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Introduction

Particle-In-Cell (PIC) solvers are a major tool for the understanding of the complex behavior of a plasma or a particle beam in many situations. An important issue for electromagnetic PIC solvers, where the fields are computed using Maxwell's equations, is the problem of discrete charge conservation. In a nutshell, the problem consists in updating the electromagnetic field via Ampere and Faraday's equations in such a way that it satisfies a discrete Gauss law at each time step. Indeed the charge and current densities ρ and J computed numerically from the particles do not necessarily verify a proper continuity equation, so that Maxwell's equations with these sources might be ill-posed.

Existing answers to this issue can be decomposed in two classes, namely field correction methods which consist in modifying the inconsistent electric field resulting from an ill-posed Maxwell solver, see, e.g., [START_REF] Birdsall | Plasma physics via computer simulation[END_REF][START_REF] Langdon | On enforcing Gauss' law in electromagnetic particle-in-cell codes[END_REF][START_REF] Marder | A method for incorporating Gauss' law into electromagnetic PIC codes[END_REF][START_REF] Munz | Divergence correction techniques for Maxwell solvers based on a hyperbolic model[END_REF], and charge conserving methods which compute the current density in a specific way so as to enforce a discrete continuity equation, see, e.g., [START_REF] Eastwood | The virtual particle electromagnetic particlemesh method[END_REF][START_REF] Villasenor | Rigorous charge conservation for local electromagnetic field solvers[END_REF][START_REF] Esirkepov | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF][START_REF] Umeda | A new charge conservation method in electromagnetic particle-in-cell simulations[END_REF]. Compared to those of the former class, methods of the latter class have the advantage to be local and not to modify the electromagnetic field away from the source, which may generate causality errors for some applications. However their application to arbitrary finite element methods (FEM) built on unstructured simplicial meshes is not straightforward. For example, the early virtual particle method of Eastwood [START_REF] Eastwood | The virtual particle electromagnetic particlemesh method[END_REF][START_REF] Eastwood | Body-fitted electromagnetic PIC software for use on parallel computers[END_REF] has been essentially described in the context of structured grids such as straight or curvilinear cartesian meshes, and for particles with simple shape factors.

In this work we aim at bridging this gap and propose a unified formulation for curl-conforming finite elements (the so-called edge elements) coupled with particle schemes. This allows us to derive a general roadmap for the design of charge conserving FEM-PIC schemes of arbitrary order both in time and space, that are built on general polygonal or polyhedral meshes. In particular we extend the virtual particle method of Eastwood into a compact algorithm that also covers the case of arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree.

The article is organized as follows. In Section 2 we provide a rigorous finite element formulation of the continuity equation that should be satisfied by the sources for the discrete Maxwell system to be well posed. We next derive consistency criteria for several classes of time integration schemes such as the leap-frog scheme, higher order symplectic Runge-Kutta schemes and Cauchy-Kowalewskaya schemes of arbitrary order. In Section 3 we then establish that the time averaged current densities based on particle representations with arbitrary shape factors satisfy the appropriate finite element continuity equation. We also propose a generic algorithm for computing the resulting charge conserving currents, that is valid for arbitrary particle shapes, high order trajectories and any choice of finite element basis functions. Finally in Section 4 we illustrate the validity of the algorithm with a 2d beam test case, and in Section 5 we summarize our findings.
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Charge conserving FEM Maxwell solvers

In this section we recall the curl-conforming variational formulation of Maxwell's equations

∂ t E -c 2 curl B = -ε 0 -1 J (1) 
∂ t B + curl E = 0 (2) div E = ε 0 -1 ρ (3) div B = 0 (4)
and derive proper consistency criteria for associated FEM discretizations.

What will guide us throughout this exercise is the following well-known formal observation: if Ampere's law [START_REF] Ainsworth | Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes[END_REF] is satisfied at all times, then Gauss's law ( 3) is satisfied at all times if and only if it is satisfied at the initial time and the sources satisfy a continuity equation

∂ t ρ + div J = 0, (5) 
which simply states that the current density J is the flow of the electric charge density ρ. Aside from an elementary proof -take the divergence of Ampere's law and invoke the fact that a curl is always divergence free -, this equivalence has indeed an essential corollary. Namely, since ρ and J must satisfy (5) for the Maxwell system to be well posed, it suffices to satisfy Gauss's law at initial time for it to hold at any time. We shall now see how this basic property translates into a variational framework.

Variational charge conservation

Given an open bounded domain Ω in d = 2 or 3 dimensions with Lipschitz boundary, we denote as usual by H 1 0 (Ω) and H 0 (curl; Ω) the spaces of scalar-valued and vector-valued functions with square integrable gradient and curl, respectively, and which trace and tangential trace vanish on the boundary ∂Ω. For more details we refer to, e.g., [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF].

Throughout the article we will denote by V ε and V µ the function spaces used to represent the fields E and B, respectively. In particular, the variational forms of Ampere's and Faraday's law will involve test functions from these respective spaces. The space of test functions involved by the variational Gauss law will be denoted by V . It can be seen as the natural space for representing the electrostatic potential φ. Since we consider curlconforming formulations, and because for simplicity we restrict ourselves to homogeneous conditions corresponding to perfectly conducting boundaries, we shall assume that

V ε ⊂ H 0 (curl; Ω) and V µ ⊂ L 2 (Ω). (6) 
The variational form of Ampere and Faraday's laws is then usually obtained by integration by parts [START_REF] Monk | A mixed method for approximating Maxwell's equations[END_REF]. It consists in looking for E and B in the respective spaces

C 1 ([0, T ]; V ε ) and C 1 ([0, T ]; V µ ), such that for all t ∈ [0, T ], Ω ∂ t E • ϕ ε -c 2 Ω B • curl ϕ ε = -ε -1 0 Ω J • ϕ ε , ϕ ε ∈ V ε (7) Ω ∂ t B • ϕ µ + Ω curl E • ϕ µ = 0 , ϕ µ ∈ V µ (8) 
where for simplicity we have written ∂ t E instead of ∂ t E(t, •), and so on. In this variational framework, we may formulate the above key equivalence as follows.

Lemma 2.1 (variational charge conservation)

If V is such that grad V ⊂ V ε (9) 
and if the variational Ampere equation ( 7) holds for all t ∈ [0, T ], then the following properties are equivalent:

(i) for all t in [0, T ], a variational Gauss law holds,

-

Ω E • grad ϕ = ε -1 0 Ω ρ ϕ, ϕ ∈ V, (10) 
(ii) the above variational Gauss law holds at t = 0, and for all t ∈ [0, T ], ρ and J satisfy a variational continuity equation,

Ω ∂ t ρ ϕ - Ω J • grad ϕ = 0, ϕ ∈ V. (11) 
Proof. Again, the idea consists in "taking the divergence" of Ampere's law. In this context this is done by writing [START_REF] Dumbser | Arbitrary High Order Discontinuous Galerkin Schemes[END_REF] with ϕ ε := grad ϕ, where ϕ is arbitrary in V . By using that curl(grad) ≡ 0, this yields

Ω ∂ t E • grad ϕ = -ε 0 -1 Ω J • grad ϕ.
Now, [START_REF] Eastwood | Body-fitted electromagnetic PIC software for use on parallel computers[END_REF] implies [START_REF] Esirkepov | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF], as

Ω ∂ t ρ ϕ = -ε 0 Ω ∂ t E • grad ϕ = Ω J • grad ϕ
holds for all ϕ ∈ V . Conversely, (11) yields d dt Ω ρ ϕ+ε 0 Ω E •grad ϕ = 0 for all ϕ ∈ V , which ends the proof.

Remark 2.2 (on the embedding V ⊂ H 1 0 (Ω)) If V satisfies condition (9), then we can assume without restriction that V ⊂ H 1 0 (Ω). Indeed, by using classical arguments from, e.g., [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF], we see that any such V consists of functions ϕ in H 1 (Ω) which have a constant trace c on ∂Ω. Now if Ω ρ = 0, then c must vanish for [START_REF] Eastwood | Body-fitted electromagnetic PIC software for use on parallel computers[END_REF] to hold, and in the opposite case [START_REF] Eastwood | Body-fitted electromagnetic PIC software for use on parallel computers[END_REF] holds equivalently for ϕ and ϕ -c thus we can always consider that c = 0.

Remark 2.3 (on the weak divergence)

Since E = E(t, •) is in L 2 (Ω), div E is a distribution in the dual space of H 1 0 (Ω).
In particular we have div E, ϕ = -Ω E • grad ϕ for all ϕ ∈ H 1 0 (Ω), where div E, ϕ can be seen as the continuous extension of the usual duality pairing between a distribution and an infinitely smooth functions of C ∞ 0 (Ω) to any ϕ ∈ H 1 0 (Ω). We thus infer from Remark 2.2 that (10) involves the weak divergence of E, which justifies calling it a "variational Gauss law". The same argument also justifies the denomination "variational continuity equation" for [START_REF] Esirkepov | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF].

Finite Elements and matrix formulations

When applied to the maximal spaces V ε = H 0 (curl; Ω) and V µ = L 2 (Ω), Lemma 2.1 gives an abstract condition for the exact (weak formulation of the) Maxwell system to be well-posed. Note that in such a case the relevant Gauss and continuity equations involve test functions in V = H 1 0 (Ω), according to Remark 2.2. In order to derive a practical condition for designing charge conserving schemes, we need instead to apply Lemma 2.1 to discrete finite element spaces, i.e., piecewise polynomial spaces built on a polygonal or polyhedral mesh Ω h of Ω. Here condition (6) leads to considering curl-conforming spaces for E, which essentially means that the tangential components of the vector fields in V ε are continuous across the faces of Ω h , see, e.g., [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. To keep track of the polynomial degrees we let p and p be the maximum and minimum integers such that

(P p (Ω h )) d ∩ H 0 (curl; Ω) ⊂ V ε ⊂ (P p (Ω h )) d ∩ H 0 (curl; Ω) ( 12 
)
with P p (Ω h ) denoting the space of (discontinuous) piecewise polynomials on Ω h with total degree less or equal to p. Examples of such spaces are the first Nédélec family [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] for which p = p + 1, or the second one [START_REF] Nédélec | A new family of mixed finite elements in R 3[END_REF] for wich p = p. Hierarchical spaces (suited for varying polynomial orders) were also described by Ainsworth and Coyle in [START_REF] Ainsworth | Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes[END_REF][START_REF] Ainsworth | Hierarchic finite element bases on unstructured tetrahedral meshes[END_REF], for general meshes in 2 and 3 dimensions.

In this discrete setting, it is useful to write a matrix version of the above developments. For this purpose we let Φ ε = {ϕ ε i : i = 1, . . . , N ε } and Φ µ = {ϕ µ i : i = 1, . . . , N µ } denote bases of V ε and V µ , respectively, and let σ ε i , σ µ i be the associated degrees of freedom characterized by the relations σ ε,µ j (ϕ ε,µ i ) = δ i,j for i, j = 1, . . . N ε,µ . Accordingly, we denote

E := σ ε i (E) 1≤i≤Nε , B := σ µ i (B) 1≤i≤Nµ and J := Ω J•ϕ ε i 1≤i≤Nε
the column vectors containing the (time-dependent) coefficients of E(t, •) and B(t, •) in the appropriate bases, and the moments of J(t, •) with respect to Φ ε , respectively. The matrix formulation of ( 7)-( 8) reads then

d dt M ε E -c 2 KB = -ε -1 0 J (13) 
d dt M µ B + K T E = 0 ( 14 
)
where

M ε,µ := Ω ϕ ε,µ i • ϕ ε,µ j 1≤i,j≤Nε,µ and K := Ω curl ϕ ε i • ϕ µ j 1≤i≤Nε 1≤j≤Nµ
denote the mass matrices of Φ ε , Φ µ , and the matrix representing the curl operator in this variational setting. In order to write Gauss's law in matrix terms we further denote by Φ := {ϕ i : i = 1, . . . , N } one basis for the space V , and let

ρ := Ω ρ ϕ i 1≤i≤N and D := - Ω ϕ ε j • grad ϕ i 1≤i≤N 1≤j≤Nε
be the column vector containing the appropriate moments of ρ and the matrix representing the divergence in this variational setting (see Remark 2.3), respectively. The matrix translation of Lemma 2.1 reads then as follows.

Lemma 2.4 (matrix charge conservation)

Given the matrix Ampere law ( 13), the following are equivalent:

(i) the matrix Gauss law DE = ε -1 0 ρ (15) 
holds for all t ∈ [0, T ],

(ii) the matrix Gauss law (15) holds at t = 0, and for all t ∈ [0, T ], the source vectors ρ and J satisfy the matrix continuity equation

d dt ρ -GJ = 0 ( 16 
)
where G is the matrix describing the action of the gradient operator in the bases Φ and Φ ε , i.e., G := σ ε j (grad ϕ i ) 1≤i≤N,1≤j≤Nε

.

Proof. Since this is a matrix reformulation of Lemma 2.1, we do not need a proof for it. However a direct argument is of interest, because it involves key matrix properties that will be useful in the sequel. Indeed, one easily infers from the embedding grad

V ⊂ V ε that D = - Ω ϕ ε j • grad ϕ i i,j = Nε k=1 -σ ε k (grad ϕ i ) Ω ϕ ε j • ϕ ε k i,j = -GM ε (17) and GK = Nε k=1 σ ε k (grad ϕ i ) Ω ϕ µ j • curl ϕ ε k i,j =   Ω ϕ µ j • curl(grad ϕ i ) =0   i,j = 0. (18) 
Left-multiplying the matrix Ampere equation ( 13) by -G yields then

d dt DE = ε -1 0 GJ, (19) 
and the desired result follows easily.

Remark 2.5 (on the meaning of -GJ) As J consists of moments of J, the vector GJ actually involves the weak divergence of J. Indeed, from grad V ⊂ V ε , we infer that grad

ϕ i = j σ ε j (grad ϕ i )ϕ ε j . Thus if J ∈ L 2 (Ω), we have -(GJ) i = -j σ ε j (grad ϕ i ) Ω Jϕ ε j = -Ω J grad ϕ i = div J, ϕ i by using that V ⊂ H 1 0 (Ω), see Remark 2.2.
Remark 2.6 (on the discrete Gauss law) If V ε contains all the curlconforming piecewise polynomials of total degree less or equal to p as assumed in [START_REF] Forest | Fourth-order symplectic integration[END_REF], then any continuous piecewise polynomial of total degree less or equal to p + 1 has its gradient in V ε , provided it vanishes on ∂Ω.

That is,

P p+1 (Ω h ) ∩ H 1 0 (Ω) ⊂ V .
In particular the discrete Gauss law (15) involves continuous finite elements of degree greater than p.

Remark 2.7 (on the smoothness of the sources) Up to now we have implicitely assumed that the sources J, ρ are smooth enough for writing integrals such as Ω J • ϕ ε and Ω ρ ϕ. However in Section 3 we will consider discrete sources defined from Dirac particles, for which this is not true. We will thus need to specify how the source vectors are defined in this case. Moreover we shall use a slightly different version of Lemma 2.4 that is better suited to fully discrete settings. To this end we already note that the above proof does not involve properties of either J or ρ, but only the embedding grad V ⊂ V ε .

Remark 2.8 (on the use of numerical integration) If the space integral involving the electric field E in the Ampere equation ( 13) is replaced by a numerical integration (which is often done in practice, e.g., for mass lumping purposes [START_REF] Cohen | Gauss point mass lumping schemes for Maxwell's equations[END_REF]), i.e, if the matrix M ε is replaced by a new spd matrix M ε, * , then a modified version of Lemma 2.4 still holds true. It suffices to replace the "exact" Gauss law ( 15) by an approximated one where the integral involved in the left hand side is again replaced by the same numerical integration. Namely, D = -GM ε should be replaced by D * = -GM ε, * . Note that this does not change the matrix continuity equation ( 16).

Remark 2.9 (on Gauss's law for magnetism) It is well known that curl-conforming FEM solvers preserve the Gauss law for magnetism (4), regardless of the sources. This is easily seen by using arguments similar to the previous ones: introduce an auxiliary space Ṽ satisfying grad Ṽ ⊂ V µ , and given basis functions φi , i = 1, . . . , Ñ define the corresponding matrices

D := - Ω ϕ µ j • grad φi 1≤i≤ Ñ 1≤j≤Nµ and G := σ µ j (grad φi ) 1≤i≤ Ñ 1≤j≤Nµ
.

Then infer from grad Ṽ ⊂ V µ that D = -GM µ holds, as well as GK T = 0 (the latter using that curl ϕ ε ∈ H 0 (div; Ω) for all ϕ ε ∈ H 0 (curl; Ω)). It follows that if the finite element Faraday law [START_REF] Harten | Uniformly high order essentially non-oscillatory schemes[END_REF] holds, the finite element Gauss law for magnetism DB = 0 is satisfied at all times if and only if it is satisfied at t = 0. Note that if V µ contains all the (discontinuous) piecewise polynomials of maximal degree p, then the foregoing Gauss law holds in the sense of continuous finite elements of degree greater than p, see Remark 2.6.

Consistency criteria for time-domain FEM schemes

Equipped with the above matrix equations D = -GM ε and GK = 0 that follow from the embedding grad V ⊂ V ε , we now state consistency criteria for different classes of time-domain Maxwell solvers to be charge conserving.

Here we assume that charge density functions ρ n are given at discrete time steps n = 0, 1, . . ., such that the moments ρ n i := ρ n , ϕ i involving the basis functions of V are well defined, see Remark 2.7. A given Maxwell solver will then be said charge conserving if it computes numerical solutions E n that satisfy the finite element Gauss laws

DE n = ε -1 0 ρ n (20) 
at each positive time step n, as long as [START_REF] Nédélec | A new family of mixed finite elements in R 3[END_REF] holds for n = 0. In this article we consider three classes of explicit time discretization schemes: the popular low order leap-frog scheme, symplectic Runge-Kutta schemes of higher order and Cauchy-Kowalewskaya schemes of arbitrary order. For simplicity the time steps will be assumed uniform (although this could be easily relaxed) and we denote t n = n∆t.

We begin with the leap-frog time discretization of the Ampere-Faraday system ( 13)-( 14), which reads

E n+1 := E n + c 2 ∆t(M ε ) -1 K B n+ 1 2 -∆t (ε 0 M ε ) -1 J n+ 1 2 (21) 
B n+ 1 2 := B n-1 2 -∆t(M µ ) -1 K T E n (22) 
with a source term J n+ 1 2 that is usually seen as an approximation to J(t n+ 1 2 ), or better to tn+1 tn J(t) dt ∆t . Left-multiplying (21) by D, and using [START_REF] Monk | A mixed method for approximating Maxwell's equations[END_REF], [START_REF] Munz | Divergence correction techniques for Maxwell solvers based on a hyperbolic model[END_REF] it is straightforward to derive the following criterion.

Lemma 2.10 (consistency criterion for the leap-frog scheme) The leap-frog scheme ( 21)-( 22) is charge conserving if and only if the discrete sources satisfy the matrix continuity equation

ρ n+1 -ρ n -∆tGJ n+ 1 2 = 0, for all n. (23) 
We next consider symplectic Runge-Kutta schemes of order p = 1, . . . 4, that generalize the leap-frog method and are known to be stable and nondissipative [START_REF] Ruth | A Canonical Integration Technique[END_REF], [START_REF] Forest | Fourth-order symplectic integration[END_REF], [START_REF] Rieben | High order symplectic integration methods for finite element solutions to time dependent Maxwell equations[END_REF]. Applied to the time-dependent system ( 21)-( 14), they compute auxiliary solutions by first letting E n,0 := E n , B n,0 := B n , then for j = 0, . . . , p -1,

E n,j+1 := E n,j + b j+1 ∆t c 2 (M ε ) -1 K B n,j -(ε 0 M ε ) -1 J n,j (24) 
B n,j+1 := B n,j -a j+1 ∆t(M µ ) -1 K T E n,j (25) 
and finally E n+1 := E n,p , B n+1 := B n,p . Here the coefficients a j , b j , j = 1, . . . p should be taken from tables availables, e.g., in [START_REF] Forest | Fourth-order symplectic integration[END_REF], [START_REF] Candy | A symplectic integration algorithm for separable Hamiltonian functions[END_REF]. Note that for p = 2, we have a 1 = a 2 = 1/2 and b 1 = 0, b 2 = 1, which corresponds to the leap-frog scheme. By using again ( 17) and ( 18), we obtain the following criterion.

Lemma 2.11 (consistency criterion for symplectic RK schemes)

The symplectic Runge-Kutta scheme of order p (24)-( 25) is charge conserving if and only if the auxiliary current vectors satisfy [START_REF] Umeda | A new charge conservation method in electromagnetic particle-in-cell simulations[END_REF] for all n, with J n+1/2 now denoting p-1 j=0 b j+1 J n,j . Note that the foregoing criterion can also be applied to the higher order symplectic schemes of Yoshida [START_REF] Yoshida | Construction of higher order symplectic integrators[END_REF] obtained by composing RK schemes of intermediate orders.

We finally turn to Cauchy-Kowalewskaya schemes of arbitrary order p, see, e.g., [START_REF] Harten | Uniformly high order essentially non-oscillatory schemes[END_REF], [START_REF] Dumbser | Arbitrary High Order Discontinuous Galerkin Schemes[END_REF], [START_REF] Dumbser | ADER Discontinuous Galerkin Schemes for Aeroacoustics[END_REF]. They can be derived from the time-dependent Ampere and Faraday equations ( 13)-( 14) by first reformulating them into a single matrix ODE d dt

U (t) = AU (t) + b(t) (26) 
with

U := E B , A := 0 c 2 (Mε) -1 K -(Mµ) -1 K T 0 and b := -(ε0Mε) -1 J 0 .
We next write a p-th order Taylor expansion of U ,

U (t n+1 ) ≈ p m=0 ∆t m m! d m dt m U (t n ),
and replace there every time derivative of U by a power of the evolution operator A. By a straightfoward induction argument, we indeed infer from (26) that

d m dt m U (t) = A m U (t) + m-1 ν=0 A m-1-ν d ν dt ν b(t) for m ∈ N, (27) 
which yields an explicit scheme of the form

U n+1 := I + p m=1 ∆t m m! A m U n + L n with U n = E n B n , (28) 
and where the load vector L n can be seen as an approximation to the sum of all terms involving the current density,

p m=1 m-1 ν=0 ∆t m m! A m-1-ν d ν dt ν b(t n )
. Now, even though we can provide a consistency criterion for arbitrary load vectors, it is of interest to specify the structure of L n that should appear in such a scheme. Indeed, we can decompose the above sum in two parts, namely one part that can be factorized by the matrix A, and a reminder. Thus, 

L n ≈ A Ln + p m=1 ∆t m m! d m-1 dt m-1 b(t n ),
L n ≈ A Ln + p m=1 ∆t m m! d m dt m c(t n ) ≈ A Ln + c(t n+1 ) = A Ln + tn+1 tn b(t) dt
where the second approximation is again a Taylor expansion and uses the fact that c(t n ) = 0. According to the definition of b, we thus find that the load vector in the CK scheme (28) may be written as

L n = A Ln -∆t (ε 0 M ε ) -1 J n+ 1 2 0 ( 29 
)
where J n+ 1 2 now clearly appears to be an approximation to tn+1 tn J(t) dt ∆t . For such schemes, the consistency criterion reads as follows.

Lemma 2.12 (consistency criterion for the CK schemes)

The p-th order CK scheme (28) is charge conserving if and only if the load vector satisfies ρ n+1 -ρ n -ε 0 DL n = 0 (30) for all n, with D := (D 0) being the N × (N ε + N µ ) matrix obtained by completing D with a zero block. Note that if L n has the form (29), this criterion coincides with [START_REF] Umeda | A new charge conservation method in electromagnetic particle-in-cell simulations[END_REF].

Proof. From the matrix equations ( 17), [START_REF] Munz | Divergence correction techniques for Maxwell solvers based on a hyperbolic model[END_REF], we easily infer that

DA = D 0 0 c 2 (M ε ) -1 K -(M µ ) -1 K T 0 = 0 -c 2 GK = 0.
Left-multiplying the CK scheme (28) by D, we thus obtain

DE n+1 -DE n = DU n+1 -DU n = DL n ,
which easily yields (30).

Consistent coupling with particles

In this section we establish that a generic algorithm which generalizes the early virtual particle method of Eastwood [START_REF] Eastwood | The virtual particle electromagnetic particlemesh method[END_REF] allows to compute charge conserving currents, i.e., discrete currents satisfying the consistency criterion [START_REF] Umeda | A new charge conservation method in electromagnetic particle-in-cell simulations[END_REF]. Despite its simplicity, the algorithm covers a large class of particle schemes. In particular, it is valid for arbitrary shape factors, piecewise polynomial trajectories of arbitrary degree, and for any curl-conforming FEM in 2 and 3 dimensions.

Particle approximations

We now consider the situation where the Maxwell system is coupled with the Vlasov equation

∂ t f + v • ∇ x f + q m F • ∇ v f = 0 (31)
involving the phase space distribution function f = f (t, x, v) of the charged particles, and the Lorentz force F := E +v ×B . For simplicity, we consider a single species (say, electrons) thus q, m denote the charge and mass of an electron. With such a model the charge and current densities are given by the first moments of f ,

ρ(t, x) := q f (t, x, v) dv J(t, x) := q vf (t, x, v) dv. ( 32 
)
In the context of approximating the Vlasov equation by a particle method, the distribution function f is approached at every time step t n = n∆t by a sum of (macro) particles with shape factor S,

f (t n , x, v) ≈ f n h (x, v) := Npart k=1 ω k S(x -x n k )S(v -v n k ). ( 33 
)
In practice S is either a Dirac distribution, or a compactly supported, nonnegative continuous function of mass one, such as a B-spline [START_REF] Birdsall | Plasma physics via computer simulation[END_REF]. As for the particles positions x n k and velocities v n k , they are updated by following approximated characteristic curves, which consists in a numerical integration of the differential system ẋ(t

) = v(t), v(t) = q m F (t, x(t), v(t)) on [t n , t n+1 ], with initial condition x(t n ) = x n k , v(t n ) = v n k .
In a standard leap-frog scheme, one could for instance use piecewise affine trajectories

x k (t) = x n k + v n+1/2 k (t -t n ) with constant speeds on [t n , t n+1 ] up- dated either by v n+1/2 k -v n-1/2 k = q∆t m E n k + (v n-1/2 k + v n+1/2 k )/2 × B n k with E n k := E(t n , x n k ), B n k := B(t n , x n k )
, or by the Boris scheme which avoids accelerations by the magnetical field [START_REF] Birdsall | Plasma physics via computer simulation[END_REF],

v -= v n-1/2 k + q 2m E n k , v + -v -= q∆t 2m (v + + v -) × B n k , v n+1/2 k = v + + q 2m E n k
. Now, as we aim for a greater generality, we will simply assume in the sequel that the numerical trajectories x k (t) are globally continuous, polynomial (or piecewise polynomial) on every [t n , t n+1 ] and such that ẋk (t) = v k (t). For later purposes we denote by p T their maximum degree. It is then possible to define time-dependent particle, charge and current densities,

f h (t, x, v) := Npart k=1 ω k S(x -x k (t))S(v -v k (t)) ρ h (t, x) := Npart k=1 qω k S(x -x k (t)) J h (t, x) := Npart k=1 qω k v k (t)S(x -x k (t)).
(34) Note that we have ρ h = q f h dv and J h = q vf h dv as long as S is symmetric, see (32). Since the early works of Eastwood [START_REF] Eastwood | The virtual particle electromagnetic particlemesh method[END_REF], it is known that charge conserving currents can be obtained in particle schemes by averaging the time-dependent current density over the time step, and evaluating the charge density at t n . With our notations, this corresponds to setting

J n+ 1 2 h (x) := tn+1 tn J h (t, x) dt ∆t = q Npart k=1 ω k tn+1 tn v k (t)S(x -x k (t)) dt ∆t ρ n h (x) := ρ h (t n , x) = q Npart k=1 ω k S(x -x n k ) ( 35 
) and to defining the FEM vectors sources by the moments

J n+ 1 2 := J n+ 1 2 h , ϕ ε i 1≤i≤Nε and ρ n := ρ n h , ϕ i 1≤i≤N see Remark 2.7.
Here we need to verify that the former products are well defined in the case of Dirac shape factors, since the curl-conforming basis functions ϕ ε i of V ε are not continuous. To this end we observe that, every trajectory x k being continuous and piecewise polynomial, we can subdivide [t n , t n+1 ] into a finite set of subintervals [τ n,m k , τ n,m+1 k ], m = 1, . . . M , on which x k (t) stays within a closed cell K m of Ω h . We can thus set

J n+ 1 2 h , ϕ ε i := Npart k=1 qω k M m=1 τ n,m+1 k τ n,m k v k (t)δ x k (t) , ϕ ε i |Km dt ∆t = Npart k=1 qω k M m=1 τ n,m+1 k τ n,m k v k (t) • ϕ ε i |Km (x k (t)) dt ∆t (36) 
by using the fact that ϕ ε i is continuous inside every K m . Note that if the trajectory x k runs simultaneously within two closed cells

K m , K m on [τ n,m k , τ n,m+1
k ], it does not matter which one is considered in the above definition. Indeed in such a case we observe that v k (t) is directed along the face

K m ∩ K m , so that v k (t) • ϕ ε i |Km (x k (t)) = v k (t) • ϕ ε i |K m (x k (t)
) follows from the curl-conformity of ϕ ε i . We can next prove that these sources satisfy a proper continuity equation, either in a distributional sense or in the more practical finite element framework.

Lemma 3.1 For any distribution S, the sources given by (35) satisfy a continuity equation in distribution's sense, i.e.,

ρ n+1 h -ρ n h + ∆t div J n+ 1 2 h , ϕ = 0 (37) 
holds for all ϕ in C ∞ 0 (Ω).

Proof. For ϕ ∈ C ∞ 0 (Ω) we have S(• -x k (t)), ϕ = S, ϕ(• + x k (t)) , hence we may compute d dt S(• -x k (t)), ϕ = S, d dt [ϕ(• + x k (t))] = S, v k (t) • grad ϕ(• + x k (t)) = v k (t)S, grad ϕ(• + x k (t)) = -div(v k (t)S), ϕ(• + x k (t)) = -div[v k (t)S(• -x k (t))], ϕ . (38) 
Now, as v k is bounded we see that v k (t)S, grad ϕ(•+x k (t)) is also bounded (by a constant depending on ϕ). Thus S(• -x k (t)), ϕ is a Lipschitz function of t, and summing on k we can write

ρ n+1 h -ρ n h , ϕ = tn+1 tn d dt ρ h (t), ϕ dt = tn+1 tn Npart k=1 qω k d dt S(• -x k (t)), ϕ dt = - tn+1 tn div Npart k=1 qω k v k (t)S(• -x k (t)) dt, ϕ = -∆t div J n+ 1 2 h , ϕ .
For practical use we need to check that Lemma 3.1 extends to the finite element framework, where the test functions ϕ are globally continuous but only piecewise C 1 on an unstructured mesh. This is done in the following Lemma where we denote by C 1 (Ω h ) the space of all functions ϕ that are continuous on Ω and such that ϕ |K ∈ C 1 (K) for all K ∈ Ω h . Lemma 3.2 If the shape factor S is a continuous function, then the sources (35) satisfy the analog of (37), i.e.,

Ω (ρ n+1 h -ρ n h )ϕ = ∆t Ω J n+ 1 2 h • grad ϕ, (39) 
for all ϕ in W 1,1 (Ω), hence all ϕ in C 1 (Ω h ). Finally if S is the Dirac mass, the sources satisfy

ρ n+1 h -ρ n h , ϕ = ∆t J n+ 1 2 h , grad ϕ (40) 
for all ϕ in C 1 (Ω h ).

Remark 3.3 Because grad ϕ is not continuous, the right hand side in (40) must be understood as in (36). This is valid since the gradient of a C 1 (Ω h ) function ϕ is continuous inside each cell K m , and globally curl-conforming.

Proof. The proof presents no difficulty in the case where S is continuous. As for the Dirac case where S(• -

x k (t)) = δ x k (t) , we again subdivide [t n , t n+1 ] into subintervals [τ n,m k , τ n,m+1
k ], m = 1, . . . , M , on which x k (t) is in a closed cell K m of Ω h . For every such k, m, we thus have

δ x k (τ n,m+1 k ) -δ x k (τ n,m k ) , ϕ = ϕ |Km (x k (τ n,m+1 k )) -ϕ |Km (x k (τ n,m k )) = τ n,m+1 k τ n,m k v k (t) • grad ϕ |Km (x k (t)) dt = τ n,m+1 k τ n,m k v k (t)δ x k (t)
, grad ϕ |Km dt, by using the fact that ϕ |Km ∈ C 1 (K m ) (and as above, we observe that if

x k is simultaneously in two closed cells K m , K m on [τ n,m k , τ n,m+1 k ], we have v k (t) • grad ϕ |Km (x k (t)) = v k (t) • grad ϕ |K m (x k (t)
) by using, e.g., the global continuity of ϕ). The result follows by summing over m and k.

Generic algorithm for charge conserving currents

We now give an algorithm for computing the charge conserving current vector defined in (35). We shall first consider the simpler case of Dirac shape factors where the computation can be made exact. For arbitrary continuous shape factors S we then propose an approximation that is consistent with the conservation of charge.

If S = δ, the entries of the current vector read ] where x k stays within a mesh cell K m . There the function t

J n+ 1 2 i = J n+ 1 2 h , ϕ ε i = q Npart k=1 ω k tn+1 tn v k (t) • ϕ ε i (x k (t)) dt ∆t , i = 1, . . . N ε , see ( 
→ v k (t) • ϕ ε i (x k (t)
) is a polynomial of degree less or equal to p T (p + 1) -1. It follows that a univariate Gauss-Legendre quadrature formula with a sufficient number of points, namely p ≥ p T (p + 1)/2, is exact for the associated integral, as already noticed by Eastwood [START_REF] Eastwood | The virtual particle electromagnetic particlemesh method[END_REF]. More precisely, we have

τ n,m+1 k τ n,m k v k (t) • ϕ ε i (x k (t)) dt = ∆τ n,m k 2 p j=1 λ j v k (τ n,m k,j ) • ϕ ε i (x k (τ n,m k,j ))
where we have set ∆τ n,m k

:= τ n,m+1 k -τ n,m k and τ n,m k,j := τ n,m k + (1+sj )∆τ n,m k 2
, and where λ j , s j , j = 1, . . . p , denote the Gauss-Legendre weights and nodes for the reference interval [-1, 1]. The i-th entry of J n+1/2 is then obtained by summing these contributions over m and k, see (36).

We next turn to the case of arbitrary shape factors S where the entries of the current vector read

J n+ 1 2 i = Ω J n+ 1 2 h • ϕ ε i = Ω q Npart k=1 ω k tn+1 tn S(x -x k (t))v k (t) • ϕ ε i (x) dt ∆t dx = Ω S q Npart k=1 ω k tn+1 tn v k (t) • ϕ ε i (x + x k (t)) dt ∆t S(x ) dx
with Ω S ⊂ R d denoting the compact support of S. There we propose to replace the space integral by a quadrature formula using N S points,

J n+ 1 2 i ≈ Jn+ 1 2 i := q Npart k=1 ω k N S =1 λ S tn+1 tn v k (t) • ϕ ε i (x S + x k (t)) dt ∆t (41) 
with λ S , x S thus denoting quadrature weights and nodes for the weighted integral S(x ) dx . In other terms, we propose to replace every smooth particle with weight ω k and trajectory x k (t) by a bunch of "auxiliary" Dirac particles with weights λ S ω k and trajectories x S + x k (t), = 1, . . . , N S . Let us emphasize that evaluating a space integral by means of a numerical integration rule is of common practice in finite element methods. And that even though it represents an approximation of J n+1/2 , it is consistent with the conservation of charge, as long as the discrete charge density vectors ρ n are defined through the same quadrature formula. It is easily seen indeed that Lemma 3.2 extends to this case without difficulty. Moreover we observe that this approximation preserves the total charge and current carried by the particles, as long as these smoothing weigths satisfy N S =1 λ S = 1. Finally, we note that in this framework the Dirac shape factor case S = δ is obtained by setting N S = 1. We can thus summarize the foregoing developments in a generic algorithm. Algorithm 3.4 (charge conserving current) Input: N ε and ϕ ε i , the dimension and basis functions of the finite element space V ε used for the electric field; N part , the number of (macro) particles; ω k , x k (t), v k (t), the particles weights, positions and velocities at time t; N S , the number of quadrature nodes for the shape factors; λ S , x S , the quadrature weights and nodes for representing the shape factor S; p T and p, the maximum degree for the trajectories and the finite elements. Output: J n+1/2 , the charge conserving current vector.

1. set p := p T (p+1) 2 , and let λ j , s j , j = 1, . . . p be the Gauss-Legendre weights and nodes for the reference interval [-1, 1] 2. for i = 1, . . . , N ε , set J tmp[i] := 0 3. for k = 1, . . . , N part , and for = 1, . . . , N S , do { (a) define q k, := qλ S ω k and x k, (t) := x S + x k (t) (b) set τ := t n , and let K be the cell containing x k, (τ + 0 + ) (c) while ∆τ := min(t n+1 -τ, inf {t > 0 :

x k, (τ + t) / ∈ K}) > 0 do { i. for i = 1, . . . , N ε such that K ∩ supp(ϕ ε i ) = ∅, do J tmp[i] + = ∆τ 2∆t q k, p j=1 λ j v k (τ j ) • ϕ ε i (x k, (τ j ))
where τ j := τ + ∆τ 2 (1 + s j ). ii. set τ := τ +∆τ , and let K be the cell containing

x k, (τ +0 + ) } } 4. for i = 1, . . . , N ε , set J n+ 1 2 i := J tmp[i] K (τ ) x n k x n+1 k (τ + ∆τ ) x S + x n+1 k (τ + ∆τ ) (τ ) x S + x n k K Figure 1
: Graphical depiction of algorithm 3.4 with a Dirac particle (left), and a smooth particle represented by N S = 9 auxiliary particles (right).

A numerical validation: the beam test case

To validate the above algorithm we have implemented a 2D beam test case, which is known to strongly rely on the Gauss law being satisfied, see for instance [START_REF] Barthelmé | Numerical charge conservation in particle-in-cell codes. Numerical methods for hyperbolic and kinetic problems[END_REF]. In this test case the domain Ω := [0, 1] 2 \ (B + ∪ B -) consists of a square minus two disks of radius 0.2 that are respectively centered in (1, 1) and (1, 0). It is meshed with triangles. In order to accelerate a bunch of electrons that is emitted with slow positive horizontal speed on a segment {0} × [0.4, 0.6] of the left edge, the boundary conditions are as follows. The left boundary, as well as the two arcs, are perfect electric conductors with fixed potentials that simulate a cathode and an anode. The other boundary conditions are absorbing. The resulting external field is plotted on Figure 2, left.

We compare two runs, one using the inconsistent current density source J ), i = 1, . . . N ε , that corresponds to evaluating the particle current density in (34) at the time t n+1/2 , and one using the charge conserving Algorithm 3.4. Both runs implement Nédélec finite elements of order 1 and leap-frog time discretizations for the Maxwell system and the particles trajectories. In Figure 2, right, we have plotted the bunch of particles after about 300 iterations, that is, before it has reached the right boundary of the domain. At this time the two runs are very similar. Differences become visible after a large number of iterations, when unphysical filaments appear in the run that implements the inconsistent coupling. In Figure 3, we have plotted the particles positions after about 10,000 iterations (alone on top, and together with the self-consistent electric field on the bottom). On the left, the beam resulting from the inconsistent coupling is clearly non physical, as particles of same charge should not concentrate into thin filaments. Moreover the self-consistent electric field shows spurious oscillations (bottom left). On the right, we see that Algorithm 3.4 prevents such unphysical behavior. Moreover we have checked that the finite element Gauss law [START_REF] Langdon | On enforcing Gauss' law in electromagnetic particle-in-cell codes[END_REF] was satisfied up to machine accuracy, as formally established by combining Lemmas 2.10 and 3.2.

Conclusion

In this article we have described a unified mathematical formulation for curl-conforming finite elements coupled with particle schemes, and we have shown that in order to yield charge conserving schemes, the discrete current sources that appear in several kind of time discretization schemes had to meet a consistency criterion that essentially amounts in a finite element continuity equation. Moreover we have proposed a generic algorithm for computing such charge conserving current sources, which extends the virtual particle method of Eastwood to the case of arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree.

As they cover a large class of potential FEM-PIC solvers, and general grids in 2 and 3 dimensions, we believe that these results provide a useful roadmap in the design of high order charge conserving schemes. 

Figure 2 :

 2 Figure 2: Start of the beam test case: external field E ext created by the boundary conditions (left), and particles positions with self-consistent field E self := E -E ext after about 300 iterations (right).

Figure 3 :

 3 Figure 3: Particle beams after about 10,000 iterations, computed with the inconsistent (nonconservative) current definition, left, and Algorithm 3.4, right. Top: particles alone. Bottom: together with self-consistent electric field (with the same scale for both runs).

  36). Now, since every particle trajectory x k is a polynomial of maximum degree p T on [t n , t n+1 ], the piecewise polynomial structure[START_REF] Forest | Fourth-order symplectic integration[END_REF] of the finite element basis function ϕ ε i can be exploited as follows. As above, we first subdivide the time step [t n , t n+1 ] into subintervals [τ n,m
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