X to A and the spanning tree of A°U{A} obtained by rooting
at an external point A the spanning forest induced on A° by restriction of
the spanning tree are independent, with distributions respectively given by
PS4 and PEA.

¢) Conversely, given such a pair, the spanning tree of X can be recovered
by attaching to A the roots y; of the spanning forest of A° independently,
according to the distributions ECA, u € A

u€A Cyiu

8.3 The transfer current theorem

Let us come back to the transient case by choosing some root xg = A. As

by the strong Markov property, V¥ =Py (T, < 0o)V;?, we have g:z = “;—j; =
P, (T, < c0), and therefore
GTY

Por((2,y) €T) = Po(y/'" = y) = VI PPV (T = 00) = Cp y G7(1

G®x )

Directly from the above, we recover Kirchhoff’s theorem:

G‘T,y Gy,il)
o Gz,z) + Gyﬁy(l - Gy’y )]

= C%y(GI,m + GYY —2GY) = Cz7yKI7y)7(I7y)

PgT(i(x,y) €T)= CLy[GI’z(l

with the notation introduced in section 1.5, and this is clearly independent

of the choice of the root.

Exercise 38. Give an alternative proof of Kirchhoff’s theorem by using (8.3),
taking C; , = sCyy and Cj, , = Oy, for {u,v} # {z,y}.

In order to go further, it is helpful to introduce some elements of exterior
algebra. Recall that in any vector space F, in terms of the ordinary tensor
product ®, the skew symmetric tensor product v; A vy A ... A v, of n vectors
v1...v, 1s defined as \/% desn(*l)m(g)va(l) ®@ ... @ Vg(n)- They generate the
n-th skew symmetric tensor power of E, denoted E/". Obviously, Vo) Ao A
Vo(n) = (=1)"™@y; Avg A ... Avy,. If the vector space is equipped with a scalar

product (., .), it extends to tensors and (vy A va A ... Avp, V] AVL A AU =
det((vi, v})).
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The following result, which generalizes Kirchoff’s theorem, is known as the

transfer current theorem (see for example [30], [31]):
Theorem 5. P4, (+£1, ... £ &, € 1) = ([[F Ce,) det(K&% 1 <i,j < k).

Note this determinant does not depend on the orientation of the links.

Proof. Note first that if 7 is a spanning tree rooted in g = A and §; =
(xi—1,24), 1 < i < |X|—1 are its oriented edges, the measures §,, — 0z, ,
form another basis of the euclidean hyperplane of signed measures with zero
charge, which has the same determinant as the basis §,, — 0z,.

Therefore, Z?2 is also the determinant of the matrix of G in this basis, i.e.
Z0 = det(K%% 1 <i,j <|X|-1)

and

|X|-1
Sr(1) = (J] Ce)det(&* 1<ij<|X|-1)
1

= det(\/Ce, K5 /Ce, 1 < i,5 < |X|—1).

Recall that /Ce, K% | /Ce, = <O‘Z¢ [T |ag, >A7, where IT denotes the pro-
. . . . *T,Y 1 . _
jection on the space of differentials and that o, ¥ = :l:—\/a if (z,y) = £(n)
and = 0 elsewhere.
To finish the proof of the theorem, it is helpful to use the exterior algebra.
Note first that for any ONB ey, ..., e/x|_1 of the space of differentials, ITag =
> <o¢2|ej> ej and Py, (T) = det(<o¢2i|ej>)2 = <o¢21 A A OAZ‘X‘71|€1 A A e‘X‘_1>
Therefore

2

/\\X\—l A,.

]PGST(EM 3 agk S T)
2

= Y <a§1 A Nag, Nag, /\.../\afl‘x‘71|el/\.../\e‘X|,1>/\‘X‘71A7
Mh4150- M X | —1

where the sum is on all edges ng+1,...,7x|—1 completing &1,, ..., into a

spanning tree. It can be extended to all systems of distinct ¢ = | X| —1—k

edges 7' = {ny,...,n,} as all the additional term vanish. Indeed, an exterior

product of af vanishes as soon as they form a loop. Hence the expression

above equals:

SO e (o, A Naglei A Aei) <a;;,1 A Aagy feg A .. /\e%>)2
0 i <...<ig
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where the 7] are the indices complementing i1, ..., 4 put in increasing order

and g, ;, = (—1) D=k Recalling that the af form an orthonormal

k
base of A_, we see that the sum in 7’ of each mixed term in the square
vanishes and
2
Z <a;£ A A a;;|eir1 A A ei;> =1
,r]/
Hence we obtain finally:

* " 2 £ .
Z <a£1 VANRTRVAN a£k|ei1 VAN /\eik>/\k N = det(\/CgiK&,ﬁa ng 1<4,5< k)

i1 <tz <...<ig

It follows that given any function g on non oriented links,

G (e Zeer 9)) = %T(H(l + (€799 —1)leer)
3
|E|

=1+> Y I - 1P (£, £ € T)

k=1+&61#A+E6#. #1Lk

=1+ Z Z H(e*g(&) —1)det(KS% 1 <i,j < k)

k& #AE # AL
=14 Tr((Mg(e-s—1)K)") = det(I + KMc(e-o_1))

and we have proved the following

Proposition 29. E¢(e” 2eer 98)) = det (] — M\/C(lfe*Q)KM\/C(lfe*Q))'

Here determinants are taken on matrices indexed by F.

Remark 22. This is an example of the Fermi point processes (also called de-
terminantal point processes) discussed in [51] and [47]. It is determined by
the matrix M KM ,z. Note that it follows also easily from the previous
proposition that the set of edges which do not belong to the spanning tree
also form a Fermi point process defined by the matrix I — M zKM /.

In particular,under Pgr, the set of points = such that (z, A) € T (i.e. the
set of points directly connected to the root A) is a Fermi point process the
law of which is determined by the matrix Q™Y = \/k,G™Y /K.

For example, if X is an interval of Z, with C,, = 0 iff [z —y| > 1, it is
easily verified that for x < y < z,

e _ Q1Q"
Qv
Then using the remark following theorem 6 in [51], we see that the spacings

of this point process are independent.
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The edges of X which do not belong to the spanning tree form a deter-
minantal process of edges, of the same type, intertwinned with the points

connected to A.

A consequence is that for any spanning tree T', if 7 denotes M; ) (the
multiplication by the indicator function of T'), it follows from the above, by

letting g be m1¢pey, m — oo that
sr(T) = det((I — KMc)(I — mp) + mp) = det((I — KM¢)exe).

Another consequence is that if ¢’ is another energy form on the same graph,

!

e Czay
sr( ] o) =det(] = M o KM jo=cv)-

(z,y)ET z,y

On the other hand, from (8.3), it also equals (3 rcgry [1(s1er Coy) 2 =
ZO

& so that finally

O
ZO = det(I = M o= KM jo=7)-

Note that indicators of distinct individual edges are negatively correlated.

More generally:

Theorem 6. (Negative association) Given any sets disjoint of edges E1 and
Es,
Por(ErUEy CT) < Pyr(Eyr CT)Por(Ex CT).

Proof. Denote by K# (i, j) the restriction of K# = (\/CcK$"\/C,, &,m € E)
to Ez X E]‘. Then,

Per(BAUE, CY) det(K#) _ det ({ I FD
Por(Er CT)PGp(Ey CT)  det(K#(2,2)) det(K#(2,2)) L

I\il»—l

with F = K#(1,1)"2 K#(1,2) K#(2

) )

2)”
. I F I F
Finally, note that log(det ([F* 7 }) = Tr(log ([F* I } ))

= =20 g Ir(FF)F) <0.

Remark 23. Note that it follows directly from the expression of Psr and from

the transfer current theorem that for any set of disjoint edges &1, ..., &k:

ak

27 =
[ ] 8051 acfk

[20]7! = det(Ke, ¢, 1 < i,5 < k).

Proof. Note that
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k
ok

(27! = Coy = 2] ] Ce.l " Por(£&1, .., £ €T).

0C¢, ...0C¢, 3051 acgk TEX:STX {zly_}IGT y = 1:[ ST

This result can be proved directly using for example Grassmann variables
(as used in [25]). The transfer current theorem can then be derived immedi-

ately from it as shown in the following section.

8.4 The skew-symmetric Fock space

Consider the real Fermionic Fock space I'""(H*) = ©H* " obtained as the
closure of the sum of all skew-symmetric tensor powers of H* (the zero-th
tensor power is R).

For any x € X, the anihilation operator ¢, and the creation operator c,

are defined as follows, on the uncompleted Fock space GH* ":

Co(p1 A e A i) = (—1)% 1ZGuk TVHL A oo A o1 A et A e A i

(L A e Aig) =0 A A oo A iy

Note that cj is the dual of ¢, and that [c,,c;]T = G(x,y) with all others
anticommutators vanishing.

We will work on the complex Fermionic Fock space Fr defined the tensor
product of two copies of I'*(H*). The complex Fock space stucture is de-
fined by two anticommuting sets of creation and anihilation operators. Fpg
is generated by the vector 1 and creation/anihilation operators ¢y, ¢k, dy, d
with [z, c;]t = [de,dj]T = G(2,y) and with all others anticommutators
vanishing.

Anticommuting variables 97, Em are defined as operators on the Fermionic

Fock space Fr by:
YV = V2(d, + ¢) and P = V2(—c, + d¥).

Note that Ew is not the dual of v,, but there is an involution J on Fr such
that 1) = J¢*J.

J is defined by its action on each tensor power: it multiplies each element
in H*\™ @ H*? by (—1)™.

Exercise 39. Show that in contrast with the Bosonic case, all these operators

are bounded.

Simple calculations yield that:
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<1,wm...wl$yl...ay"1> = S 2" det(G(as, y5))
and that

_det(G)

<1,e><p(%e(¢ﬁ) - %6'(¢’E))l>f ~ det (@)

Indeed, if e; is an orthonormal basis of H*, in which ¢’ is diagonal with
eigenvalues p;, the first side equals <1, [LA+ %(1 — i) (¥, ;) <E, ei> 1>}_F =
YoM +20 i (= X)..(L = X) = [T A In particular, for any positive

measure y on X,

<1,e><p(—zz:xmwz@z)1>; = i%(gj) = <1,eXp(—zZ:xM¢””)1>

We observe a ”Supersymmetry” between ¢ and : for any exponential or

-1

FB

polynomial F'
<17 F(d)a - ¢E)1>]:B®]:F = F(O)

(1 denotes 1(p) ® 1(5y)

Remark 24. On a finite graph, ¢, Ez and the whole supersymmetric complex
Fock space structure can also be defined in terms of complex differential forms
defined on CX!, using exterior products, interior products and De Rham
x operator. This extension of the Gaussian representation of the complex
Bosonic Fock space is explained in the introduction of [25]. It was used for

example in [28].

Note that

B J[ o2 [ %= 2O <1,exp<3e<w,$>1e’(¢,$>>1>F .

- ’
(z,y)eT %,y xz,(z,0)ET Ko det(G ) 2 2

The Transfer Current Theorem follows directly, by calculation of

o — —
PST((xiayi) €T)= Hcﬂci,yi 9C" o |C':C <1anP(%€(¢a¢) - %6/(¢a¢))1>f )

T1,Y1" TkrYk
= L2 e (L ([T w7 @ ~ 50 )
= det(K o) v) T G,y

The relations we have established can be summarized in the following

diagram:
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(Wilson Algorithm)

Loop ensemble £, — Random Spanning Tree
! !
Free field ¢, ¢ +—> Grassmann field 1, ¢

(” Supersymmetry” )

NB: ¢ and ¢ can also be used jointly to represent bridge functionals (Cf
[25]): in particular

/ F (Dt (dl) = (1,650, F (60 — 6)1) = (1,050, F(6 — b)), .






Chapter 9
Reflection positivity

9.1 Main result
In this section, we assume there exists a partition of X: X = XT U X,

X+t N X~ =@ and an involution p on X such that:

a) e is p-invariant.
b) p exchanges X* and X ™.

¢) The X x X+ matrix CF, = C; (), is nonnegative definite.
Then the following holds:

Theorem 7. i) For any positive integer d and square integrable function &
m
o + (d) +
o(Lg 2 € XT)Vo(Ngy,z,y € XT),

E(®(La)P(p(La))) > 0.
ii) For any square integrable function X of the free field ¢ restricted to X+,
Eo(2(6)X(p(9))) > 0.
iii) For any set of edges {&} in X+ x X T the matriz,
Kij=Psr(& eT,p{j €T)—Psr(& € T)Psr(§; €T)
s nonpositive definite.

Proof. The property ii) is well known in a slightly different context and is
named reflexion positivity: Cf for example [50], [13] and their references. Re-
flection positivity is a keystone in the bridge between statistical and quantum
mechanics.

To prove i), we use the fact that the o-algebra is generated by the algebra
of random variables of the form @ = 37 X; B}/ with C(%) = C and w; = 0

95
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except on Xt x X+, C) <Con Xt x X+ Ae&) =Xon X~ and \(&) >\
on XTt.

Then

— Y n6€jqgwi—p(wg 2\ Zejq’wj7 il
E(@(ﬁd)é(p(ﬁd))) _ E(Z )\j)\qB(;i)J’q o( )) = Z)\J)\q(’?p())d

with e;, = e; + p(eq) — €.

We have to prove this is non negative. It is enough to prove it for d = 1,
as the Hadamard product of two nonnegative definite Hermitian matrices is
nonnegative definite.

Let us first assume that the nonnegative definite matrix C* is positive
definite. We will see that the general case can be reduced to this one.

Now note that Z, 1 ,(e,)—ew; —p(w,) 15 the inverse of the determinant of a
positive definite matrix of the form:

. A(j) —C* ]
D B - *
(.7 Q) [_Ci A(q)
with [A()ue = A8, — OS2 and CE, = C, -
It is enough to show that det(D(j, k))~! can be expanded in series of products
N . (2
22 @n(3)qn (k) with > |gn (5)]” < occ.

As
D(j,q) =
+11 +1—1 A OoE1-2 _ 11
{[Co] [021%][[0] Af(?)[C] [Oi]%A@g*[Ci]%H[Co] [Cg]%]

the inverse of this determinant can be written

det(CF) 2 det(F()) det(F(q)*) det(I — { 0 F(j)})l
with F(j) = [Ci]%A(j)il[Ci]%, or more simply:

FG) = den(A() ™ der(Ala)) dentr = | 0 F |
Note that A(j)~! is also the Green function of the restriction to X of
the Markov chain associated with e;, twisted by w;. Therefore A(j)~1C* =
[CE]~2 F(§)[C*]? is the balayage kernel on X~ defined by this Markov chain
with an additional phase under the expectation produced by w;. It is therefore
clear that the eigenvalues of the matrices A(j)~'C* and F(j) are of modulus

less than one and it follows that

{F((;)* F(()j)} - [? é} {F(g)* F(()j)}



9.1 Main result 97

is a contraction. We can always assume it is a strict contraction, by adding
a killing term we can let converge to zero once the inequality is proved.

If X+ has only one point, (1 — F(j)F(q)*)~ = ZF(;)_”W_n which
allows to conclude. Let us now treat the general case.

For any (n,m) matrix N, and k = (k1,...,km) € N™ 1 = (I3,...,1,) € N
let N{®% denote the (|k|,|I|) matrix obtained from by repeating k; times
each line 7; then [; times each column j.

We use the expansion
1
det([ — M)‘l =1 + E WP(?T([M {k’k})

valid for any strict contraction M (Cf [56] and [57]).
Note that if X has 2d points, if we denote (k1, ..., kag) by (k*, k™), with
k= (klv "'7kd> and k™~ = (kd+17 "'7k2d)7

[F((()])* F(()j)]{k,k} _

0 P57
[F(q)] o+ 0

But the all terms in the permanent of a (2n,2n) matrix of the form

{ BP* 61] vanish unless the submatrices A and B are square matrices (not
necessarily of equal ranks). Hence in our case, we necessary have |k™| = k™|,
so that, A and B are (n,n) matrices.

Then, the non zero terms in the permanent come from permutations ex-
changing {1,2,...,n} and {n+1, ...,2n}, which can be decomposed into a pair

of permutations of {1,2,...,n}. Therefore:

0 A

Per( {B* 0

]) = Per(A)Per(B")

which concludes the proof in the positive definite case as

Per(B*) =Y [IBiriy= D_ [[ B = Per(B).

TES, 1 TES, 1
To treat the general case where C* is only nonnegative definite., we can
use use a passage to the limit or alternatively, the proposition 26 (or more
precisely its extension including a current) to reduce the sets X and X~ to
the support of C*.
To prove ii) let us first show the assumptions imply that the X+ x X T

matrix Giy = G**W) is also nonnegative definite. Let us write G in the form
[ A —C*

-1
ot A ] with A = M) — C. Then
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R B I —ATECEAE] T [ATE 0
L0 Az [-AECctAE I 0 A%
A"3C*A"2 is non negative definite and as before, we can check it is a
contraction since A7'C¥ is a balayage kernel.
Note that if a symmetric nonnegative definite matrix K has eigenvalues

i, the eigenvalues of the symmetric matrix £ defined by
I -K]7' [DE
-K I " |ED
are easily seen (exercise) to be 1—7% Taking K = A~ 2C*A~z_ it follows
that the symmetric matrix £ , (and in our particular case G* = A_%EA_%)

is nonnegative definite.

To finish the proof, let us take X of the form > \;e!{?Xs). Then

Eo(Z(@)T(p(9) = 3 AAE (el Hr0x)

= Z )\je% <X17G++Xj>)\ke% (xa:G"xa) o (x5:GF xa)

(using that G* is symmetric).

As G¥ is positive definite, we can conclude since e (.6 xa) = R, (elwxidefwxa))y,
w denoting the Gaussian field on X+ with covariance G*.

To prove iii), note that the transfer impedance matrix can be decomposed
as G. In particular, K; ; = f(Kégj)Q, with

K:t

o)) = K (@) (p(u),p(v)) — Gi(z, u) + Gi(y, v) — Gi(z, v) — Gi(y, w).

Then, using again the Gaussian vector w, and the Wick squares of its com-

ponents:

(K(:‘;_;,y),(u7'u))2 = E(: (wy — w'u)2 o (wy — wy)2 2.

Remark 25. a) If U; are unitary representations with dy = d and such that
U;Y is the identity outside X x X, i) can be extended to variables of
the form > /\jB(eSj i and to the o-field they generate.

b) The property i) can be also derived from the reflection positivity of the
free field ii) and by remark 13. Then it can also be proved that for any set
of points {z;} in X, the matrix E(®(Lq)P(p(La) Nz, pz,) is non-negative
definite.

¢) In the case where « is a half integer, by remark 11, the reflection positivity
of the free field ii), implies i) holds also for any half integer o provided

that @ € O’(Z;z,l' eXt) \/J(NQE?;) +N7§f;),:c,y e X™).

Exercise 40. Prove the above remarks.
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Remark 26. If there exists a partition of X: X = Xt U X~ U X°, and an

involution p on X such that:

a) e and X are p-invariant.
b) p(X+) = X7

c) Xt and X~ are disconnected.

Then the assumptions of the previous theorem are satisfied for the trace
on XtUX~.

Moreover, if X% x X? does not contain any edge of the graph, the assertion
i) of theorem 7 holds for the non disjoint sets X+ U X% and X~ U X°. More
precisely, i), holds for @ in U(Z;I, re XtTUX®v O’(Né?l?}, r,y € XTUXO).
It is enough to apply the theorem to the graph obtained by duplication of
each point o in X0 into (zg,z, ), with xoi connected to points in X* and

connected together by conductances C%+ g We can let increase to infinity.

9.2 A counter example

Let show that the reflexion positivity does not hold under y for loop function-
als. Therefore, it will be clear it does not hold for small a. We will consider
functionals of the occupation field.

Consider the graph formed by a cube +a, +b, +¢, +d and the mid-points
+a, 5, £, £J of the sides +ab, tecd, *ac, £bd. The edges are given by
the sides of the cube, as in the picture.

We can take for example all conductances and killing rates to be equal.
Then the symmetry p : © — —z defines an involution satisfying the as-
sumption of theorem 7. Define the set of loops A = {I, 1°I? > 0},
A ={,1*=1=0,B={, P >0}and B = {I, " =1° = 0}.
Note that A N B’ N p(A) N p(B’'), A’ N BN p(A") N p(B) are empty. But
A NBNp(A)Np(B’) and AN B Np(A") N p(B) are not (consider the loop
aab(—b)(~0)(—e)eBd(—d)(—7)(—a)a).

Then, if we set @ = 14’ — 1a/nB, it is clear that

w(@.Pop)=-2u(ANB Np(A)Np(B)) <O0.

9.3 Physical Hilbert space and time shift:

We will now work under the assumptions of remark 26, namely, without

assuming that X = Xt U X ™.
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Fig. 9.1 A counter example

The following results and terminology are inpired by methods of construc-
tive Quantum field theory (Cf [50] and [13]).

Let HT™ be the space of square integrable functions in U((Z}z7 T €
XT) v U(N&},x,y € XT), equipped with the scalar product (®,¥), =
E(P(L1)¥(p(£1)) Note that (P, P),, < E($?(Ly)) by Cauchy-Schwartz in-
equality.

Let AV be the subspace {¥ € HT,E(¥(L1)¥(p(L1)) = 0} and H the clo-
sure (for the topology induced by this scalar product) of the quotient space
HT /N (which can be called the physical Hilbert space). We denote @™ the
equivalence class of @. H is equipped with the scalar product defined unam-
biguously by (®~,¥~),, = (,¥),,.

Assume X is of the form Xy x Z (space x time)) and let 6 be the nat-
ural time shift. We assume 6 preserves e, i.e. that conductances and x are
f-invariant. We define p by p(xo,n) = (z9, —n) and assume e is p-invariant.
Note that §(X+) C X+ and pf = 6~ 'p. The transformations p and 6§ induce
a transformations on loops that preserves p, and € induces a linear transfor-
mation of H*. Moreover, given any F in N, Fof € N, as (F o0, F o0),, is

nonegative and equals

E(F 0 0(£1)F o 0(p(L1)) = E(F(0(L1))F(p o 671 (L1)) = E(F (67 (L1))F (p(L1))

= (Fo®® F), < \[(Fo#2,Fot?), (FF),

which vanishes.
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Proposition 30. There exist a self adjoint contraction of H, we will denote
9 such that [ o 0]~ = 10 (d™).

Proof. The existence of IT(?) follows from the last observation made above.

As 0 preserves p, it follows from the identity pf = 0~'p that

(F00,G)y =E(F(0(£1))G(p(L1) = E(F(L1)G(p o7 (L1)) = E(F(L1)G(6 0 p(L1))
E(F(p(£1))G(0(£1)) = (G 00, F)

Therefore, IT(? is self adjoint on H+/N. To prove that it is a contraction, it
is enough to show that (F o6, Fo#),, < (F,F), forall FeH".
But as shown above, (F 0§, F 0 0),, = (F o 6? F>H <V(Fo62,Fob?), (FF),.

By recursion, it follows that:

2n 2n 2 1-27"
(Fo,Fof), < <F09 Fof >H (F, F)

As <Fo€2n,F092n>3:l < (B(F?(L£y1))* " converges to 1 as n — oo, the

inequality follows.

For all n € Z, the symmetry p(™ = 0="ph" allows to define spaces H (™)
isometric to H. These isometries can be denoted by the shift ™. For n > m,

Jnm = 0™ [H(e)]”*mQ*" is a contraction from H (™ into H(™).






Chapter 10

The case of general symmetric Markov
processes

10.1 Overview

We now explain briefly how some of the above results can be extended to
symmetric Markov processes on continuous spaces. The construction of the
loop measure as well as a lot of computations can be performed quite gener-
ally, using Markov processes or Dirichlet space theory (Cf for example [12]).
It works as soon as the bridge or excursion measures P;"Y can be properly
defined. The semigroup should have a density with repect to the duality mea-
sure given by a locally integrable kernel p;(x,y). This is very often the case
in examples of interest, especially in finite dimensional spaces.

The main issue is to determine wether the results which have been devel-

opped in the previous chapters still hold, and precisely in what sense..

Loop hitting distributions

An interesting result is formula 4.9, and its reformulation in proposition 27.

The expression on the lefthand side is well defined but the determinants
appearing in 4.9 are not. In the example of Brownian motion killed at the exit
of a bounded domain, Weyl asymptotics show that the divergences appearing
on the righthand side of 4.9 may cancel. And in fact, the righthand side in
27 can be well defined in terms of the densities of the hitting distributions of
Fy and F» with repect to their capacitary measures, which allow to take the
trace. A direct proof, using Brownian motion and classical potential theory,

should be easy to provide, along the lines of the solution of exercise 30.

103
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Determinantal processes

Another result of interest involves the point process defined by the points
connected to the root of a random spanning tree. In the case of an interval of
7, we get a process with independent spacings. For one dimensional diffusions,
this point process with independent spacings has clearly an analogue which
is the determinantal process with independent spacings (See [51]) defined by
the kernel \/k(x)G(x,y)\/k(y) (k beeing the killing rate and G the Green
function). For one dimensional Brownian motion killed at a constant rate, we
recover Macchi point process (Cf [32]).

It suggests that this process (together with the loop ensemble £1) can be
constructed by various versions of Wilson algorithm adapted to the real line.
A similar result holds on Z or N | where the natural ordering can be used to
construct the spanning tree by Wilson algorithm, starting at 0.

For constant killing rate, \/k(z)G(z,y)/k(y) can be expressed as

pexp(— |z —y| /a), with a,p > 0 and 2pa < 1, the law of the spacings
has therefore a density proportional to e~ % sinh(y/T — 2paZ) (Cf [32]), which
appears to be the convolution of two exponential distributions of parameters
L(VT=2pa +1) and 1(—y/T=2pa + 1). A similar result holds on Z with
geometric distributions. The spanning forest obtained by removing the ceme-
tery point is composed of trees made of pair of intervals joining at points
directly connected to the cemetery, whose length are independent with laws
given by these (different!) exponential distributions. The separating points
between these trees form a determinantal process intertwinned with the pre-
vious one (the roots directly connected to the cemetery point), with the same
distribution. There are two equally probable intertwinning configurations on

R, and only one in RT or R~.

Occupation field and continuous branching

Let us consider more closely the occupation field 1. The extension is rather
straightforward when points are not polar. We can start with a Dirichlet
space of continuous functions and a measure m such that there is a mass
gap. Let P; denote the associated Feller semigroup. Then the Green function
G(z,y) is well defined as the mutual energy of the Dirac measures J, and
0y which have finite energy. It is the covariance function of a Gaussian free
field ¢(x), and the field 3¢(z)? will have the same distribution as the field
EAC”% of local times of the Poisson process of random loops whose intensity is

given by the loop measure defined by the semigroup P;. This will applies to
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examples related to one-dimensional Brownian motion (or to Markov chains

on countable spaces).

Remark 27. When we consider Brownian motion on the half line, the associ-
ated occupation field Z; is a continuous branching process with immigration,

as in the simple random walk case considered above.

Generalized fields and renormalization

When points are polar, one needs to be more careful. We will consider only
the case of the two and three dimensional Brownian motion in a bounded
domain D killed at the boundary, i.e. associated with the classical energy
with Dirichlet boundary condition. The Green function does not induce a
trace class operator but it is still Hilbert-Schmidt which allows us to define
renormalized determinants dets (Cf [49]).

If A is a symmetric Hilbert Schmidt operator, dets(I 4+ A) is defined as
[T(1 + \;)e=? where \; are the eigenvalues of A.

The Gaussian field (called free field) whose covariance function is the Green
function is now a generalized field: Generalized fields are not defined pointwise
but have to be smeared by a compactly supported continuous test function
f- Still ¢(f) is often denoted [ ¢(x)f(z)dz.

The Wick powers : ¢™ : of the free field can be defined as generalized
fields by approximation as soon as the 2n-th power of the Green function,
G(z,y)* is locally integrable (Cf [50]). This is the case for all n for the
two dimensional Brownian motion killed at the exit of an open set, as the
Green function has only a logarithmic singularity on the diagonal, and for
n = 2 in dimension three as the singularity is of the order of m More
precisely, taking for example 7Z(dy) to be the normalized area measure on
the sphere of radius e around z, ¢(n?) is a Gaussian field with variance
of = [G(z,2)n%(dz)n%(dz"). Its Wick powers are defined with Hermite
polynomials as we did previously:

Cop(mEyr s = (og)%Hn(‘b\(/%)). Then one can see that, for any com-
pactly supported continuous function f, [ f(z) : ¢(m%)"

: dxr converges
in L? towards a limit called the n-th Wick power of the free field evalu-
ated on f and denoted : ¢" : (f). Moreover, E(: ¢™ : (f) : ¢" : (h)) =
J G () f(2)h(y)dady.

In these cases, we can extend the statement of theorem 2 to the renormal-

ized occupation field Zﬁ and the Wick square : ¢? : of the free field.
2
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10.2 Isomorphism for the renormalized occupation field

Let us explain this in more detail in the Brownian motion case. Let D be an
open subset of R? such that the Brownian motion killed at the boundary of
D is transient and has a Green function. Let p:(z,y) be its transition density

and G(z,y) = [, pe(x, y)dt the associated Green function. The loop measure

1
,u:// ~Py dt
pJo t

where ;" denotes the (non normalized) bridge measure of duration ¢ such
that if 0 <t < ... <t <t,

p was defined in [20] as

PEe(E(t) € day, ..., E(tn) € dan) = i, (T, 21) Doy —t, (21, T2). D1, (Th, x)dxy ...dp,

(the mass of Py"" is p(z,z)). Note that p is a priori defined on based loops

but it is easily seen to be shift-invariant.

For any loop [ indexed by [0 T'(1)], define the measure 1= fOT(l) dy(s)ds: for
any Borel set A, 1(A) = fOT(l) 1a(ls)ds.

Lemma 2. For any non-negative function f,
u(@ f> )= (n—l)!/G(:I:l,:Eg)f(xg)G(xg,x3)f(:v3)...G(xn,x1)f(:I:1) I dz:.
1
Proof. From the definition of p andlA, M(<ZA, f>n) equals:
1
n'// =f(x1)..f(xn)pe, (,21)...pt—1,, (xn,x)Hdtidxidtdx
{0<t1<...<tn

<ty t

1
= n!//{o ) ;f($1)~-'f($n)pt27t1($1, T2)... Pty 4t—t, (Tn, 1) Hdtidxidt-
<t1<..<tp<t

Performing the change of variables vo = to — t1,...,vp = t, — th_1,v1 =

t1 +t—t,, and v = t1, we obtain:

n! /{ ;f(zfl)f(mn)pvz ($1, $2)...pvl (wn; xl) H d’l)idl'id’u

0<v<wy,0<p;} V1 T oo T Un

= nl /{ e f(@1). f (0P (21, 82) Py (2, 20) [ [ dvid;

0<wv;} U1+ .o+ Vn
=(n-— 1)!/ f@1) .. f(@n)po, (21, 22) - . . Doy (Tn, 21) H dv;dx;
{0<w;}

(as we get the same formula with any v; instead of vy)

=(n-— 1)!/G(le,xg)f(xg)G(xg,xg)f(xg)...G(xn,xl)f(xl)Hdaci.
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One can define in a similar way the analogous of multiple local times,
and get for their integrals with respect to p a formula analogous to the one

obtained in the discrete case.

Let G denote the operator on L?(D,dx) defined by G. Let f be a non-
negative continuous function with compact support in D.

Note that <lA, f > is pu-integrable only in dimension one as then, G is locally
trace class. In that case, using for all x an approximation of the Dirac measure

at z, local times 1% can be defined in such a way that <lA, f> = flAzf(x)dx

<ZA, f> is p-square integrable in dimensions one, two and three, as G is
Hilbert-Schmidt if D is bounded, since [ [, , G(x,y)?dxdy < co, and oth-
erwise locally Hilbert-Schmidst.

N.B.: Considering distributions x such that [ [(G 2x(dz)x(dy) <

0o, we could see that <l, X> can be defined by approxnnamon as a square

N2
integrable variable and p <<l, x> > = [(G(z,y)*x(dz)x(dy).

Let z be a complex number such that Re(z) > 0.
Note that e_z<l f>—|—z <l f>—1 is bounded by = lzI* <l f> and expands as an

alternating series ) o° zn—, (— <l, f>) with } —1- fl! (— <lA, f>) <
~ \|N+1
% Then, for |z| small enough., it follows from the above lemma that

(e 2 (Tr)—1) = i %Tr(—(MﬁGMﬁ)”).

As M ;GM /7 is Hilbert-Schmidt the renormalized determinant deta(/ +
M FGM /7) is well defined and the second member writes -log(deta( +
Then the identity

(e ) 42 <T, f> —1) = —log(det o( + 2M ;GM,/5)).

extends, as both sides are analytic as locally uniform limits of analytic func-

tions, to all complex values with positive real part.

The renormalized occupation field Z; is defined as the compensated sum
of all [ in L, (formally, Lo = Lo — [ i7" 6, dsp(dl)). More precisely, we

apply a standard argument used for the construction of Levy processes, set-

(£uut) = iy e 1)

ting:

with by definition
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<5Aa/,s, f> = Z <1{T>a} /OT f(vs)ds — ap(lirsey /OT f(%)ds)> :

YELA

The convergence holds a.s. and in L?, as

T T
B Y (osran / F(1)ds) — aplLierszoey / £ (1)ds))?)

YELA

=o [(sra | " fn)ds Pt

and E(<Z',:,f>2) = Tr((M sGM /7)*). Note that if we fix f, a can be
considered as a time parameter and <EE/E, f > are Levy processes with discrete
positive jumps approximating a Levy process with positive jumps Z;, ).
The Levy exponent u(l{T>€}(e_<T’f> + <lA, f> —1)) of <Z;/8,f>) converges
towards the Lévy exponent of <Z;, f>) which is u((e_<lA’f> + <ZA, f> —1)) and,

from the identity E(e_<a”f>) = e_o‘“(ei<l’f>+<?’f>_1), we get the

Theorem 8. Assume d < 3. Denoting Z; the compensated sum of all 1 in
L., we have
E(e~(£09)) = det o (I + M 7GM /7))~

Moreover ¢~ (£a.cf) converges a.s. and in L' towards e (Lart).
Considering distributions of finite G*-energy x (i.e. such that [(G(z,y)?x(dz)x(dy) < 00),
we can see that <Z;, X> can be defined by approximation as limy_, <£a, )\ka>

and
B((Zaix) ) =a [ (Gla)Px(do)x(dy).

Specializing to a = %, k being any positive integer we have:

Corollary 7. The renormalized occupation field EE and the Wick square % :
Zlf @7 : have the same distribution.

If © is a conformal map from D onto ©(D), it follows from the conformal
invariance of the Brownian trajectories that a similar property holds for the
Brownian”loop soup” (Cf [20]). More precisely, if ¢(z) = Jacobian,(©) and,
given a loop [, if T%(1) denotes the reparametrized loop Ir_, with [ c¢(l,)du =
s, the configuration ©T°(L,,) is a Brownian loop soup of intensity parameter

a on O(D). Then we have the following:

Proposition 31. ©(cL,) is the renormalized occupation field on ©(D).
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Proof. We have to show that the compensated sum is the same if we perform

it after or before the time change. For this it is enough to check that

B(S (Urromlpres) / F(r)ds — / (Lprrom Lre) / F(r)ds)u(d))]?)

YELA
T
—a / (Lprrom Lizee) / £ ()ds)u(dv)

and

T T
B (Igrse lore / fOds —a [(raaylops, / £ (1e)ds) () P)

YELA
T
O‘/(l{T>s}1TTS77/O f(s)ds)* p(dr)

converge to zero as € and 1 go to zero. It follows from the fact that:

T
/[1{T§s}/0 f(vs)ds)? p(dy)

" Jins, / " F)ds]u(ay)

converge to 0. The second follows easily from the first if ¢ is bounded away
from zero. We can always consider the ”loop soups” in an increasing sequence
of relatively compact open subsets of D to reduce the general case to that

situation.

As in the discrete case (see corollary 3), we can compute product expec-
tations. In dimension < 3, for f; continuous functions with compact support
in D:

E( <Z;,f1> <Z;,fk>) = /Perg(G(acl,xm), 1<i,m< I{:)Hfj(xj)dxj.
(10.1)

10.3 Renormalized powers

In dimension one, as in the discrete case, powers of the occupation field
can be viewed as integrated self intersection local times. In dimension two,
renormalized powers of the occupation field, also called renormalized self
intersections local times can be defined, using renormalization polynomials
derived from the polynomials Q" defined in section 4.2. The polynomials

Q7 cannot be used directly as pointed out to me by Jay Rosen. See Dynkin



110 10 The case of general symmetric Markov processes

[9], [10], [23], [34] for such definitions and proofs of convergence in the case
of paths.

Assume d = 2. Let 7%(dy) be the normalized arclength on the circle of
radius ¢ around z, and set o2 = [ G(y, z)7%(dy)nZ (dz).

As the distance between z and y tends to 0, G(z,y) is equivalent to

Go(l',y) = %1Og(||$ - y”) and moreover, G(‘Tay) = GO(xay)_HDC (:Ea dZ)Go(Z,y),

HP* denoting the Poisson kernel on the boundary of D.

Let GEEZC (respectively Gl(f;,), G(ff,) Gg(f/’s)) denote the operator from
L*(7%) into L*(wZ) (respectively L?(w¥) into L*(m? ), L*(n%) into L?(x¥),
L?(7%) into L?(n?)) induced by the restriction of the Green functions to the
the circle pairs. Let ¢ yg) be the isometry L?*(n?) into L?(7%) induced by
the natural map between the circles.

Gg(fz and Gy,y are clearly Hilbert Schmidt operators, while the products
Ggf; )Lgfxe) and Gé‘gf)éf; ) are trace-class.

We define the renormalization polynomials via the following generating

function:

tu t
Auealt,u) = e det o(1 — e Gﬁ)a
This generating function is new to our knowledge but one should note that

«,0

the generatlng functions of the polynomials @, can be written eTHz (1-

to
1+to

Define the renormalisation polynomials @} by:

QYT (W) = duealtiw)

)e 7% and therefore has the same form.

The coefficients of Q;='” involve products of terms of the form

Tr([GEL™ = [G(y1,y2)G(y2,y3)--G(Ym,y1) [T 7% (dy;) which are dif-
ferent from (Jg) (but both are equivalent to [%g(s)} as € — 0).

We have the following

Theorem 9. For any bounded continuous function f with compact support,
[ (@)@ =%( <£a, 7T§>)d:13 converges in L? towards a limit denoted <£§, f>
and

B((2h. 1) (Bt = b 2O EEZ D [ Gk, oty ey

Proof. The idea of the proof can be understood by trying to prove that

BU( [ £)Qp="((Eamz))da))

remains bounded as e decreases to zero. One should expand this expression

in terms of sums of integrals of product of Green functions and check that
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cancellations analogous to the the combinatorial identities (4.7) imply the
cancelation of the logarithmic divergences.

These cancellations become apparent if we compute

(1) = E(@r.calt; (L )ayerals (Last )

which is well defined for s and ¢ small enough. As the measures 7% and 77,
are mutually singular L?(7% + 7,) is the direct sum of L?(7%) and L?(n¥),

. . (AB
and any operator on L?(72 +7%,) can be written as a matrix ( cD where

A (respectively D, B, C) is an operator from L?(w%) into L?(7%) (respectively
L?(x%) into L?(x%), L*(n%) into L2(x¥), L*(xY) into L*(72)).

Theorem 8 can be proved in the same way for the Brownian motion time
changed by the inverse of the sum of the additive functionals defined by 7%
and 7, (its Green function is the restriction of G to the union of the two
circles. Alternatively, one can extend theorem 8 to measures to get the same
result). Applying this to the function equal to ¢ (respectively s) on the circle

of radius ¢ around z (respectively the circle of radius €’ around y) yields

t 5 :
1) = det o(I — )y det o (I — ———GEN,
(1) et o( 1+tU§GI’I) et o( 1+803/nyy)
A - R o N s
det I = s G (1+tag)(1+tag,)G””’y
_ Vst G(E ,€) I — s Géfy)

V(o) (1+to?,) YT 1+ta?, ]

t () Vst (eeH)\ 71 “
~ | det B T
- 2 _ Vst G(a/aa) I — s G(a/)
/(+tom)(1+s0?,) U7 1+so?, V' YY ]
I— 1+ffo'“” Ggfv)m 0
det o 0 N 7 s G(E/)
1+sc¥, Y:Y

Note that if, A and B are Hilbert-Schmidt operators, deta (I + A) deto (I +
B) = e~ T7(AB) dety((I + A)(I + B)). It follows that if, A and B’ are Hilbert-
Schmidt operators such that B” = (I + A)~'(I + B') — I is trace class with

zero trace and AB” has also zero trace,

[det o(I + A)] "' det o(I + B') = det (I + B") = det(I + B")

= det((I +A)7 (I + B)) = det((I + A) "2 (I + B)(I + A)7%).

(e)
- 1+i0§ G:c,:c 0 ,
0 oGy

T 1+t07,

Taking now A =
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__t G(E) _ Vst G(Evfl)
/ I+tog =H% (L+toz)(1+ta?,) Y :
and B’ = N ( 2) . ) we obtain

easily that A — B’ is trace class
) =2Tr(

_ (876/)
as T'r (()E, 9 Gy
—Gy.i 0

AB" are trace class and it is clear they have zero trace, as both are of the

i 0S
orm | 5 )

Therefore,setting V = v/st(I +to® — tG(zf)z)’%G(zf;f/)(I +so?, — sGé’f;))’%,

(1) = det ( . IV) -

Gé‘ff/)&;’a) ). Therefore, B” and

Hence,

(1) = det (é 7 “//V) =det(I —V*V)™@

= det(I — st(I + so¥, — sGENTIGE (I + to? —tGE)) T GLEE)) .

This quantity can be expanded. Setting, for any trace class kernel K (z, z")

acting on L?(7Y¥),
Pero(K™) = /Pem(K(Zi,Zj), 1<i,j<n) ﬁﬂ'g(d%)
1
it equals:
1+i %Pera(([stG;f;’s) (I+to? —tGE) I GEE) (T+s0?, —sGiE )10 = (2)

Identifying the coeficients of t*s! in (1) and (2) yields the identity
zea /7 _x zelo /7y 1 (') (e, ) (k) \ 2k
E(Q ™ ((Las w2 QP ((Las % ))) = b Peral(GI I G| P) G (@, )+ Ry

where Ry is the (finite) sum of the t*s! coefficients appearing in
2PN L Perg (([stGl 2" (I+tof I-1G)) Gy (T+s0l I-sGY)) 71 ®)
(except of course, for k = [, the term %Pera([Gé’f;e)Ggf;f/)](k))G%(z, v))

The remarkable fact is that the coefficients of Q''“ are such that this
expression involves no term of the form Tr([Ggfgc]m) or Tr([Ggf;)]m). Decom-
posing the permutations which appear in the expression of the a-permanent
into cycles, we see all the terms are products of traces of operators of the
form [ G(y1,y2).-.G(Yn,y1)7E} (dy1)...7E" (dyy) in which at least two z;’s are
distinct. It is also clear from the expression (2) above that if we replace GEfZC
and Gé’f;) by oI and ¢? I, the expansion becomes very simple and all terms

vanish except for I = k, the term %Pera([Géf;;g)Ggff,)](k)) which will be
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proved to converge towards WG%( ,Y) = G (I v) SFd(k, Dol
(see remark 7 on Stirling numbers).
To prove this convergence, and also that Rx; — 0 as g,/ — 0, it is

therefore enough to prove the following:

Lemma 3. Consider for any x1,x2, ..., Tn, € small enough ande < €1, ...,e, <

2e, with e; = ¢; if x; = x;, an expression of the form:

A=| J] Gi1,zi)( /G Y1, Y2) -G (Yn, y1) 72 (dyr).. 72" (dyn)
1,2 17T;
in which we define m; as sup(h, x;yn = ;) and in which at least two x;’s are
distinct. Then for some positive integer N, and C > 0, on N{||x;—1 — z;|| >
Vet
A< Cye 1og(€)N

Proof. In the integral term, we first replace progressively G(y;—1,y:) by
G(xi-1,x;) whenever xz;,_1 # x;, using triangle, then Schwartz inequalities,
to get an upper bound of the absolute value of the difference made by this

substitution in terms of a sum A’ of expressions of the form

HG(ﬂﬁlale)\//(G(yl,m)—G(wlawz))Qﬂff(dyl)Wfi(dm)/HGQ(yk,ka)H?T?{-“(dyk)-
l

The expression obtained after these substitutions can be written

W = H G(wi—1,x;) / G(y1,y2)-GWmy 1> Ym) T (dyr) ... w2 (dYm, )
IR TIRE

and we see the integral terms could be replaced by (%)™ if G was trans-
lation invariant. But as the distance between x and y tends to 0, G(x,y) is
equivalent to Go(z,y) = Llog(||lz — y||) and moreover, G(z,y) = Go(z,y) —
HP"(x,d2)Go(z,y). As our points lie in a compact inside D, it follows that
for some constant C, for [ly1 — || < e, | [(G(y1,y2)72 (dy2) — 0% | < Ce.
Hence, the difference A” between W and [[; . |, G(zi—1,2i)(0Z")™ can
be bounded by eW’, where W’ is an expression similar to W.

To get a good upper bound on A, using the previous observations, by re-
peated applications of Holder inequality. it is enough to show that for & small

enough and € < 1,69 < 2¢, (with C and C’ denoting various constants):

1) [(G(y1,y2) — G(w1, x2)? 7L} (dy1)7Z2 (dy2)
< C(elfay—aslizvey + (G(a1,22)% +108(6)*) 10y —aaf <y} )s
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) [ G(y1,y2)Fre(dyr ) w2 (dy2) < C [log(e) |k and more generally
3) [ Gly1,yo)*m2i (dy)m?2 (dyz) < C |log(e)]" .

As the main contributions come from the singularities of G, they follow

from the following simple inequalities:
1)
/ |log (e + 2Re cos() + R?) — 1og(R)‘2 do

_ / llog((e/ R)? + 2(/ R) cos(8) + 1)|* df < C((e1 s yzyy Hog>(R/) (e 2yy)

NG

(considering separately the cases where ¥ is large or small)

2)) [ |log(%(2 + 2 cos( )))|kd9 < C [log(e)|"

3) ylog g1cos(61) + 2 cos(fa) + 1) + (g1 sin(f7) + 2 8in(6s)) ‘ dfrdhy; <
C(log(e)|)*. Tt can be proved by observing that for r < &1 + eq, we
have near the line of singularities (i.e. the values 61(r) and 6(r) for
which the expression under the log vanishes) to evaluate an integral which
can be bounded (after a change of variable) by an integral of the form
C’fo —log(eu))*du < C'(—log(e))* for e small enough.

To finish the proof of the theorem, let us note that by the lemma above,
and the estimate 10.3 in its proof, for ¢ < £1,e2 < 2¢, we have, for some

integer NLF

(07 (Za 2 QY (B L)) — s, Pt SR )

< Clog(e)V* (Ve + Gla, ) 1yayjcye)- (10.2)

The bound (10.2) is uniform in (z,y) only away from the diagonal as
G(z,y) can be arbitrarily large but we conclude from it that for any bounded

integrable f and h,

QT (Lt QL (L) = 6irGla =)

< C'\/elog(e)Nix

)f(x)h(y)d:cdy‘

(as [ [ G(x,y)*1{jj—y| < zdxdy can be bounded by Ce3, for example) B
Taking €,, = 27", it is then straightforward to check that [ f(x - 61 D‘(<£a, e >)d:z:

is a Cauchy sequence in L?. The theorem follows.
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Specializing to a = %, k being any positive integer as before, it follows
that Wick powers of Z?Zl gb? are associated with self intersection local times
of the loops. More precisely, we have:

Proposition 32. The renormalized self intersection local times Ei and the
2

Wick powers 51— (Zl @)™ : have the same joint distribution.
Proof. The proof is just a calculation of the L?-norm of

k

[t 2@ @) - QR Y S @)

1

which converges to zero with €.
The expectation of the square of this difference is the sum of two square ex-
pectations which both converge towards 22 (k+2(n=1)) J G*(z,y) f(z)f(y)dady

2nn!

and a middle term which converges towards twice the opposite value. The

difficult term E((Q7 8’2( 21 @7+ (72))]f(x)dz)?) is given by the previous

theorem. The two others come from simple Gaussian calculations (note that
u

only highest degree term n—T,L of the polynomial Qj° % (u) contributes to the
expectation of the middle term) using identity 5.2.

In the following exercise, we study and compare the polynomials Q%7 and

T,€,x
N

Exercise 41. Let drol, . be the number of n-permutations with no fixed points
and k cycles. If kj, 2 < j < n are integers such that ), jk; =mand >, k; =
k, let Cyy i (kj, 2 < j < n) be the number of m-permutations with no fixed
points and k; cycles of length j. Note that Y Cyn x(kj, 2 < j < n) =d,
Show the following identities:

a) >og (&)do, , = d(n, k) (the number of n-permutations with k cycles).

b) Coi(kj, 2<j<n)= Hk']J
tutao)

a,o —tu_ a o _\m
)ZtNQ (u) = e 147 (1_1+t0) = e (1437, 1<k<md?nk m:) (1iw) )
I+m, 1 _

*Zz 0 = (1+t0) lJFZz ozm 1tm|l| (I+to)™™ ZZ1gk§m dm,k(*odk
d) @y’ (u ):Zoglgzv Zng—l angpulo™N "tk

with an i, = Yoy ()N A gNn;)l')(!mHA)!d?n,k for k > 1,
(71)N7l k__ (N—-D!

an,,0 = m and an,0,0 = 0.
©) Aae,altsu) = 3% - (1+t0) 30 l|l+|m(1+t0) (WH)Per_a([Gi,m](m))
£) Q%) = Xocian Dpen— ANl (05)N ok
with Ay x = EZ 2(_1)]\[ ke ml.m.(N,E,m)l,)(!mel)!Dglﬁk and D)) ;. =
> Cmi(kj, 2 < <n)[I(T ([ ] Jfor k> 1,

Ango = (=DN7I- k# and An,0,0 = 0.
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(e)
In particular, Q5 (u) = h(u” — 20tu — aTr((F21) and Q57 (1)
2

L(ud —605u® +6u(0%)? — 3auTr([GE4]%) + 6a02 Tr([GEL)?) — 2aTr([GEL]P))

. . DS .
Exercise 42. Prove that lim._,¢ do”—”“ =1
m,k

Final remarks:

a) These generalized fields have two fundamental properties:

Firstly they are local fields (or more precisely local functionals of the field
Z; in the sense that their values on functions supported in an open set D
depend only on the trace of the loops on D.

Secondly, note we could have used a conformally covariant regularization
to define ZE, (along the same lines but with slightly different estimates),
by taking 7% to be the capacitary measure of the compact set {y, G*Y >
—loge} and o7 its capacity. Then it appears that the action of a conformal
transformation © on these fields is given by the k-th power of the conformal
factor ¢ = Jacobian(©). More precisely, @(ckz,g) is the renormalized k-th
power of the occupation field in (D).

b) It should be possible to derive from the above remark and from hyper-
conrtactive type estimates the existence of exponential moments and in-
troduce non trivial local interactions as in the constructive field theory
derived from the free field (Cf [50]).

¢) Let us also briefly consider currents. We will restrict our attention to the
one and two dimensional Brownian case, X being an open subset of the line
or plane. Currents can be defined by vector fields, with compact support.
Then, if we now denote by ¢ the complex valued free field (its real and
imaginary parts being two independent copies of the free field), fl w and
Ix (0,6 — pO.,6)dx are well defined square integrable variables in dimen-
sion 1 (it can be checked easily by Fourier series). The distribution of
the centered occupation field of the loop process ”twisted” by the com-
plex exponential exp(},c, [ iw + %lA(||wH2)) appears to be the same as
the distribution of the field : ¢¢ : "twisted” by the complex exponential
exp( [y (B0, — 60,9)dx) (CH26]).

In dimension 2, logarithmic divergences occur.

d) There is a lot of related investigations. The extension of the properties
proved here in the finite framework has still to be completed, though the
relation with spanning trees should follow from the remarkable results
obtained on SLE processes, especially [22]. Note finally that other essential
relations between SLE processes, loops and free fields appear in [59], [42]
[7], and more recently in [45] and [46].
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