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Abstract

We study the Poissonnian ensembles of Markov loops and the associated renor-
malized self intersection local times.

1 Introduction

The purpose of these notes is to explore some simple relations between Markovian path and
loop measures, spanning trees, determinants, and Markov fields such as the free field. The
main emphasis is put on the study of occupation fields defined by Poissonian ensembles
of Markov loops. These were defined in [[4] for planar Brownian motion in relation with
SLE processes and in [[J] for simple random walks. They appeared informally already
in [B3. For half integral values g of the intensity parameter «, these occupation fields
can be identified with the sum of squares of k copies of the associated free field (i.e.
the Gaussian field whose covariance is given by the Green function). This is related to

Dynkin’s isomorphism (cf [d], [B4], [[8]). We first present the results in the elementary
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framework of symmetric Markov chains on a finite space, proving also several interesting
results such as the relation between loop ensembles and spanning trees and the reflection
positivity property. Then we show some results can be extended to more general Markov
processes. There are no essential difficulties when points are not polar but other cases are
more problematic. As for the square of the free field, cases for which the Green function
is Hilbert Schmidt such as two and three dimensional Brownian motion can be dealt with
through appropriate renormalization.

We can show that the renormalised powers of the occupation field (i.e. the self inter-
section local times of the loop ensemble) converge in the two dimensional case and that
they can be identified with higher even Wick powers of the free field when « is a half
integer.

2 Symmetric Markov processes on finite spaces

Notations: Functions and measures on finite (or countable) spaces are often denoted as
vectors and covectors.

The multiplication operator defined by a function f acting on functions or on measures
is in general simply denoted by f, but sometimes it will be denoted M. The function
obtained as the density of a measure p with respect to some other measure v is simply
denoted £.

2.1 Graphs

Our basic object will be a finite space X and a set of non negative conductances C, , =
Cy.z, indexed by pairs of distinct points of X. This situation allows to define a kind of
discrete topology and geometry we will briefly study in this section and in the following
ones.

We say {x,y} is a link or an edge iff C, , > 0 and an oriented edge (z,y) is defined by
the choice of an ordering in an edge. We set —(z,y) = (y, x) and if e = (x,y), we denote
it also (e, e™).

The points of X together with the set of non oriented edges E define a graph.(X, E).
We assume it is connected. The set of oriented edges is denoted E°. It will always be
viewed as a subset of X2, without reference to any imbedding.

The associated line graph is the oriented graph defined by E° as set of vertices and



in which oriented edges are pairs (e, e3) such that ej = e, . The mapping e — —e is an
involution of the line graph.

An important example is the case in which conductances are equal to zero or one.
Then the conductance matrix is the adjacency matrix of the graph: C,, = 11, 1er

A complete graph is defined by all conductances equal to one.

The complete graph with n vertices is denoted K,,.The complete graph K} is the graph
defined by the tetraedron. K3 is not planar (i.e. cannot be imbedded in a plane), but
K, is.

A finite discrete path on X, say (xg,z1,...x,) is called a (discrete) geodesic arc iff
{z;,z;11} € E (path segment on the graph) and z;,_1 # x;1; (without backtraking).
Geodesic arcs starting at zp form a marked tree T,, rooted in xy. Oriented edges are
defined by pairs of geodesic arcs of the form: ((zg,x1,...7,), (%o, 1, ...Tpn, Tni1)) (the ori-
entation is defined in reference to the root). ¥, is a universal cover of X.

On the space £,, of discrete loops based at some point z,, we can define an operation
of concatenation, which define a monoid structure. Among them, closed geodesics based
at xy define a group b,,. Actually the concatenation of two closed geodesics based at z
is not directly a closed geodesic. It can involve backtracking ”in the middle” but then
after cancellation of the two inverse subarcs, we get a closed geodesic, possibly empty
(the neutral element) if the two closed geodesics are identical up to reverse order. The
structure of v,, does not depend on the base point and defines the fundamental group I'
(as the graph is connected: see for exemple [23)]).

There is a natural left action of b,, on ¥,,. It can be interpreted as a change of root in
the tree. Any geodesic arc between xy and another point yy of X defines an isomorphism
between ¥, and ¥, (change of root) and beween b,, and v,, (conjugation).

We have just seen that the universal covering of the finite graph (X, E) at xq is a tree
To- The fiber at z( is 0,,. These groups are conjugated in a non canonical way. Note
that X = 62\T,, (here the use of the quotient on the left corresponds to the left action).
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Example 1 Among graphs, the simplest ones are r—reqular graphs, in which each point
has r of neighbours. A universal covering of any r—regular graph is isomorphic to the
r—regular tree .

Example 2 Cayley graphs: A finite group with a symmetric set of generators S =
{91, ..gr} such that SN St is empty yields an oriented 2k-reqular graph .



A spanning tree T' of the graph has |X| — 1 edges, which cover all points in X. Its
inverse images by the canonical projection from a universal cover ¥,, onto X form a
tesselation on ¥,,, i.e. a partition of ¥, in identical subtrees. fundamental domains for
the action of bfo. Conversely, a section of the canonical projection from the universal
cover defines a spanning tree.

Giving a spanning tree determines the conjugation relations between the various
groups 0., and the isomorphisms between the universal covers T, .

The fundamental group IT' is a free group with |E| — |X| 4+ 1 = r generators. To
construct a set of generators, one considers a spanning tree T" of the graph, and choose an
orientation on each of the r remaining links. This defines r oriented cycles on the graph
and a system of r generators for the fundamental group. (See [B3] or Serres (BJ) in a
more general context).

Example 3 Consider K3 and K.

There are various non ramified coverings, intermediate beween (X, ) and the univer-
sal covering. Non ramified means that locally , the covering space is identical to the graph
(same incident edges). Each non ramified covering is (up to an isomorphism) associated
with a subgroup H of I', defined up to conjugation. More precisely, if H,, is a subgroup
of 'y, the covering is defined as the quotient graph (Y, F') with Y = H, \T,, and F' the
set of edges defined by the canonical projection from %, , ont Y. H,, can be interpreted
as the group of closed geodesics on the quotient graph. The quotient group H,,\I';, acts
on H, \%,,. A spanning tree of (X, F) defines also a tesselation of the quotient graph for
the action of the quotient group.

Example 4 By central symmetry, the cube is a two fold covering of the tetraedron asso-
ciated with the group 7./27.

A covering is said to be Abelian when the covering group is Abelian. The maximal
Abelian covering is associated with the commutators subgroup [I', I'].

2.2 Energy

Let us consider a nonnegative function x on X. Set A\, = k, + Zy Cry Py = (’}’y. P is
a A-symmetric (sub) stochastic transition matrix: A\, Py = A\, Py with Py = 0 for all z in

X and it defines a symmetric irreducible Markov chain &,.
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We can define above it a A-symmetric irreducible Markov chain in continuous time x;,
with exponential holding times,of parameter 1. We have x; = £y,, where N; denotes a
Poisson process of intensity 1.The infinitesimal generator writes Ly = B — 4,

We denote by P, its (sub) Markovian semigroup exp(Lt) = ) %Lk. L and P, are
A-symmetric.

We will consider the Markov chain associated with C, x, sometimes in discrete time,
sometimes in continuous time (with exponential holding times).

Recall that for any complex function z*,z € X, the "energy”

e(z) = (-Lz,2), = > —(L2)"Z"\,

zeX

is nonnegative as it can be written (easy exercise)
1 = _ _ _
e(z) = ) mzy: Cpy(z® =2")(Z" —2Y) + Zx: K220 = zm: A 272" — gy: Cpy2"2Y

The Dirichlet space ([f]) is the space of real functions equipped with the energy scalar
product

e(fu g) = %Zcm,y<fm - fy)(gm - gy) + Z"ixfmgx = Z )\:vfmgm - Zcm,yfxgy

defined by polarization of e.

Note that the non negative symmetric ”conductance matrix” C' and the non negative
equilibrium or "killing” (or ”equilibrium”) measure « are the free parameters of the model.
The eigenvector associated with the lowest eigenvalue of —L has constant sign by the well
known argument which shows that the map z — 21 lowers the energy.

We have a dichotomy between:

- the recurrent case where 0 is the lowest eigenvalue of —L, and the corresponding
eigenspace is formed by constants. Equivalently, P1 = 1 and x vanishes.

- the transient case where the lowest eigenvalue is positive which means there is a
”Poincaré inequality”: For some positive ¢, the energy e(f, f) dominates € (f, f),
for all f. Equivalently, x does not vanish.



In the transient case, we denote by V the associated potential operator (—L)~1 =

fooo P,dt. Tt can be expressed in terms of the spectral resolution of L.
We denote by G the Green function defined on X? as G*Y = Z—’f = /\—Iy[([ - P
ie. G = (M,— C)"'. It induces a linear bijection from measures into functions. We set

(Cu) = 5, Gy

Note that e(f,Gp) = (f,p) (ie. Y, f*u,) for all function f and measure p. In
particular Gk =1 as e(1, f) =) f*ry = (f, 1),.

See ([§]) for a development of this theory in a more general setting.

In the recurrent case, the potential operator V operates on the space A* of functions f
such that (f, 1), = 0 as the inverse of the restriction of I — P to A*. The Green operator G
maps the space of measures of total charge zero onto A*. Setting for any signed measure
v of total charge zero Gv = V. we have for any function f, (v, f) = e(Gv, f) (as
e(Gr,1) = 0) and in particular f* — f¥ = e(G(d, — dy), f)-

Exercise 5 Compute the Green operator in the case of the complete graph K,

In quantum mechanics, — L is called the Hamiltonian and the eigenvalues are its energy
levels.
One can learn more on graphs and eigenvalues in [l

2.3 Feynman-Kac formula

A discrete analogue of the Feynman-Kac formula can be given as follows: Let s be any
function on X taking values in (0,1]. Then, for the discrete Markov chain &, associated
with P, it is a straightforward consequence of the Markov property that:

H fj Lie, = y} [(MSP)"]E
§=0

and for the continuous time Markov chain z; (with exponential holding times), setting

k(x) = 13(3(;:) we have:

B (el e, ) = [exp(t(L — M)l

It follows easily from the previous formula by decomposing the first expression according
to the number of jumps before time ¢, which has a Poisson distribution.
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For any nonnegative measur x, set V, = (=L + M,)™! and G, = ViMy = (M, +
M, — C)~'. It is a symmetric nonnegative function on 3( x X. G is the Green function
G, and G, can be viewed as the Green function of the energy form e, = e + || ||ig(x).

Note that e, has the same conductances C' as e, but x is added to the killing measure.
Note also that V, is not the potential of the Markov chain associated with e, when one
takes exponential holding times of parameter 1 but the Green function is intrinsic i.e.
invariant under a change of time scale. Still, we have by Feynman Kac formula

/ B (e~ o301, _y)dt = (Vi
0
We have also the "resolvent” equation V' —V, = VMxVy =V .MxV. Then,

G — G, = GM,G, = G, MG

2.4 Recurrent extension of a transient chain

It will be convenient to add a cemetery point A to X, and extend C, A and G to X2 =
{X UA} by setting , A = >, cx Kas Coa = K, and G*H = G2 =0 forall z € X.
Note that A(X2) =3, x Coy + 2>« k)

One can consider the recurrent "resurrected” Markov chain defined by the extensions
the conductances to X2. An energy e is defined by the formula

e®(z) = % Y Gz = )E - )

ryeXA

From the irreducibility assumption, if follows that e® vanishes only on constants. We
denote by P2 the transition kernel on X# defined by

e*(f.9) = (f—P%f.9),

or equivalently by
Cry Gy

)

ZyeXA vay a Az

Note that P21 = 1 so that X is now an invariant measure.with A, [P2]2 = A, [P2]4 on X2
Denote V2 and G? the associated potential and Green operators.

P2 =



Note that for p carried by X, for all x € X, denoting by £a the unit point mass at A,

e (G2 (pn — w(X)ea), 1) =
Ao((I = P)G® (1 — p(X)en)

[

Ao((I = P2)G2 (1 — p(X)ea)(2)
)(@) = £.G2 (1 — p(X)ea) (D).

Hence, applying G , it follows that on X,

G = G (p—p(X)ea) ~ G (u—p(X)ea)(A)Gr = GB(u—p(X)ea)— G (—p(X)ea)(A).

Moreover, as G2 (u — p(X)ea) is in AL,

D AG(p)" = =G (i — (X )ea) (A)A(X2).
rzeX
Therefore, G2 (11 — u(X)ea)(A) = % and G2 (p — u(X)ea) = —E\?ffg + Gp.
This type of extension can be done in a more general context ( See [0 and Dellacherie-

Meyer [H])

Remark 6 Conversely, a recurrent chain can be killed at any point xo of X, defining a
Green function Gy, on X —{xo}. Then, for any p carried by X — {xo},

G{xo}u = G(:u - #(X)gxo) - G(M - ”(X)Ezo)(xo)'

This transient chain allows to recover the recurrent one by the above procedure.

Exercise 7 Consider a transient process which is killed with probability p at each passage
in A. Determine the associated energy and Green operator.

2.5 Transfer matrix

Let us suppose we are in the recurrent case: We can define a scalar product on the space

A of functions on E° (oriented edges) as follows

(w,m), = %ny Cpyw™¥n™Y. Denoting as in [PJ] df*“" = f* — f*, we note that

(df,dg), = e(f,g) In particular
{df, dG(0y = 0z)), = df™"
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Denote A_, (Ay) the space of functions on E° odd (even) for orientation reversal. Note
that the spaces A, and A_ are orthogonal for the scalar product defined on A.

For any o in A_, define d*a by (d*a)” = =3 Pya®™?. Note it belongs to M oas
Y2y Cuya®™? vanishes.

We have

(a,df), = %Z)\IPyxar,y(fy — £

= % D (da)"fr A, — %Z AP fV =) "(d*a)" f*),
.y

rzeX reX

as the two terms of the sum are in fact equal since « is skew symmetric. In particular,
e(f, f)=A(df, df), = > ,ex(d*df)* f*A;. The image of d and the kernel of d*are therefore
orthogonal in A_. We say « in A_ is harmonic iff d*a = 0.
Note that for any function f , d*df = —Pf+ f = —Lf.

The projection of any o in A_ on the image of d is easily obtained as dVd*(«). Indeed,
for any function g, (o, dg), = (d*a, g), = e(Vd*a, g) = (dVd*(«),dg),.
d is the discrete analogue of the differential and d* the analogue of its adjoint, depending
on the metric which is here defined by the conductances.

Set a™¥ = i& if (z,y) = £(u,v) and 0 elsewhere. Then Ad*a = 4, — 0, and
dVd* (o) = —dG(d, — &)

The symmetric transfer matrix K @)% indexed by pairs of oriented edges, is defined
to be

K@00) = [—dG(5, —6,)]"Y = G(5—6,)" — G(64—6,)! =< dG(5,—6,),dG(5,—6,) >a

for z,y,u,v € X, with C;,C,, > 0. For every oriented edge e = (z,y) in X, set
K¢ =dG(6* — §Y).

We have (K¢ K9), = K“9.We can view K = dG as a linear operator mapping the
space measures of total charge zero into A_. As measures of the form d, — 6, span the
space of measures of total charge zero, it is determined by the transfer matrix.

Note that —d*Kv = v/ for any v of total charge zero, that for all @ in A_, (d*a)A
has total charge zero and that K ((d*a)\) = dVd*(«), the projection of a on the image of
din A_.



Consider now, in the transient case, the transfer matrix associated with G2.
We see that for z and y in X, GA(, — 6,)" — G2(6, — 6,)" = G(6, — 0,)* — G(6, — 0,)".

We can see also that G2(8, — 6a) = GO, — d?}ﬁsgﬁ. So the same identity holds in X2.

Therefore, as G®* = 0, in all cases,
K(x,y),(u,v) = GFU L QYUY — Y — QY

So that the theory applies also in the transient case.

2.6 Countable spaces

The assumption of finiteness of X can be relaxed. But the recurrent case is not charac-
terized by the vanishing of the killing measure but by the divegence of the potential. On
countable spaces, the previous results extend easily when under spectral gap conditions.
In the transient case, the Dirichlet space H is the space of all functions f with finite
energy e(f) which are limits in energy norm of functions with finite support. The energy
of a measure is defined as sup scy %
well defined in H for all finite energy measures p, by the identity e(f, Gu) = (f, p), valid
for all f in the Dirichlet space.

Most important cases are the non ramified covering of finy the finite graphs. Let us

It includes Dirac measures. The potential G is

consider the universal covering. It is easy to check it will be transient even in the recurrent
case as soon as (X, F) is not circular.

Let G be the Green function on a covering ). Let p be the canonical projection from
Y onto X. We have G™ =3, 1, G='Y for any o’ € p~!(x).

Let us consider the universal covering. It is easy to check it will be transient even in
the recurrent case as soon as (X, F) is not circular.

The expression of the Green function G on the universal covering can be given exactly
when it is a regular tree, i.e. in the regular graph case.

Exercise 8 Show that on the r—regular tree X", for r > 3, the Green function is given

Ty (Tfl)lfd(z,y)
by G = =
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3 Loop measures

3.1 A measure on based loops

We denote P* the family of probability laws on piecewise constant paths defined by F;.
]P)x('Y(tl) =1, V(th) = xh) = Ptl (l‘, xl)PtQ_tl (1‘1, $2) s Pth_th—l ("L‘h—lv xh)

Denoting by p(7y) the number of jumps and 7; the jump times, we have:

]P)m(p<"}/) = /{Z,’)/Tl =T,y VT, = .T}kfl,Tl € dtl, ,Tk & dtk)

C:v,:v Cm _1zpRx -

For any integer p > 2, let us define a based loop with p points in X as a couple [ = (£, 1) =
(&1 <m < p), (T, ] <m <p+1),)in XP x ]Rﬁ“, and set & = &,+1 (equivalently,
we can parametrize the the discrete based loop by Z/pZ). The integer p represents the
number of points in the discrete based loop § = (&1, ...&p)) and will be denoted p(§).
Note two time parameters are attached to the base point since the based loops do not in
general end or start with a jump.

Based loops with one point (p = 1) are simply given by a pair (§,7) in X x R,.

Based loops have a natural time parametrization [(¢) and a time period T'(§) =
fol)ﬂ 7;. If we denote Y"1 7; by Tt U(t) = &neq on [Th—1,T,) (with by convention
To=0and §& =§,).

A o-finite measure p is defined on based loops by

001 X,T
“:Z/o B Mgt
reX

where Py denotes the (non normalized) ”law” of a path from z to y of duration ¢ : If
t1 < tg... <tp <Ht,

X x xT x 1
Pt 7y<l(t1) = .I‘h ceey l(th) = .’L‘h> = [Ptl]ml [Ptgftl]x;-“[Ptfth]yh)\_
y
Its mass is p;¥ = [I;tjg. And for any measuable set A of piecewise constant paths indexed
by [0 ¢], we can also write
" 1
BEY(A) = Po(AN {2 = y})5
y
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From the first expression, we see that by definition of u, if | < t5... <t <,

1
pl(t) = z1, ., l(ty) = ap, T € dt) = [Py 1-4,]5, [Ptz—tl]i;~-~[Pth—th_1]i2_1Zdt (1)

Note also that for k > 1, using the second expression of IP;"* and the fact that condition-
ally to Ny = k, the jump times are distributed like an increasingly reordered k—uniform
sample of [0 ¢]

Afo’$(p = k’,gg = I, ,fk = {L‘k,Tl € dtl, ,Tk - dtk)
— _P$ PZ‘Q ..P;‘k1{0<t1<...tk<t}e_tdt1...dtk

zo Lz
Therefore
ulp==~k & =x,.,& =x, 11 € dty, .., Ty, € dty, T € dt) (2)
— Pf;..ijMetdtl...dtkdt (3)
for £ > 1.

Moreover, for one point-loops, u{p(§) = 1,& = x1, 1y € dt} = 6T_talt

3.2 First properties

Note that the loop measure is invariant under time reversal.

If D is a subset of X, the restriction of u to loops contained in D, denoted u” is
clearly the loop measure induced by the Markov chain killed at the exit of D. This can
be called the restriction property.

Let us recall that this killed Markov chain is defined by the restriction of A to D and
the restriction PP of P to D? (or equivalently by the restriction ep of the Dirichlet norm
e to functions vanishing outside D).

As tkk_!l e~'dt = 1, it follows from (f]) that for k& > 1, on based loops,

HP(E) = ko€ = Ty b = 1) = LPTIL P (4)

= P
In particular, we obtain that, for k > 2

wlp = K) = L Tr(P¥)
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and therefore, as Tr(P) = 0,

p(p>1) = %TT(P’“) = —log(det(I — P)) = log(det(G H)\ )

wMg

since (denoting M) the diagonal matrix with entries A, ), we have

_det(M, - C)
det(I — P) = T}ﬁ)
Moreover
[ p01-n(@) Z Tr(PY) = Tr((1 - P)™'P) = Tr(GC)

3.3 Loops and pointed loops

It is clear on formula ] that g is invariant under the time shift that acts naturally on
based loops.

A loop is defined as an equivalence class of based loops for this shift. Therefore, u
induces a measure on loops also denoted by p.

A loop is defined by the discrete loop & formed by the &; in circular order, (i.e. up to
translation) and the associated scaled holding times. We clearly have:

,u(§o = (1’1,372, ...,.I‘k)o) = P;Ql...Pmmlk

However, loops are not easy to parametrize, that is why we will work mostly with
based loops or pointed loops. These are defined as based loops ending with a jump, or as
loops with a starting point. They can be parametrized by a based discrete loop and by
the holding times at each point. Calculations are easier if we work with based or pointed
loops, even though we will deal only with functions independent of the base point.

The parameters of the pointed loop naturally associated with a based loop are &, ..., §,
and
M+ Tpn="7,T=7,2<i<p

An elementary change of variables, shows the expression of ;1 on pointed loops writes:

lu(p = kagz = :L‘iaTi* S dtz) = P:Bxl P:Bxlkz _Etldtl dtk (5)

13



Trivial (p = 1) pointed loops and trivial based loops coincide.
Note that loop functionals can be written

= e ®il((& 7)) i =1, .0k)

with @, invariant under circular permutation of the variables (&;, 7).
Then, for non negative ®,

ot
/ o) / Zcbk i, t;) P Pfl’@e_z“idtl...dtk

)

and by invariance under circular permutation, the term t; can be replaced by any t;.
Therefore, adding up and dividing by k, we get that

/ pu(dl) / Z@k (23, t;) P21 PPre™ Xttty

The expression on the right side, apphed to any pointed loop functional defines a
different measure on pointed loops, we will denote by p*. It induces the same measure as
1 on loops.

We see on this expression that conditionally to the discrete loop, the holding times of
the loop are independent exponential variables.

,U (p k gl - wa S dt H 0527527% i i <6)

lGZ/pZ

~t on Ry and

Conditionally to p(§) = k, T is a gamma variable of density %e
(T—;, 1 <i < k) an independent ordered k-sample of the uniform distribution on (0,7)
(whence the factor %) Both are independent, conditionally to p of the discrete loop. We
see that p, on based loops, is obtained from p on the loops by choosing the based point
uniformly. On the other hand, it induces a choice of & biased by the size of the 7;’s,
different of u* (whence the factor % But we will consider only loop functionals.

It will be convenient to rescale the holding time at each & by A, and set 7; = ;_5,

The discrete part of the loop is the most important, though we will see that to estab-
lish a connection with Gaussian fields it is necessary to consider occupation times. The
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simplest variables are the number of jumps from z to y, defined for every oriented edge
(z,y)
=i & =280 =y}

(recall the convention &,.; = &) and

N, = Z N,.,

)

Note that N, = #{i > 1: &, = x} except for trivial one point loopsfor which it vanishes.
Then, the measure on pointed loops (f) can be rewritten as:

dt
pp=1E=u7edt)= ’\”t— and (7)

pip =k, & =z, 7 € diy) HCﬁ;yHA Ne T Aeeetdts (8)

1€Z/pZ

Another bridge measure p*¥ can be defined on paths v from z to y: p™Y(dy) =
i B )
Note that the mass of u™¥ is G*Y. We also have, with similar notations as the one defined
for loops, p denoting the number of jumps

() = kyn =21, 1, = ko1, 1 € dty, Ty € g, T € dt)

CJB:BQC:BQ;E Cm
- A )\m: )\ - 1yl{o<1ﬁ1< <tp<t}€ dtl dtpdt

Exercise 9 For any © # y in X and s € [0,1], setting P = P if (u,v) # (x,y) and
ng = sP,, prove that:

,u(sN’”’yl{pM}) — —log(det(I — P®)))
Differentiating in s = 1, show that
,U(Nm y) [([ P) ]ypym = Gx’ycm,y

and p(Nz) =, 1(Ney) = AG™* =1 (as (My — C)G = 1d).
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3.4 Occupation field

To each loop I” we associate local times, i.e. an occupation field {l/g\c, x € X} defined by

p(l)

o[ -3
"= / Lig(s)=2 Lie—aTs
| L= Ag {&i=a}

for any representative [ = (&;, 1) of [°.

For a path 7, 7 is defined in the same way.
Note that

(1= )1 = [t — e = log1+ ) ©

T

(by expanding 1 — e ! before the integration, assuming first « small and then by ana-
lyticity of both members, or more elegantly, noticing that fab(e*“ —e” )dw
n (a,b) and (¢, d)).

72 1

In particular, p(l*1gp—13) = 3=

is symmetric

From formula [J, we get easily that the joint conditional distribution of (lA“*’, r € X)
given (N,, x € X) is a product of gamma distributions. In particular, from the expression
of the moments of a gamma distribution, wee get that for any function ® of the discrete
loop and k£ > 1,

(Y oy @) = A u((Ny + k= 1) (N + 1) N, )

In particular, p(I*) = lu(Ne) + 1] = G**.

Note that functions of | are not the only functions naturally defined on the loops.
Other such variables of interest are, for n > 2, the multiple local times, defined as follows:

n—1
[E1Tn Z/O 1{5(,51) T1g gy bt ) =T E(tn)= x]}Hgdt

_]:0 <t1<..<tpn<T

It is easy to check that, when the points x; are distinct,

n—1 n
[Frootn = Z Z H 1{§il:xl+j}7:i\l' (10)

7=0 1<41 <. <ipn <p(l) I=1
Note that in general [*1** cannot be expressed in terms of [.

16



~

oy =y = ... =@, [P =

e 1), [l“”]" It can be viewed as a n-th self intersection

local time.
One can deduce from the defintions of u the following:
Proposition 10 ,LL(ZA““) = G GrTs G

Proof. Let us denote A—ly [P]5 by p; or pi(x,y). From the definition of (@120 and
1L, ,u(z\“m") equals:

Z)\ Z / / ptl(x T145) - Pty (g, ) [ [ dtsdt

0<ty.. <tn<t}

where sums of indices k + j are computed mod(n). By the semigroup property, it equals

Z// tptz b (T4 a4g) Pty (Tngg, 14g) | [ dtadt.
{0<t1<...<tp<t}

Performing the change of variables vy =ty —t1,..,v, =t, —t,_1,v1 = t; +t —t,, and
v = ty, we obtain:

n—1
1
Z/{ yO1L+ et pvz(l‘1+]a$2+3) . Puy (l‘,H_j,xH_j) Hdvidv
=0 O<v<vy,0<v;

0o (L1, 22) « o Poy (T, T dv;
/<vz}U1+ T npz( 1,22) - Do ( 1)H

:/ pUQ(l‘lny)---pul(xn,xl)Hdvi
{0<vi}
— Grimgraa | G

Note that another proof can be derived from formula ([() =

Exercise 11 Forxz, = x5 = ... = xp, we could define different self intersection local times

[ = > H Lig, =} T,

1<ip<..<ip<p(l) I=

17



which vanish on N, < k. Note that

Tx,(2) L 2o & ~\2
P = () = 3 Ly ()
i=1

1. For any function ® of the discrete loop, show that

p(l)
L2y ®) and (@Y 1ie—ay (7)%)) = 20, u(®N,).

i=1

p(20) = 22—

2. More generally prove in a similar way that

No(N, — 1).(N, — k + 1)
Kl

(@O D) = A u( L,z ®).

Let us come back to the occupation field to compute its Laplace transform. From
the Feynman-Kac formula, it comes easily that, denoting Mx the diagonal matrix with
coefficients 3=

B (e ) 1) = S (exp(t(P — T — M,))E — exp(t(P — 1))

Integrating in ¢ after expanding, we get from the definition of y (first for x small enough):

R 00 00 k—1
/(e@x) — )du(l) = Z/O [Tr((P — M%)k) — Tr((P)’“)]%e—tdt
S Tr(P = M) = Tr((P))
k=1

= —Tr(log(I — P+ M§)) + Tr(log(I — P))
Hence, as Tr(log) = log(det)
/(e—<3X> — 1)dp(l) = log[det(—L(—L + My/»)™")] = —logdet(I + V My)

which now holds for all non negative xy as both members are analytic in y. Besides, by
the "resolvent” equation:

det(T + GM,)™" = det(T — G, M,) — ‘ff;(%) (11)

18



Note that det(I+GM,) = det(I+M sGM s) and det(I -G, M) = det(I-M G M ),
so we can deal with symmetric matrices. Finally we have the

Proposition 12 /,L(e_<lA’X> —1) = —log(det( + M xGM f)) = IOg(idf;((G(f)))

Note that in particular u(e_“% —1) = —log(1 + tG™").

Note finally that if y has support in D, by the restriction property

det(G?)

R —<lx> _ D _ G
1L ix\pygy (€77 = 1)) = —log(det( + M xG"M ) = 1Og(det(GD))

Here the determinants are taken on matrices indexed by D and G the Green function
of the process killed on leaving D.
For paths we have Pf’y(e_<l’x>) = )\_11/ exp(t(L — M, ))s,- Hence
¢ P

g 1 . \
M$7y(e <%X>) = )\_((I — P+ Mx/m) 1)J17y = [GX] Y.

Y

Also E?(e=0) = Y [G|*Vk, i.e.[G\K]%.

Y

4 Poisson process of loops

4.1 Definition

Still following the idea of [[4], which was already implicitly in germ in [BJ], define, for all
positive «, the Poissonian ensemble of loops £, with intensity au. We denote by P or
P, its distribution.

Recall it means that for any functional ® on the loop space, vanishing on loops of
arbitrary small length,

B(e'Zieca®D = exp(a / (e —1)p(dl))

Note that by the restriction property, L2 = {l € L,,] C D} is a Poisson process of
loops with intensity x4, and that £ is independent of £,\L2.
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We denote by DL, the set of non trivial discrete loops in £,. Then,

det(G (@) (@)
Iwbﬁa:{mbria>=eﬂww@ahwomum»=aWI1&)PIIG%WIIA:“

T,y T
with NI = > ier., No(l) and NS = > ier.. Nay(l), when these loops are distinct.

We can associate to £, a o-finite measure (in fact as we will see, finite when X is
finite, and more generally if G is trace class) called local time or occupation field

)

leLy

Then, for any non-negative measure y on X

Ble~(E) = expla [ (¢ = 1)aut)
and therefore by proposition [ we have

Corollary 13 E(e_<a"x>) = det(I + MX/QGM\/%)*O‘ _ (dde;:t(%)))a

Many calculations follow from this result.
It follows that E(e*« ) = (1+tG®*)~“. We see that L, follows a gamma distribution
Fr e

(o, G™*), with density 1{x>0}%@ (in particular, an exponential distribution of
mean G%* for « = 1). When we let « vary as a time parameter, we get a family of gamma
subordinators, which can be called a "multivariate gamma subordinator”.

We check in particular that E(Z(\f) = aG® which follows directly from u(l,) = G®=.

Note also that for a > 1,

E((1 - exp(=722)) ) = ().
More generally, for two points:
E(e e 7 ) = (14 1G™7)(1 + sG¥Y) — st(G™)?)

This allows to compute the joint density of Z;x and Z;y in terms of Bessel and Struve
functions.
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We can condition the loops by the set of associated non trivial discrete loop by using
the restricted o-field o(DL,,) which contains the variables N, ,. We see from JJ and [] that

s Ay (@)
E(e <£a7x>|D£a) = H()\ +x )Nx i

The distribution of {Néa), z € X} follows easily, from corollary [ in terms of generating
functions:

E([T(s2" ") = det(6,,, + \/ ML) e (12)

, 525y
so that the vector of components N follows a multivariate negative binomial distribution
(see for example [B]).

It follows in particular that N follows a negative binomial distribution of parameters

—a and 7. Note that for a = 1, N 41 follows a geometric distribution of parameter

1

G

4.2 Moments and polynomials of the occupation field

It is easy to check (and well known from the properties of the gamma distributions) that

the moments of Z(\f are related to the factorial moments of Néa) :

(NS + k)(NEY + &k — 1) (NS + 1)
kINE

E((L, )*DL,) =

Exercise 14 Denoting L the set of non trivial loops in L., define

el S SURED SN § (it

m=1ki+...+km=Fk LAl #lmect 7=1

Deduce from exercise [ that E(L, |D£ ) = k,/\k 1{Nx>k}(N —k+1). (N — )N

It is well known that Laguerre polynomials L,(f‘ with generating function

ut

t

¢k ple=1) ¢
2L =
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are orthogonal for the I'(«, 1) distribution with density “a;ﬁl{wo}. They have mean

(@)

zero and variance w Hence if we set 0, = G""and P, (z) = (—a)kL,(ffl)(%), the
random variables Py’ ’U’”(Eam) are orthogonal with mean 0 and variance 02’?%, for

k> 0.
Note that PP7* (Lo ) = Lo — aoy = Lo —E(La ). It will be denoted L, .
Moreover, we have Y 0" t* P, (u) = Z(—at)’%,ﬁ“‘”(g) _ _eTtot

(1+0ot)«
Note that
Exzt ZE?JS
e ltoxt 61+oys
IE((1 +o.t)(1+o 5)0‘)
T y

1 ot

= 1—
(1+0,t)(1 + oy9)” (( 1+ o,t

OyS t s o\
_ _ G$7y (0%
1+o0ys 1+amt1+0ys<( ))
=(1- st(G”’y)Q)_“.

)(1

Therefore, we get, by developping in entire series in (s, t) and identifying the coefficients:

a+1)..(a+k—1)
k!

Let us stress the fact that G** and GYY do not appear on the right side of this

this formula. This is quite important from the renormalisation point of view, as we will

E(Pe (Z20), PE(Z0) = dpa(Groy (13)

consider in the last section the two dimensional Brownian motion for which the Green
function diverges on the diagonal.

More generally one can prove similar formulas for products of higher order.

Note that since G, M, is a contraction, from determinant expansions given in B4 and
B3], we have

det(l + MzGM )" =1+ ) (=" > Xi-Xi, Pera(Gipi,, L < Lm < k) (14)
k=1

and then, from corollary [[3, it comes that:

E(<Z:l,x>k) = inl...xikPerO{(Gil,im,l <Il,m<k)

Here the a-permanent Per, is defined as ZUESk am(")Gil,ia(l) "'Gikvio(k) with m(o) denoting

the number of cycles in o.
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Note that from this determinant expansion follows directly (see [BJ]) an explicit form
for the multivariate negative binomial distribution, and therefore, a series expansion for
the density of the multivariate gamma distribution.

It is actually not difficult to give a direct proof of this result. Thus, the Poisson process
of loops provides a natural probabilistic proof and interpretation of this combinatorial
identity (see [BJ] for an historical view of the subject).

We can show in fact that:

i1

Proposition 15 For any (i1, ...iy) in X5, B(La ..La ") = Perg(Givin 1 < I,m < k)

Proof. The cycles of the permutations in the expression of Per, are associated
with point configurations on loops. We obtain the result by summing the contributions
of all possible partitions of the points ¢;...7; into a finite set of distinct loops. We can
then decompose again the expression according to ordering of points on each loop. We
can conclude by using the formula u(z\:”l"“’xM) = GG G and the following
property of Poisson measures (Cf formula 3-13 in [[)]): For any system of non negative
loop functionals F;

EC Y [[F@)=]]omF)

li#ls.. Al E€La

Remark 16 We can actually check this formula in the special case iy = iy = ... = i, = T.
From the moments of the Gamma distribution, we have that E((Z;m)") = (G"")"a(a +
1)...(a+n—1) and the a-permanent writes >} d(n, k)a* where the coefficients d(n, k) are
the numbers of n—permutations with k cycles (Stirling numbers of the first kind). One

checks that d(n + 1,k) = nd(n, k) + d(n, k — 1).

Let S be the set of permutations of k& elements without fixed point. They correspond
to configurations without isolated point.

Set Perl(Gim 1 <Il,m < k)= > oes? Q™G | Glet | Then an easy calcula-
tion shows that:
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Corollary 17 E(Z:“ Zv ) = Per(Givim 1 <1,m < k)

Proof. Indeed, the expectation writes

oo Y ()]G Pera(GtLa b € 1)

p<k IC{1,..k},|I|=p lele

and
Pery(G™™ a,b € I) Z H G Per? (G'" a,b € J).

JCI jel\J

Then, expressing IE(ZJZl Z;Zk) in terms of Per?’s, we see that if J C {1,...k}, |J| < k, the
coefficient of Per? (G a,b € J) is Z (—1)F M H G'% which vanishes as (—1)71 =

I,1DJ jeJge

(_1)|1| — (_1)|J\<_1)\I\J\ and Z S(= )\I\J\ =(1- 1)k*\J\ —0. m

Set Q7 (u) = P (u + ao) so that P,?U(Z;x) = gf’(Z;”) This quantity will be
called the n-th renormalized self intersection local time or the n-th renormalized power
of the occupation field and denoted Eg"

From the recurrence relation of Laguerre polynomials

nL@ V() = (—u+2n+a—2)L" Y — (n+a —2)L*5Y,

n—1

we get that

n@Qn (u) = (u—20(n — 1))Qy7% (u) — o (a +n — 2)Q) % (u)

In particular Q5 (u) = 3(u? — 20u — ac?).

(
We have also, from ([[3)

a+1l)..(a+k—1)
k!
The comparison of the identity ([[) and corollary [[7 yields a combinatorial result

a0z p © a0y z «
E(Q0 (L), QM (£2)) = (G2

(15)

which will be fundamental in the renormalizing procedure presented in the last section.
The identity ([[J) can be considered as a polynomial identity in the variables o, o,
and G™Y.
If Q27 (u) = SF _ o ¢&Fumak=m if we denote N, ., the number of ordered configu-
rations of n black points and m red points on 7 non trivial oriented cycles, such that only
2p links are between red and black points, we have
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E((La )L )™ =32 D0 o Nump G (00)" P(e,)"

r  p<inf(m,n)

and therefore

YD D aay ey Namrp = Ounless p =1 = k. (16)

r p<m<kp<n<l
. ok a ala+1)..(a+ k-1
YA G Ny = ot 1) )

k!

(17)

Note that one can check directly that q,‘:’k = %, and Ny gi1x = kl(k — 1), Negrr = k!
which confirms the identity ([[7]) above.

4.3 Hitting probabilities

Let [HY Js = Py(27, = y) be the hitting distribution of I by the Markov chain starting at
x (HT is called the balayage or Poisson kernel). Set D = F¢ and denote e, PP = P)|pxp,
VP =[(I - PP)]7! and GP = [(My — C)|pxp|™" the energy, the transtion matrix, the
potential and the Green function of the process killed at the hitting of F'. Recall that

[H]G = Lamyy + 250 2oep(PP)IEP; = Lamyy + 2507 2o.eplVPIEP; . Moreover we
have by the strong Markov property, V = VP 4+ HFV and therefore G = GP + HFG.
(Here we extend VP and G” to X x X by adding zero entries outside D x D).

As G and G are symmetric, we have [H*G|} = [H"G]Y so that for any measure v,
HY(Gv) = G(vHT).

Therefore we see that for any function f and measure v, e(H” f, GPv) = e(HY f, Gv) —
e(HF f,H'Gv) = (H" f,v) — e(HY f,G(H"v)) = 0 as (HF)> = H"

Equivalently, we have the following:

Proposition 18 For any g vanishing on F, e(HY f,g) = 0 so that I — HY s the e-
orthogonal projection on the space of functions supported in D.

Note that these results extend without difficulty to the recurrent case. In particular,

for any measure v supported in D, GPv = G(v — vHY) and e(HY f,GPv) = 0 for all f.
For further developments see for exemple ( [[[7]) and its references.
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The restriction property holds for £, as it holds for . The set L2 of loops inside D
is associated with p” and independent of £, — L. Therefore, we see from corollary

that
det(G,,) det(GP)

(e (55 = det(G) den(GP))

~

From the support of the of the Gamma distribution, we see that u({(F) > 0) = oc.
But this is clearly due to trivial loops as it can be seen directly from the definition of
that in this simple framework they cover the whole space X.

Note however that

PI(F) > 0,p>1) = p(p> 1) — u((F) = 0,p > 1) = u(p > 1) — P (p > 1)
det(/ - P) | | det(GP)
detpnd—P) Og(nxeF N det (G-

= — log(

It follows that the probability no non trivial loop (i.e.a loop which is not reduced to a
point) in £, intersects F' equals

exp(—on({Lp) > 1IF) > 0))) = (7 dfi(iei<a>

Recall that for any (n + p,n + p) invertible matrix A, denoting e; the canonical basis,

).

det(A™ ") det(Ay, 1 <i,7 < n) = det(A™") det(Aey, ... Aen, €ni1, --Cnip)
= det(ey, ..., A enin, o A ensy)
=det((A " )ppn <kl <n+p).

In particular, det(G”) = L(G), so we have the

- det(G\FXp)

Proposition 19 The probability that no non trivial loop in L, intersects F' equals

I gevin e
zeF
Moreover E(67<Z;7££’X>) — (%)a
elrpxF
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In particular, it follows that the probability no non trivial loop in £, visits = equals

( W ém)a which is also aconsequence of the fact that N, follows a negative binomial

distribution of parameters —a and
Also, if F} and F5, are disjoint,

>\G’zz

p(I(F)I(F) > 0) = p(l(F) > 0,p > 1) + p(l(F) > 0,p > 1) — p(I(F U F) > 0,p > 1)
_1 det(G) det(GP1NP2)
= log( et (@Pn) det(GP7)

Therefore the probability no non trivial loop in £, intersects F; and Fy equals

det(G) det(GP"P2)
det(GP1) det(GP2) )

exp(—apu({l,p(l) > 1 Hl )>0})) = (

It follows that the probability no non trivial loop 1n E visits two distinct points x and y
Gw,wa,yi(Gw,y)Q
Gz GYY

)@ and in particular 1 — A& if = 1.

equals ( e le m

Exercise 20 Generalize this formula to n disjoint sets:

~ det(@) HKj det(GPi"Pi) —a
P(ﬂl € La, HZ(E) > 0) = <H det(GDi) Hz’<j<k det(GDiﬂDjﬂDk))

Note this yields an interesting determinant product inequality.
5 The Gaussian free field
5.1 Dynkin’s Isomorphism

By a well known calculation, if X is finite, for any x € RY,

/det(M, — / ~h<n o BT dat = det(Gy)

2n)XI2 det(G)

and

det(M, — det(G
€ A /Z Zy 6 —1<2?, X>ef—ezHu€Xdz _ (Gx)x,y e( X)

2n)X172 det(G)
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This can be easily reformulated by introducing on an independent probability space
the Gaussian field ¢ defined by the covariance Ey(¢p*¢?) = G*¥ (this reformulation cannot
be dispensed with when X becomes infinite)

So we have Eg((e” 750" x>) = det (] + G’MX)_% = /det(G,G~1) and

E¢((¢x¢ye*§<¢’2 X>) = (Gy)"Y4/det(G,G=1) Then as sums of exponentials of the form

e~2<X> are dense in continuous functions on R the following holds:

Theorem 21  a) The fields 2% and %ng have the same distribution.

b) Eu((¢" Y E( ng = [E(F £1 + 7)Y (dy) for any bounded functional F' of a non
negative ﬁeld.

Remarks:

a) This is a version of Dynkin’s isomorphism (Cf [[]). It can be extended to non
symmetric generators (Cf [I9]).

b) An analogous result can be given when « is any positive half integer, by using real
vector valued Gaussian field, or equivalently complex fields for integral values of a (in
particular o = 1): If ¢y, ¢9...¢ are k independent copies of the free field, the fields C s
and %Zlf ¢7 have the same law.

c¢) Note it implies immediately that the process ¢? is infinitely divisible. See [ and
its references for a converse and earlier proofs of this last fact.

Exercise 22 For any f in the Dirichlet space H of functions of finite energy (i.e. all
functions if X is finite), the law of f + ¢ is absolutely continuous with respect to the law

of ¢, with density exp(< —Lf, ¢ >, —%e(f))

Exercise 23 a) Using proposition [1§, show (it was observed by Nelson in the context
of the classical (or Brownian) free field) that the Gaussian field ¢ is Markovian: Given
any subset F' of X, denote Hp the Gaussian space spanned by {¢¥,y € F}. Then, for
x € D = F¢, the projection of ¢* on Hp (i.e. the conditional expectation of ¢* given
o(¢",y € F) ) is ¥ ep HF 20

b)Moreover, show that P = ¢ — HY ¢ is the Gaussian field associated with the process
killed at the exit of D.
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5.2 Fock spaces and Wick product

The Gaussian space H spanned by {¢”,z € X} is isomorphic to the Dirichlet space
H by the linear map mapping ¢* on G* which extends into an isomorphism between
the space of square integrable functionals of the Gaussian fields and the symmetric Fock
space obtained as the closure of the sum of all symmetric tensor powers of H (Bose second
quantization: See [BQ], BF]). We have seen in theorem P1] that L? functionals of L, can
be represented in this symmetric Fock space.

In order to prepare the extension of these isomorphisms to the more difficult framework
of continuous spaces (which can often be viewed as scaling limits of discrete spaces),
including especially the planar Brownian motion considered in [[4], we shall introduce
the renormalized (or Wick) powers of ¢. We set : (¢*)" := (G*%)% H,(¢* /v/G=*) where
H, in the n-th Hermite polynomial (characterized by Y & H,(u) = et“_é). It is the
inverse image of the n-th tensor power of G* in the Fock space.

Setting as before o, = G** from the relation between Hermite polynomials Hy, and

Laguerre polynomials Ly, 2,

Han () = (=2)"nlLo* ()

it comes that:

(@ = 2t (1))

More generally, if ¢1, ¢s...¢% are k independent copies of the free field, we can define
3 H?:l ¢;Lj D= Hle : gb}” .. Then it comes that:

k k
|
. 2\n . _ n L a2ng
Q= > ol
1 ni+..4+ng=n 7j=1
k
From the generating function of the polynomials P,2",
k k
%70 n! %,a
PO u) = Y ol [P (w)).
1 ni+..+ng=n 7=1

Therefore

e R (13)



Note that : 3% @5 = S ¢35 — o These variables are orthogonal in L*. Let # =7 — 5 be
the centered occupation field. Note that an equivalent formulation of theorem PJ] is that
the fields 1 :>°F ¢7 . and /:'g have the same law.

Let us now consider the relation of higher Wick powers with self intersection local
times.

Recall that the renormalized n-th self intersections field £2™ = P (L m) Q> (L m)
have been defined by orthonormalization in L? of the powers of the occupation time.

Then comes the

Proposition 24 The fields £7" and : (—

PR
s n:
2

Elf ¢3)" : have the same law.

This follows directly from ([[§).

Remark 25 As a consequence, it can be shown that:

H Q" Y QRa)mOGw G

where Sk, k,,..k; is the set of permutations o of k =) k; such that
o k1, S e ke D R 1, S T R 4 kY ds empty for all .

The identity follows from Wick’s theorem when « is a half integer, then extends to all
a since both members are polynomials in «. The condition on ¢ indicates that no pairing
is allowed inside the same Wick power.

6 Energy variation and currents

The loop measure p depends on the energy e which is defined by the free parameters
C, k. It will sometimes be denoted p.. We shall denote Z, the determinant det(G) =
det(My — C)~L. Then pu(p > 0) = log(Z.) + > log(A,).

Z¢ is called the partition function of L,.

The following result is suggested by an analogy with quantum field theory (Cf [{]).

Proposition 26 i) 3 8" =T

e > 0, G = Ty g with Ty (1) = (I 4 ) — 2o (1) — B (i),
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Note that the formula i) would be a direct consequence of the Dynkin isomorphism if
we considered only sets defined by the occupation field.

Proof. Recall that by formula ([Zl) ,u p=1¢=a7edt)=e™4%and p*(p =
k& = a7 € dty) = L1, Cog® T Ar™ Tliez pn Aece 6 dt

Moreover we have C; , = C) , = A Pym and \, = Kk, + Zy Cay

The two formulas follow by elementary calculation. m

Recall that p(1*) = G** and u(N, y) =GV, .
So we have u(7,,) = G + G¥Y — G”C v,
Then, the above proposmon allows to compute all moments of T" and 1 relative to fe (they
could be called Schwinger functions). The above proposition gives the infinitesimal form
of the following formula.

Proposition 27 Consider another energy form €' defined on the same graph. Then we
have the following identity:

/

Opter _ % Ney log(G2) - T (X, 2e)i*
Olhe

Consequently

C:/c, _ r_ T Ze/
((eZNx’yIOg(#,y) P (A=)l —1)) = ) (19)

. ]
0 og( Z

Proof. The first formula is a straightforward consequence of (). The proof of ([9)
goes by evaluating separately the contribution of trivial loops, which equals ) log(/\—Z)
Indeed,

!

Ne y log(G22) =3 (N —Ag )T 'y
,ue(( 22 Ny log(z ) > ( ) _1) —_ Me'(p> 1)_Me(p> 1)+ ,ue(l{p=1}(€zuz Az)l _1))'

The difference of the first two terms equals log(Z.)+>_ log(\,)—(log(Z.)—>_ log(A:)).
The last term equals >, [ (e” T 1)§dt which can be computed as before:

~ /

/ )\
(L) (505 — 1)) = =37 log (2 (20)
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Remark 28 ( h-transforms) Note that if C;:,y = h*h¥Cy, and k), = —hLh\ for some
positive function h on E such that Lh < 0, as X' = h?X and [P']} = ;5PhY, we have

B hely
ne,y — G*Y Ze! 1
[G'™Y = 7 and = = [oee-

1

Remark 29 Note also that [‘Z]% = R(e 2l"@) if ¢ is the Gaussian free field associ-
ated with e.

Integrating out the holding times, formula ([J) can be written equivalently:

Calc )\$ Ze’
pe( [T =2 TIS" = 1) = log(55) (21)
( )Cﬂ%y Xy Ze
x,y T
and therefore
Cl ., @ A1 (@) Cl o N@ v\ Zo .y
E, ([T TIGY ) = B ([T 0 e WMl = (5 (22)
(@y) Y z 0T (@y) Y ¢
c; c
Note also that H(Ly)[ﬁ]%,y = H{Ly}[ﬁ]%,w%,x_

Remark 30 These i’ determine, when € wvaries with % <1 and )‘7/ =1, the Laplace

transform of the distribution of the traversal numbers of non oriented links Ny, + N, ;.

Other variables of interest on the loop space are associated with elements of the space
A~ of odd functions w on oriented links : w*¥ = —w¥*. Let us mention a few elementary
results.

The operator [P(“’)E = P7exp(iw™¥) is also self adjoint in L?(\). The associated
loop variable writes »°,  w™¥N,,(l). We will denote it [;w. This notation will be used
even when w is not odd. Note it is invariant if w is replaced by w + dg for some g. Set

_p(w)y—11z
[GW]zy = W. By an argument similar to the one given above for the occupation
field, we have:
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P (¢’ e —1) = exp(t(P“) = 1)), o —exp(t(P—1)),,. Integrating in ¢ after expanding,
we get from the definition of pu:
. =1
[ = Ddutt) = 3 LT = Tr(P))
k=1

Hence

/(eifl“ — 1)dpu(l) = log[det(—L(I — P“))~4
Hence [(e')i* —1)du(l) = log[det(—L(I — P*))~'] and

/(exp(z’ /lw) — Dp(dl) = log(det(G¥G™1))

We can now extend the previous formulas (B1) and (B2) to obtain, setting det(G“) = 2.,

’

- og(Zzay LAt [, w Zer
pro(e” = e T TR OIS ) 1og(Z2) (23)
and o 2
E(H[ z,y eiwz,y]Ng(;fly)efZ()\zf)\z)ﬁax> _ ( e \w )a (24>
Cay Z.

x?y
Alternatively, to simplify the notations slightly, one can consider more general energy
forms with complex valued conductances so that the current is included in ¢’.
Let us now introduce a new

Definition 31 We say that sets A; of non trivial loops are equivalent when the associated
occupation fields are equal and when the total traversal numbers y ;.\ Nuy(l) are equal
for all oriented edges (z,y). Equivalence classes will be called loop networks on the graph.
We denote A the loop network defined by A.

Stmilarly, a set L of non trivial discrete loops defines a discrete network characterized
by the total traversal numbers.

Note that these expectations determine the distribution of the network £, defined by
the loop ensemble £,. We will denote Be’e)l’“ the variables

(a
Cl . @ / T
[ﬂezwx,y]]\é,y) e E()\z_)\x)»ca X
x?y

'T7y

and B¢ the corresponding variables on the space of single loops.
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Remark 32 This last formula applies to the calculation of loop indices: If we have for
example a simple random walk on an oriented planar graph, and if 2’ is a point of the
dual graph X', w. can be chosen such that fl w,s 18 the winding number of the loop around
a given point z' of the dual graph X'. Then e'™ Xieza et is o spin system of interest. We
then get for example that

1 2m
p( [ wer #0) = —%/ log(det (G G=1))du
0

l

and hence

Z ‘ /wz = 0 = 627r f027r log(det(G?™4w=) G—1))du

l€La

Conditional distributions of the occupation field with respect to values of the winding num-

ber can also be obtained.

7 Loop erasure and spanning trees.

Recall that an oriented link ¢ is a pair of points (¢, ¢g") such that Cy = Cyp- ;+ # 0.
Define —g = (g%, 97).

Let ,ugfy be the measure induced by C' on discrete self-avoiding paths between x and
y: ,u;‘;’y(:c,xQ, s Tp=1,Y) = Cp 2y Cy a5 Cap 1y

Another way to defined a measure on discrete self avoiding paths from z to y is loop
erasure (see [[Z] ,[B7 and [[J]). In this context, the loops can be trivial as they correspond
to a single holding times, and loop erasure produces a discrete path without holding times.

We have the following:

Proposition 33 The image of p™Y by the loop erasure map v — YPF is u3% defined

on self avoiding paths by ugs(n) = ”zy(n)% = pZ"(n) det(Gpyxny) (Here {n}

denotes the set of points in the path n)

Proof. If n = (z1 = z, 29, ...x,, = y),and n,,, = (, ...,

[e.9]

WP = 1) = A—y + S IPREEL (P = o)
k=2
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where p7 { }C denotes the bridge measure for the Markov chain killed as it hits  and 6 the
natural shift on discrete paths. By recurrence, this clearly equals

e det
VEPEIVEV g VI s P VOV = )

as

Aet([(1 = Pllppojesinmye)  det(VIm-11)  det(Glm-1)
et ([(T = Pl jesnn ) det(VOmE) — det(GlmI)

Tm

[V =1} ]em

forallm<n-—1. m
Also, by Feynman-Kac formula, for any self-avoiding path 7:

. . det(Gy) ., T
/ I oy d) = ) = det( G o )
det(GY")
_ det(Gx)\{n}X{n} z,y (77)
det(G myxfn})

Therefore, recalling that by the results of section 1.3 conditionally to 7, 21 and Z{"}c
are independent, we see that under p®Y, the conditional distribution of 7 given v2¥ =
is the distribution of El E{"} i.e. the occupation field of the loops of £; which intersect
7.

More generally, it can be shown that

Proposition 34 The conditional distribution of the network L., defined by the loops of
v, given that vBE =1, is identical to the distribution of the network defined by £/L""
i.e. the loops of L1 which intersect n.

Proof. Recall the notation Z, = det(G). First an elementary calculation using ([])
shows that u"? (e’ f"/w]_{,yBE:n}) equals

fz Eit1 zw )‘E
st TL o 25

Cei i1 3
l / ! !
Cg; g;gcml 3" Cmn 1,y Zf?? w,u:v y( H[Cuvv eiwu,v]Nu,v(ﬁw)e <>\ A >
Cx,mcﬂﬁhl‘a“ Cﬂﬁnfl Y ‘ uFv Cu,v

1{’YBE_77})

(Note the term 67<>\ —Ad) can be replaced by [[, (A—") «(1),
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Moreover, by the proof of the previous proposition, applied to the Markov chain de-

_ Z e
fined by e’ perturbed by w, we have also pi.,* (e" " “ 1 se_yy) = C; ,,Cr, 4 Ch | €' fnw%i’“’
Therefore
/ / c
uxvy(H[ﬁeiwu,v]Nu,v(ﬁ'y)e<>‘ 7>"a>||,yBE — n) — M
’ u#v Cu,v Ze{”}cze’,w
Moreover, by (24) and the properties of the Poisson processes,
C{L,U W Nuv(ﬁl/ﬁ{n}c) —<)\/7A,21,Ei"}c> . ZeZ[e/}{n}c,w
E(| |[==e“="]™"™ 1 e =—
uFv Cu,v Ze{’?}cze’,w

It follows that the joint distribution of the traversal numbers and the occupation field
are identical for the set of erased loops and £,/ E‘l{"}c. |

Similarly one can define the image of P* by BFE which is given by

PEE(1) = Coyag-Co_y wn by det(G myxiny)

for n = (z1, ..., z,), and get the same results.

Wilson’s algorithm (see [B9)]) iterates this construction, starting with z’s in arbitrary
order. Each step of the algorithm reproduces the first step except it stops when it hits
the already constructed tree of self avoiding paths. It provides a construction of a random
spanning tree. Its law is a probability measure P¢,. on the set STx o of spanning trees of
X rooted at the cemetery point A defined by the energy e. The weight attached to each
oriented link g = (x,y) of X x X is the conductance and the weight attached to the link
(x,A) is k, we can also denote by C, a. As the determinants simplify, the probability of
a tree T is given by a simple formula:

() =2 J] C (25)

£er

It is clearly independent of the ordering chosen initially. Now note that, since we get a

probability
2> Il e I w-t

YeSTx A (z,y)eX z,(z,A)eT
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or equivalently

Z H Py H PA_erx)\mZe

TESTX,A (x,y)eT 1‘,($7A)ET

Then, it comes that, for any €’ for which conductances (including ') are positive only on

links of e,
0 O o B ) i PR
. (zy)eY Ey 2,(2,A)ET PX [Loex s Ze
and

/ /
S Mg T =) (26)
(x,y)eT 7o, (z,A)ET

Note also that in the case of a graph (i.e. when all conductances are equal to 1),
all spanning trees have the same probability. The expression of their cardinal as the
determinant Z. is Cayley’s theorem (see for exemple [B3]).

The formula (Pg) shows a kind of duality between random spanning trees and L. It
can be extended to L for any integer k if we consider the sum (interms of number of
transitions) of k£ independent spanning trees.

Exercise 35 Show that more generally, for any tree T' rooted in A,
sr({Y, T'CT}) = det(Gryxqry) [eer Ce, {T} denoting the vertex set of T

Corollary 36 The network defined by the random set of loops Ly, constructed in this
algorithm is independent of the random spanning tree, and independent of the ordering.
It has the same distribution as the network defined by the loops of L.

This result follows easily from proposition B4

Let us now consider the recurrent case.

A probability is defined on the non oriented spanning trees by the conductances:
PS,((7) is defined by the product of the conductances of the edges of 7 normalized by
the sum of these products on all spanning trees.

Note that any non oriented spanning tree of X along edges of E defines uniquely an
oriented spanning tree I, (7) if we choose a root zy. The orientation is taken towards the
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root which can be viewed as.a cemetery point. Then, if we consider the associated Markov

chain killed as it hits x¢, defined by the energy form ef=o} the previous construction yields

a probability IP’?S{;O}C on spanning trees rooted at xy which by (BJ) coincides with the image

of Pgp by Iy,. This shows in particular that the normalizing factor Z., . is independent
of the choice of ¢ as it equals (3 resry [ yyer Cry)~ . We denote it by Z?.

Exercise 37 Check directly. that Z, is independent of the choice of xg.

{zg}¢
Note also that if we set a;(7) =[], ,)e Ly B > resty Qao(7) is proportional to
Az @s x varies in X. More precisely, it equals K\, with K = 0 2. This fact is

zeX Az

known as the Markov chain tree theorem (7).
Let us come back briefly to the transient case by choosing some root zy. As by the

strong Markov property, V¥ = P,(T,, < co)V,?, we have &2 = “;—”i =P,(T, < 00), and
therefore
e BE T DTY T,r Gx,y
Por((z,y) €T) =Pu(n™ =y) = V' PyPU(Te = 00) = Gy G*(1 = =220).

Directly from the above, we recover Kirchhoff’s theorem:

xXr,T Gx,y Gy,x
Cx,y[G ’ (1 - G$7$) + nyy(l - Gy’y )]

C y(Ga‘ﬂr + GV — 2G™Y) = vayKl‘vy)v(x,y)

sr(£(z,y) € T)

and this is clearly independent of the choice of the root.
Give an alternative proof of Kirchhoff’s theorem by using (B4), taking C’, , = sC,,,
and C, , = Cy,, for {u,v} # {z,y}.

More generally we will show the transfer current theorem (see for exemple 1], [BJ]):

Theorem 38 P4 (£, ... +& € T) = ([]F Ce,) det(K&4 1 <4, § < k) with K@) =
G0, — 6,)" — G(0. — 6,).

Note this determinant does not depend on the orientation of the links.

Proof. We use recurrence on k. Let Ej denote the set of edges +£;, ...+&; and consider
the graph defined by identifying all points in Ej, to A. Let e* be the energy induced by
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the conductances Cyy, £(z,y) € E — Ej, and the killing measure £, + 32 4, yem, Coy
Let G the corresponding Green function.Let V*) be the subspace of A~ spanned by all
K¢ 1 < i < k.. Note that for any n = (u,v) the projection in A~ (equipped with the
scalar product defined by e) of K7 on [V®]* is dG®) (5, — 6,).

Indeed, the projection of K" coincides with the projection of «(,, where as before
we define o/(”)/ = ﬁ if (z,y) = £(u,v) and 0 elsewhere, as we have seen that K" is
the projection of ay, on the larger space of all differentials. But for any K & in V)
<a —dG® (5, — 6,), K 5i> 4, vanishes as the scalar product on forms can be replaced by
the one induced by e(”C since conductances of Ej do not contribute to this expression.

As seen before, <dG (0, — 0u), dGP(6, — 6,)) = [GW]w 4 [GP]2 — 2[GW]“Y (with
the convention that [G®]“* = 0 if u or v is A. Moreover, if ,; = 7, using the scalar
product in A~, det(K%% 1 <i,j <k+1) = det(<K§i,K51>A7 1<i,j<k+1). In
such a Gram determinant, one checks immediately that in the last column, K%+ can be
replaced by its projection on the orthogonal of the space spanned by the K%, 1 <i,j <k
i.e. on [V®]L. Therefore, if &1 =17,

det (K% 1 <i,j <k+1)=det(K%% 1 < i, < k)Cypo([GP]2" 4 [GRY — 2[GW]uY),

But the argument given for Kirchhoff theorem shows also that P¢,(£n € Y| £&,...£& €
T) = Cpo([GP]Y + [GW]2w — 2[G]4) 50 we can conclude. m
Therefore, given any function g on non oriented links,

Egp(e 2ee o) = EET(H(l + (e = 1)1eer)

=> Y e - )Py (£, £ G €T

k E£&H#EE. £ £,

_ Z Z H(e—g(&) — 1) det(K%% 1<i,j <k)

k E£&H#EE. £ £,
=D Tr((Mege-a-1)K)") = det(I + K Mge-s-1y)

and we have

ES (e 2eer98)) = det(I — M i EM o)

Here determinants are taken on matrices indexed by F.
This is an exemple of the Fermi point processes discussed in [B1]].
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Note that for any spanning tree 7', if 7 denotes M ,,, it follows from the above, by
letting g be mlipey,m — oo that P4 (T) = det((/ — KM¢g)(I — mp) + mp) = det((L —
KMC)TCXTC>

Note also that if €’ is another energy form on the same graph, E%T(H(x e %) =
) T,y

det(I — M e KM

Cc— C’ c-c’ )
C

On the other hand, from it also equals (3 7o [Tirpyer Coy) 22 = §§ so that finally

0

=det(I — M jo-gr KM

c-c’ C’ c-c’ C’)
ZO ==

8 Decompositions

Note first that with the energy e, we can associate a rescaled Markov chain Z; in which
holding times at any point = are exponential times of parameters \,: z; = =z, with
7, = inf(s fo o du = t). For the rescaled Markov chain, local times coincide with
the time spent in a point and the duality measure is simply the counting measure. The
Markov loops can be rescaled as well and we did it in fact already when we introduced
pointed loops. More generally we may introduce different holding times parameters but
it would be essentially useless as the random variables we are interested into are intrinsic,
i.e. depend only on e.

If D C X and we set F' = D¢, the orthogonal decomposition of the energy e(f, f) =
e(f) into e?(f—HT f)+e(HT f) leads to the decomposition of the Gaussian field mentioned
above and also to a decomposition of the rescaled Markov chain into the rescaled Markov
chain killed at the exit of D and the trace of the rescaled Markov chain on F', i.e. SL’{ -

Tgr, with SE =inf(s, [ 1p(Zy)du = 1).

Proposition 39 The trace of the rescaled Markov chain on F is the rescaled Markov
chain defined by the energy functional e} (f) = e(HT f) , for which

C;iz} = Cx,y + Z Cx,acb,y[GD]a’b

a,beD

M= = ) CraCial G

a,beD
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and
Z. = Z.pZry

Proof. For the second assertion, note first that for any y € F,

[HYy = Laey + 1p(2) Y [GP)""Ca,

beD

Moreover, e(HY f) = e(f, HY f) and therefore

M = e (1) = e(ly, H ay) = Ao = Y Caa HY]S = Aa(1 = pif)

aeD

where pt'? = > avep PEGP1Chp = 3 cp PY[HT]% is the probability that the Markov
chain starting at x will return to x after an excursion in D.
Then for distinct z and y in F,

CIV = —eH 11y, 1) = —e(lay, H 1)
= Coy+ > CoalHS = Coyy+ Y CraChy[GPI™

a,beD

Note that the graph defined on F' by the non vanishing conductances Ciz} has in
general more edges than the restiction to F' of the original graph.

For the third assertion, note also that G} is the restriction of G to F as for all z,y €
F, NGOy p, 1(4y) = e(G6,, [H1(43]) = 1(z—y. Hence the determinant decomposition
already used in section yields the final formula. The cases where F' has one point was
already treated in section 3.

Finally, for the first assertion note the transition matrix [P }];’ can be computed
directly and equals

Pit Y pep PEPIVPOEG — prg 7 PECyL, [GPPE]b Tt can be decomposed
according whether the jump to y occurs from z or from D and the number of excursions
from x to x:

[P{F}]gyc i Z Pm VD]an) Pm+ Z Px VD] Pb)

k=0 a,beD a,beD

:i Z PmGDabem Px+ Z PmGDabC )

=0 a,beD a,beD
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P}
The expansion of f;’} in geometric series yields the exactly the same result.

Finally, remark that the holding times of /:it{F} at any point x € F' are sums of a
random number of independent holding times of z;. This random integer counts the
excursions from z to x performed by the chain Z; during the holding time of x{ T

follows a geometric distribution of parameter 1 — pi s Therefore, )\;F} = 5 f_px) is the
expectation of the holding times of /:it{F} at r. m
If x is carried by D and if we set e, = e + || HLQ(X) and denote [e, ]} by et} we
have
O = Cpy+ Y ConCoy [GR™, pIX = Y BIGY"Cy s
a,b a,beD
and A\ = A (1 — p;{;F’X}).

More generally, if e# is such that C# = C on F x F', and A = A* on F we have:

CEy = Coy ZC# CLIGTP e, pFh = ) 0 PEIGHPCyy

a,beD

and APV = Az (1 — pf{p}).

A loop in X which hits F' can be decomposed into a loop I1F} in F and its excursions
in D which may come back to their starting point. Let ,u%b denote the bridge measure
(with mass [GP]*?) associated with eP.

Set

e}

1
D D
v, Ty C{F} [C ,y5(7) + Z Cg: abe,u ] Py = Z )\ {F} Z Cx aC’bm,u )

a,beD a,beD

and v = o[y + 30 [pE 7 pP)"].
Note that pP(1) =vl (1) =vP(1) =1.
A loop I can be decomposed into its restriction [} = (&,7;) in F (possibly a one

point loop), a family of excursions 7, attached to the jumps of ¥} and systems of

&it1
ii.d. excursions (fyg, h < ng,) attached to the points of [}, Note the set of excursions
can be empty.

We get a decomposition of p into its restriction u” to loops in D (associated to the
process killed at the exit of D), the loop measure ;' defined on loops of I by the trace

D

of the Markov chain on F', probability measures v,’, on excursions in D indexed by pairs
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of points in F and measures pZ on excursions in D indexed by points of F'. Moreover,
}

the integers ng, follow a Poisson distribution of parameter )\g 7; and the conditional
distribution of the rescaled holding times in &; before each excursion fyéi is the distribution
Bne, 7z of the increments of a uniform sample of ng, points in [0 7;] put in increasing order.
We denote these holding times by 7; 5, and set | = A1, (v¢, 6., ), (ng,, Ve Ti))-

Then p — pP is the image measure by A of

{FY( 7{F} D A [Aff}ﬂ]’“ D1k 1 h _
IU/ (dl ) H(V§¢,£i+1><dfy£iv£i+l> H e & Z T]‘ngi:k [p{L' ] (degZ)ﬁk,T:‘ (dTi,h)-

The Poisson process L4} = {1t} 1 € L,} has intensity '} and is independent of
Lh.

Note that ﬁif} is the restriction of Z; to F.

In particular, if y is a measure carried by D, we have:

Ble~ (€)1 = B(e () T] [ [ 608, (aeates™

zyer
<] A LS [ (em G —1)pP (d)

zeF

F7
(2o T (252 st [ 470
Z.p C:v,y zeF

€ z,yeF

(recall that £ is the restriction of £, to F ). Also, if we condition on the set of discrete
loops DL

> Z.p cibx (r) AL (r)
—(La, (F}y _ 7% e TY  Ney (L5 T NG (£ 41
B(e (DLl = 0[] ) [ )
z,ycl .Y zelF 7T
where the last exponent N, + 1 is obtained by taking into account the loops which have
a trivial trace on F (see formula (20)).

More generally we can show in the same way the following

Proposition 40 If C#* = C on F x F, and A = \* on F, we denote B the multi-
# .
Cm,y]Nz,yefzxeDlz()\ff)\z)_

plicative functional H[C—

ay Y
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Then,

o o# 240, C}%{F} {F} #{F}_ {Fh7s
E(B s |£3F}> — [ Z . ] ( H [ C{yp} ]Nz,y('ca ) H eAz[pz Px V:a
€ z,yeF ~TY z€F
and 4} (F}
o o# Zo#D ., C7 (F} Az (F}
E(B* |D££F}) = [—Z 1%( H [— {yp} ]Nz’y(ﬁa ) H[ #{F}]Nz(ﬁa I
e uer Cay wep Az

These decomposition and conditional expectation formulas extend to include a current

w in C#. Note that if w is closed (i.e. vanish on every loop) in D, one can define w’ such
that [Ce]tF} = C1F}ei”  Then

Zew = Zep Zory
The previous proposition implies the following Markov property:

Remark 41 If D = Dy U Dy with Dy and Dy strongly disconnected, (i.e. such that for
any (x,y,2) € Dy x Dy x F, Cy,, and C, ,C,, , vanish), the restrictions of the network L.
to Dy UF and Dy U F are independent conditionally to the restriction of L, to F.

Proof. It follows from the fact that as D; and Dy are disconnected, any excursion

D
measure V:v,y

DQ. |

or pf from F' into D = D; U D5 is an excursion measure either in D or in

Branching processes with immigration An interesting example can be given after
extending slightly the scope of the theory to countable transient symmetric Markov chains:
We can take X = N — {0}, C,,,41 =1 for all n > 1 and k; =1 and P to be the transfer
matrix of the simple symmetric random walk killed at 0.

Then we can apply the previous considerations to check that EZ is a branching process
with immigration.

The immigration at level n comes from the loops whose infimum is n and the branching
from the excursions of the loops existing at level n to level n+ 1. Set F,, = {1,2...n} and
D, =F¢.

The immigration law (on R*) is a Gamma distribution I'(ar, G1). Tt is the law of £}
and also of [EAQ »=1]" for all » > 1. From the above calculations of conditional expectations,
we get that for any positive parameter ~,
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E(e—[’yﬁgngEg{Fn,l}) — E(e_[’yzfn—l}n)eAr{Livi—lwén} {Fn ]Ln 1
From this formula, it is clear that /32 is a Markov process. To be more precise, note
that for any n,m >0, V» =2(n Am) and \, = 2, that Gw =G — G WGW so that
Ghn

——and that for any n > 0, the restriction of the Markov chain to D,, is isomorphic

61 1+
to the original Markov chain. Then it comes that for all n, p{F”} = =z )\{F" = 1,
piF”’w"“} = 2(117) and \Lronend - QV;A so that the Laplace exponent of the convolution
semigroup v, defining the branching mechanism equals ﬁ = [(1 —e)e*ds. It is

the semigroup of a compound Poisson process whose Levy measure is exponential. The
conditional law of £+ given L7 is the convolution of the immigration law T'(«, 1) with

Vin
Exercise 42 Alternatively, we can consider the integer valed process Nn(EéF”}) +1 which

is a Galton Watson process with immaigration. In our exemple, we find the reproduction
law w(n) = 27" for all n > 0 (critical binary branching).

Exercise 43 Show that more generally, if Cp i1 = [ﬁ]", for n > 0 and k, = 1,with
0 < p <1, we get all asymetric simple random walks. Then X\, = %. Then, show that

GY = 1. Determine the distributions of the associated branching and Galton Watson
process with immigration.

If we consider the occupation field defined by the loops going through 1, we get a
branching process without immigration: it is the classical relation between random walks
local times and branching processes.

9 Reflection positivity

In this section, we assume there exists a partition of X: X = XtTUX", XTNX =9
,and an involution p on X such that:
a) e is p-invariant.
b) p(X*) = XF
c¢) The X* x X+ matrix C}, = Cy (), symmetric by b), is non negative definite.
Note that for exemple, c) holds if C* is diagonal.
Then the following holds:
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Theorem 44 i) For any square integrable function ¥ in a(ﬁ,x € XT)Vo(Nyy, z,y €
X)),

[T eoua = o
ii) For any square integrable function ® in U(Z;x, re X))V J(N,gfz), z,y € XT),
E((La)2(p(La)) = 0

iii) For any square integrable function 2 of the free field ¢ restricted to X,

Eo(S(¢)%(p(4)) 2 0

iv) For any square integrable function T’ of the spanning trees on X7,
Esr(D(Tjx+)T(p(Tix-)) > 0

Proof. The property iii) is well known in a somewhat different context: Cf for exemple
[BA]], [[B]] and their references. Reflection positivity is a keystone in the bridge between
statistical and quantum mechanics.

To prove ii), we use the fact that the o-algebra is generated by the algebra of random
variables of the form ® = 37 \;B /™ with C) = C and w; = 0 outside X+ x X+,
C) < Con XT x X*, \e) —)\onX and \¢) > X on X*.

Then E(cl)(ﬁ )B(p(La)) = E(X AN B e mewsmrlend,

_ Z )\ )\ ( o Eq)Z: wj— p(wq)) )

We have to prove this is non negative. Letting a converge to zero, it will imply that
[ )u(dl) > 0 for any ¥ in the algebra of functions of the form ) \;(B*%“ —1)
with Z )\] = 0 which will prove i).

Let us first assume that CF is positive definite. We will see the general case can be

reduced to this one.

Now note that Z, i y(c,)—ew;—p(w,) 18 the inverse of the determinant of a positive definite
A(j) —C*
—C* A(g)*

,U

matrix of the form: D(j,q) = { ] with [A(f)]uw = Aubuw — ij(f)) ©i" and

It is enough to show that det(D(j, k))~* can be expanded in series of products > ¢,(j)Gn (k)
with 3 [ga ()] < oo
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As
5> 0 ] {[C“E]‘éfl(j)[@“[]‘é —1 ] [[Ci]Q 0

pei = oy oAy

NI

the a-power of this determinant can be written

£\ 2« Aot *\ Qo 0 F(]) -«
det(C=) " det(F(5))* det(F(q)*)* det(I — [ Flgf* 0 })

with F(j) = [C*]2 A(j) ' [C*]3.

Note that A(j)~! is also the Green function of the restriction to X+ of the Markov chain
associated with e; + p(ex) —e , twisted by w;. Therefore A(j)'C* = [C*]"2 F(j)[C¥]2 is
the balayage kernel on X~ defined by this Markov chain with an additional phase under
the expectation produced by w;. It is therefore clear from Frobenius theorem that the
eigenvalues of the matrices A(j)"*C* and F(j) are of modulus less than one and it follows

0 F(j) } . { F@Gj) 0 } . :
that . , conjugate to « |, 1s a contraction.
[ Flg) 0 T 0 Flg)

If X+ has only one point, (1 — F(j)F(q)*)~® = 3 eetlalotn=l) piy=np ()" which

n!

allows to conclude. Let us now treat the general case.

For any (n,m) matrix N, and k = (ky,...ky) € N™ [ = (Iy,...l,) € N*, let Nkl
denote the (|k|, |l|) matrix obtained from by repeting k; times each line ¢; then [; times
each column j.

We use the expansion

det(I — M)™™ =1+ Per,(M"H)

valid for any contraction M (Cf [B4] and [B3]).
Note that if X has 2d points, if we denote (k1 ...kaq) by (KT, k™), with kT = (kq, ...kq)

B* 0

submatrices A and B are square matrices. Hence, we necessary have |k™| = |k™|., so that

But the a-permanent of a (2n,2n) matrix of the form [ 04 vanishes unless the

in our case, A and B are (n,n) matrices.

Then, the non zero terms in the a-permanent come from permutations whose cycles
go back and forth between {1,2..n} and {n + 1,...2n}, which therefore decompose into
the pairing of two permutations of {1,2..n}, with the same cycle structure.
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Therefore, denoting S, n,...n, the set of permutations of {1,2..n} with cycle structure
(ny,ng,...n,), we have

G PRI VD SR S | ERTID ol 1 (20

structures pairings 0E€Snq ng,. TESn],ng,...np

which concludes the proof in the positive definite case as

Zresnl,@,mm [T Bi = ZTesnl,nQ,mnr I Bryi = Zaesnl,n2 Hl i (i)

To treat the general nonnegative case, we can use use a passage "to the limit or alter-
natively, the proposition fI(] (or more precisely its extension including a current) to reduce
the sets X+ and X~ to the support of C*F.

To prove iii) let us first show the assumptions imply that the X+ x X+ matrix ij,y =
—C*

-1
G, p(y) 1s also nonnegative definite. Let us write G in the form { ot A } with

A= M, —C. Then

G:{A—é oH a1 _A—éCiA—é]l[A—é 01}

0 A —A":C*A2 I 0 A=

A2C* Az is non negative definite and as before, we can check it is a contraction since
A~1C* is a balayage kernel.

Note that if a symmetric nonnegative definite matrix K has eigenvalues p;, the eigen-
I -K17" [D E
K I ] - { E D

(Exercise) to be 1 i“ Taking K = A~2C* A2, it follows that the symmetric matrix E

values of the symmetric matrix E defined by [ } are easily seen

, (and in particular G’jE = A2EA> ) is nonnegative definite.
To finish the proof, let us take ¥ of the form - \;e!®X). Then
Eo(E(0)T(0(6)) = 3 AAE(e00H200000) = 5, cH 6 nb s, o e xod (o
and as G7 is positive definite, we can conclude since e2 3 (6 G*xa) — E,, (elwxi)elwxa),
w denoting the Gaussian field on X+ with covariance G*.
Finally, the proof of iv) follows the same route as for ii). Note that we can take
w; = 0 as we consider non oriented links. Then the matices F'(j) are positive definite.

We can use the determinantal expansion for a = 1 and conclude from the fact that
0 F(j)7) - AP
) — det(F(a) ikt F(i) R}y
det( [F(q)]* kt) 0 ) = det(F(q) ) det(F(5) ). =
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Remark 45 In the case where o is a half integer, the reflection positivity of the free field,
often easier to establish, implies i) and i) in the above theorem by remark 9.

Exercise 46 Prove the above remark.

Exercise 47 Show that if there exists a partition of X: X = XT U X~ U X", and an
involution p on X such that:

a) e and X° are p-invariant.

b) p(X*) = X7

¢) Xt and X~ are disconnected.

Then the assumptions of the previous theorem are satisfied for the trace on XU X ™.

10 The case of general Markov processes

We now explain briefly how some of the above results will be extended to a symmetric
Markov process on an infinite space X. The construction of the loop measure as well
as a lot of computations can be performed quite generally, using Markov processes or
Dirichlet space theory (Cf for example [f]). It works as soon as the bridge or excursion
measures P} can be properly defined. The semigroup should have a locally integrable
kernel p;(z,y).

Let us consider more closely the occupation field 1. The extension is rather straight-
forward when points are not polar. We can start with a Dirichlet space of continuous
functions and a measure m such that there is a mass gap. Let P, the associated Feller
semigroup. Then the Green function is well defined as the mutual energy of the Dirac
measures 0, and d, which have finite energy. It is the covariance function of a Gaussian
free field ¢(z), which will be associated to the field ,/3”‘*’l of local times of the Poisson process
of random loops whose intensity is given by the 1002p measure defined by the semigroup
P,. This will apply to examples related to one dimensional Brownian motion or to Markov
chains on countable spaces.

When we consider Brownian motion on the half line, we get continuous branching
process with immigration, as in the discrete case.

When points are polar, one needs to be more careful. We will consider only the case
of the two and three dimensional Brownian motion in a bounded domain D killed at the
boundary, i.e. associated with the classical energy with Dirichlet boundary condition.
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The Green function does not induce a trace class operator but it is still Hilbert-Schmidt
which allows to define renormalized determinants dety (Cf [29]).

If A is a symmetric Hilbert Schmidt operator, deto(I + A) is defined as J](1 + \;)e ™
where \; are the eigenvalues of A.

The Gaussian field (called free field) whose covariance function is the Green function
is now a generalized field: Generalized fields are not defined pointwise but have to be
smeared by a test function f. Still ¢(f) is often denoted [ ¢(z)f(z)dx.

Wick powers : ¢" : of the free field can be defined as generalized field by approximation
as soon as the 2n-th power of the Green function, G(x, y)*" is locally integrable (Cf [B0]).
This is the case for all n for Brownian motion in dimension two, as the Green function
has only a logarithmic singularity on the diagonal, and for n = 2 in dimension three as

the singularity is of the order of More precisely, taking for example 77 (dy) to be

the normalized area measure on th|e sy1|)|here of radius ¢ around x, ¢(7¥) is a Gaussian field
with covariance of = [ G(z, 2')n%(dz)7¥(dz"). Tts Wick powers are defined with Hermite
polynomials as we did previously:

s p(mI)" = (oF) 2Hn(¢\7_)) Then one can see that, [ f(z): ¢(7¥)" : dx converges in
L? for any bounded continuous function f with compact support towards a limit called
the n-th Wick power of the free field evaluated on f and denoted : ¢" : (f). Moreover,
E(: 6" : (f): 6" : () = [ G (a,y)f(x)h(y)dudy.

In these cases, we can extend the statement of theorem P]] to the renormalized occu-
pation field E”é and the Wick square : ¢? : of the free field.

Let us explain this in more details in the Brownian motion case. Let D be an open
subset of R? such that the Brownian motion killed at the boundary of D is transient and
has a Green function. Let p,(x,y) be its transition density and G(z,y) = [;° pi(z, y)dt
the associated Green function. The loop measure p was defined in [[4] as

= / Lprear

where P;* denotes the (non normalized) excursion measure of duration ¢ such that if
0<t, <.ty <t

Py (E(ty) € dxy, ..., E(tn) € dxy) = pry (T, 01)Py—t, (X1, T2) ... Pi—t) (xh, x)dxy...dxp

(the mass of ;" is py(x, x)). Note that p is a priori defined on based loops but it is easily
seen to be shift-invariant.
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For any loop [ indexed by [0 T'(1)], define the measure l= fOT(l) di(s)ds: for any Borel
set A, 1(A) = [TV 14(1,)ds.

Lemma 48 For any non negative function f,
(1)) = (0= 1! [ o) f(a3) G20 (03). Gl ) o Hd:cz

Proof. From the definition of ;¢ and 1, u(<2\, f>n) equals:

TL'// _f(xl) f($n)ptl($,$1)pt_tn(xn’l‘)l—[dtldxzdtdx
0<ty...<tn

<y t

= n'//{ —f<l’1) S (@n)Pto—t, (T1, Z2) ... Dty 41—t (T, T1) Hdtidl’idt
0<ty...<tn

<t} t
Performing the change of variables vy = t5 — t1,..0, = t, — t,_1,v; = t; +t —t,, and
v = t;, we obtain:

n!/{ ;f(xl)---f(xn)pvz(‘”h$2)----Pv1(9€n,901)Hdvidxidv
0

<v<v1,0<v¢}vl + + Un

v
=nl /{ } mﬂ%)mﬂxn)pm (1, 22) ey (T, 1) H dv;dx;
0<v; n

=(n—1)! /{0< } f(@1)e f(2n) Py (21, 2) - . . Doy (T, 1) Hdvidxi

(as we get the same formula with any v; instead of v;)

=(n— 1)!/G(a:l,xQ)f(xQ)G(xg,xg)f(xg) (T, 1) f (21 Hdﬂfz

One can define in a similar way the analogous of multiple local times, and get for their
integrals with respect to p a formula analogous to the one obtained in the discrete case.

Let G denote the operator on L?(D,dz) defined by G. Let f be a non negative
continuous function with compact support in D.

Note that <ZA, f > is p-integrable only in dimension one as then, G is locally trace class.

In that case, using for all x an approximation of the Dirac measure at x, local times &

can be defined in such a way that <Z\, f> = fz?”f(x)dx
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-~

<l  f > is p-square integrable in dimensions one, two and three, as G is Hilbert-Schmidt

if D is bounded, since [ [, , G(z,y)*dzdy < oo, and otherwise locally Hilbert-Schmidt.
N.B.: Considering distributions x such that [ [(G(x,y)*x(dz)x(dy) < oo, we could

see that <lA, X> can be defined by approximation as a square integrable variable and
o\ 2
u((T.x) ) = [(Gla, y)x(dn)x(dy).

Let z be a complex number such that Re(z) > 0.
Note also that e~*{7) + z <l f> — 1 is bounded by <l f> and expands as an

alternating series o~ 27 (— <l, f>)", with )e‘z<l’f> —1-7 (- <T, f>) < w

(N+1)!
Then, for |z| small enough., it follows from the above lemma that

ple 42 (T r) -1 =37 %TM—(MﬁaMm%

As M ;GM /7 is Hilbert-Schmidt deto(I + 2M ;GM 7) is well defined and the second
member writes -log(deta (I + 2M G M /7).
Then the identity

(e 4 <Z f> — 1) = —log(det o( + 2M_7GM, /7).

extends, as both sides are analytic as locally uniform limits of analytic functions, to all
complex values with positive real part.

The renormalized occupation field Z; is defined as the compensated sum of all T
in £, (formally, L, —f f o 0. dsp(dl)) By a standard argument used for the
construction of Levy processes,

<£a7f> - }:EH(EZ 1{T>z—:}/ f ’}/s dS —au 1{T>€}/ f ,Ys dS
v

(we can denote lim._ <£a o f>) which converges a.s. and in L?, as E(( > ver, (Lirsey fOT f(vs)ds)—

QL 1{T>z-:} fO f}/s 2d3) =« f 1{T>€} fO 73 dS) (dl>
and E(<£a, f> ) =Tr((M3GM s7)?). Note that if we fix f, & can be considered as a

time parameter and <Z;/5, f > as Levy processes with discrete positive jumps approximat-

ing a Levy process with positive jumps <Z;, f> The Levy exponent ,u(l{T>€}(67<lA’f> +
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<Z\, f> — 1)) of <Z:€,f>) converges towards the Lévy exponent of <Z;,f>) which is
pl(e 0+ (T ) = 1),

and, from the identity E(67<Z;’f>) = efa“(e%l’fu@f%l), we get the

Theorem 49 Assume d < 3. Denoting Z; the compensated sum of all 1 in Ly, we have
E(€_<£a7f>) — det2([_|_ M\/TGM\/?))—Q

Loe.f) Lof)

Moreover 67< converges a.s. and in L' towards 67<

Considering distributions of finite energy x (i.e. such that [(G(z,y)*x(dz)x(dy) < ),
we can see that <Z;, X> can be defined by approximation as limy_( < o AG AX> ) and

B(Zox)) =a [ (Gl xldo(dy)

Specializing to a = g, k being any positive integer we have:
Corollary 50 The renormalized occupation field Zé and the Wick square % : Zlf o7

have the same distribution.

If © is a conformal map from D onto ©(D), it follows from the conformal invariance of
the Brownian trajectories that a similar property holds for the bBrownian”loop soup” (Cf
[[4]). More precisely, if c(x) = Jacobian,(©) and, given a loop I, if T¢(1) denotes the
reparametrized loop [, , with fOTS c(ly)du = s, ©T(L,) is the Brownian loop soup of
intensity parameter o on ©(D). Then we have the following:

Proposition 51 @(CZ;) is the renormalized occupation field on ©(D).
Proof. We have to show that the compensated sum is the same if we perform it after

or before the time change. For this it is enough to check that

E(Y (L rponlirey / F()ds — a / (Lromy L ree) / £ (e)ds) () P?)

YELA

T
—a / T P / £ ()ds)u(d)
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and

E([Z(l{T>6}lTT§n/O f(%)ds_a/(l{T>€}1TTSn/0 f(ys)ds) p(dy)]?)

YELA
T
o / (Lzoe) Loy / £ (e)dsu(d)

converge to zero as € and 7 go to zero. It follows from the fact that:

/ [Lir<ey /0 ) f(ys)ds)u(dy)

and
e [ " fn)dsu(dn)

converge to 0. The second follows easily from the first if ¢ is bounded away from zero.
We can always consider the "loop soups” in an increasing sequence of relatively compact
open subsets of D to reduce the general case to that situation. m

As in the discrete case (see corollary [[q), we can compute product expectations. In
dimensions one and two, for f; continuous functions with compact support in D:

E((Z 1) o (L fi)) = /Perg(G(a:l,:cm), 1 <tm < B[] fila)dz;  (20)
11 Renormalized powers

In dimension one, as in the discrete case, powers of the occupation field can be viewed
as integrated self intersection local times. In dimension two, renormalized powers of the
occupation field, also called renormalized self intersections local times can be defined as
follows:

Theorem 52 Assume d = 2. Let n%(dy) be the normalized arclength on the circle of
radius € around x, and set of = [ G(y, 2)7Z(dy)w*(dz). Then, ff(x)ang(<Z;,7T§>)dx
converges in L? for any bounded continuous function f with compact support towards a
limit denoted <E§é, f> and

Bk, [ ) (Lhsh)) = @@ ehol [ G2 (o) f () h(y)dady.
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Proof. The idea of the proof can be understood by trying to prove that
E(( [ f(2)Q </3a, ¥ >)d:v)2) remains bounded as e decreses to zero. The idea is
to expand this expression in terms of sums of integrals of product of Green functions
and check that the combinatorial identities ([[d) imply the cancelation of the logarithmic
divergences.

This is done by showing (as done below in the proof of the theorem) one can modify
slightly the products of Green functions appearing in E(QZ‘U‘? (<Z;, 7T§>) 205 (<£a, Y >))
to replace them by products of the form G(z,y) (c%)'c¥)" . The cancelation of terms
containing ¢? and/or ¢¥ then follows directly from the combinatorial indentities.

Let us now prove the theorem. Consider first, for any =1 z5...x,, € small enough and
e <e€q,...6n < 2, with g; = ¢ if 2; = x;, an expression of the form:

A=| TI Glrmom)™ = [ Glonsa)Glum )t ()2 (dy)

i sLi— 175:131

in which we define m; as sup(h,z;1n, = ;).

In the integral term, we first replace progressively G(y;_1,v;) by G(x;_1, ;) whenever
x;_1 # x;, using triangle, then Schwartz inequality, to get an upper bound of the absolute
value of the difference made by this substitution in terms of a sum A’ of expressions of
the form

Ham,xlﬂ)\/ [ (Gn30) = Glormappaz )z ) [ TL6 o) [Tt .

The expression obtained after these substitutions can be written

W= H G(%—l,%‘)/G(yh?/2)---G(ymi_1>?/mi)ﬂff(d?/l)---ﬂff(d?/mi)

1,2 17T;

and we see the integral terms could be replaced by (02¢)™ if G was translation invariant.
But as the distance between = and y tends to 0, G(x,y) is equivalent to Gy(x,y) =
Llog(||z — y||) and moreover, G(z,y) = Go(z,y) — H”*(z,d2)Go(z,y), H" denoting the
Poisson kernel on the boundary of D. As our points lie in a compact inside D, it follows
that for some constant C, for |jy1 — || < &, | [(G(y1, y2)72 (dyo) — 0%| < Ce.

Hence, the difference A" between W and [, . .. G(xi-1,2;)(c2")™ can be bounded by
eW’, where W' is an expression similar to W ..
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To get a good upper bound on A, using the previous observations, by repeated ap-
plications of Holder inequality. it is enough to show that for e small enough , C' and C’
denoting various constants:

1) [(G(y1,y2) — Gy, x2)* 72 (dyr) w22 (dy2)
< 0(51{||x17m||2¢5} + (G(21, 22)? +10g( )? )1{||mrm||<\/5})

2) [ Gy, y2) 72 (dy: )2 (dys) < C [log(e)[*

) [ Glyr, ya)t 2t (dyr)mzz (dyz) < C Jlog(e)]"

As the main contributions come from the singularities of G, they follow from the

following simple inequalities:
1)
/ llog(£? + 2Re cos(d) + R?) — log(R)|” d6
— / }log((af/R)2 + 2(e/R) cos(0) + 1)‘2 do < C((elir>yey + 1Og2(R/E)1{R<\/g}})

(considering separately the cases where % is large or small)

) [ [log(e2(2 + 2 cos(9)))|" df < C'[log(e) "

3) [ log((e1 cos(fy) + e cos(0a) 4+ 7)% + (1 sin(6y) + 2 5in(62))?|" dbydf, < C(|log(e)])*.
It can be proved by observing that for r < e; + €9, we have near the singularities
(i.e. the values 6,(r) and 60y(r) for which the expression under the log vanishes)
to evaluate integrals bounded by C’fol(—log(eu))kdu < C'(—log(e))k for & small
enough.

Let us now show that for € < 1,5 < 2¢, we have, for some integer N™F

’E< z,ogl(<aﬁa>> a0t (<£a,7r€2>))—5l,kG(x,y)2’fo‘(O‘+1)'“]{(!0‘%_1))

< Clog(e)V* (Ve + Glz, y) Lguy<yz)  (28)
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Indeed, developing the polynomials and using formula (7) we can express this expec-
tation as a linear combination of integrals under H7T (dz;) H (dy;) of products of

%

G(xi, yir), G(z;, zj) and G(y;,y;) as we did in the discrete case. If we replace each G(z;,y;)
by G(x,y), each G(x;, zy) by o and each G(y;,y;) by 0¥, we can use the combinatorial
ga(a+1). (a+k—1)

k!

identity ([Lg) to get the value 8, G(z,y)

allow to bound the error made by this replacement.

. Then, the above results

The bound (P§) is uniform in (x,y) only away from the diagonal as G(z,y) can be
arbitrarily large but we conclude from it that for any bounded integrable f and h,

w@-(a+k—1)

0@ (Tt )05 (Tt ) - sl P ) oy
< O\ Elog(e)

(as [ [ G(z,y)**1{j4—y<edrdy can be bounded by Ces, for example)
Taking e, = 27", it is then straightforward to check that [ f(x ‘””‘ (<Z;, ﬂ§n>)dx

is a Cauchy sequence in L?. The theorem follows. m

Specializing to o = g, k being any positive integer as before, Wick powers of 2?21 (b?
are associated with self intersection local times of the loops. More precisely, we have:

Proposition 53 The renormalized self intersection local times Z’z and the Wick powers
2

S (¥ ¢2)™ - have the same joint distribution.

The proof is similar to the one given in [L§] and also to the proof of the above theorem,
but simpler. It is just a calculation of the L2-norm of

JE@ s @) - @i s e
which converges to zero with .

Final remarks:

a) These generalized fields have two fundamental properties:
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Firstly they are local fields (or more precisely local functionals of the field L., in the
sense that their values on functions supported in an open set D depend only on the
trace of the loops on D.

Secondly, noting we could use different regularizations to define ZE, the action of
a conformal transformation © on these fields is given by the k-th power of the
conformal factor ¢ = Jacobian(©). More precisely, O(ckLk) is the renormalized
k-th power of the occupation field in ©(D).

b) It should be possible to derive from the above remark the existence of exponential
moments and introduce non trivial local interactions as in the constructive field

theory derived from the free field (Cf [BQ]).

c¢) Let us also briefly consider currents. We will restrict our attention to the one and two
dimensional Brownian case, X being an open subset of the line or plane. Currents
can be defined by vector fields, with compact support.

Then, if now we denote by ¢ the complex valued free field (its real and imaginary
parts being two independent copies of the free field), [;w and [, (60,0 — 40, ¢)dx are
well defined square integrable variables in dimension 1 (it can be checked easily by
Fourier series). The distribution of the centered occupation field of the loop process
"twisted” by the complex exponential exp(}",, [, iw+ %2\(||w||2)) appears to be the
same as the distribution of the field : ¢¢ : "twisted” by the complex exponential

eXp(fX @Q@ - QZ)awg)dx) (Cf[@])
In dimension 2, logarithmic divergences occur.

d) There is a lot of related investigations. The extension of the properties proved here
in the finite framework has still to be completed, though the relation with spanning
trees should follow from the remarkable results obtained on SLE processes, especially

[[4]. Note finally that other essential relations between SLE processes, loops and
free fields appear in [B€], [B§] and [{].
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