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IRMA - Université Louis Pasteur and CNRS

CALVI - INRIA Lorraine ∗

August 17, 2008

Abstract

We develop a general mathematical framework for electromagnetic Particle-In-Cell (PIC)
codes that can be used on structured as well as unstructured or hybrid grids. It can accomodate
high order Maxwell solvers and arbitrary smoothing functions for the particles. Moreover, it
includes an exact discrete continuity equation. We show that the lowest order version of our
formulation corresponds on a rectangular grid to the traditional Cloud-In-Cell (CIC) version of
the PIC method coupled to a Yee Maxwell solver and the Villasenor-Buneman charge deposition
scheme.

1 Introduction

Particle-In-Cell (PIC) solvers have been a major tool for the understanding of the complex behavior
of a plasma or a particle beam in many situations. An important issue for electromagnetic PIC
solvers, where the fields are computed using Maxwell’s equations, is the problem of discrete charge
conservation. Indeed the charge and current densities ρ and J computed numerically from the
particles do not necessarily verify a discrete continuity equation, so that Maxwell’s equations with
these sources might be ill posed. Therefore electromagnetic PIC solvers need to deal with this
issue, either by performing a field correction [5, 17, 18, 20] or by computing the current density
in a specific way so as to enforce a discrete continuity equation [26, 13, 25]. The latter solution is
strongly linked to the use of a Yee solver on a regular grid for Maxwell’s equations. So it is not
as widely applicable as the first method. However such a technique has the advantage compared
to the other to be local and not to modify the electromagnetic field away from the source, which
may generate causality errors for some applications. It is therefore important to develop charge
conserving deposition algorithms that are more widely applicable than with the Yee solver on
regular grids. Understanding how the Maxwell solver needs to behave in order to derive a discrete
continuity equation is the aim of this paper.

Developing new efficient and reliable Maxwell solvers has been an area of intense research in
the last 40 years and a good understanding of the reasons why some solvers work well and other
do not has only been achieved recently with the concept of discrete differential forms (see [16]
for a review). Let us now give a short overview of Finite Element (FE) solvers that have been
developed for the 3D Maxwell equations in the Time Domain. These Finite Element methods are
better adapted for complex geometries as they can be based on different computational elements
(hexahedra, tetrahedra) which can be used to mesh efficiently complex geometries. Finite Elements
adapted to Maxwell’s equations, the so-called edge elements have been introduced by Nédélec [21]
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in 1980. Moreover the finite element methodology gives easy access to higher order methods which
have proven useful recently for several applications [24, 8]. One of the drawbacks of these edge
finite element methods for Time Domain computations is the need to solve a linear system at each
time step. Therefore Mass-lumped elements have been introduced on squares, cubes and hexahedra
[9, 14] for any order and on tetrahedra [12] for first and second order edge elements. Mass lumped
nodal Finite Elements for a formulation of Maxwell’s equations keeping the divergence constraint
and adding a Lagrange multiplier have also been developed [2].

We will see here how the framework of FE Maxwell solvers can be used to derive a discrete
continuity equation by computing the current density J in an adequate way. The paper is organized
as follows. First we recall the 2D Maxwell equations and a variational formulation used for FE
discretization with an emphasis on charge conservation issues. Then we propose a conforming
FE discretization and examine the computation of the current density so as to find a formulation
yielding an exact discrete continuity equation. We conclude with implementation issues, proposing
a method for computing the discrete current density based on Gauss quadrature, so that the basic
computations in the algorithm are the same as in a standard PIC code, the current only being
evaluated at specific Gauss points on the particle’s trajectories. We also show that the lowest order
version of our algorithm on a regular rectangular grid is exactly the Yee solver with a Villasenor-
Buneman [26] current deposition.

All the theory and computations are performed in the 2D case, but can be extended in a
straightforward manner to 3D.

2 The 2D Time domain Vlasov-Maxwell system

Schematically, the time evolution of a plasma breaks down into two simultaneous phenomena, as
follows:

• the charged particles constituting the plasma generate an electromagnetic field,

• which in return affects the motion of the particles through the Lorentz force.

Now, although each phenomenon can be modeled by linear equations – namely Maxwell’s equations
and Newton’s second law of dynamics – the coupling causes the resulting system to be highly
nonlinear. Let us recall the equations in more details, and introduce some notations.

In a two dimensional domain Ω, the Maxwell system consists of two sets of decoupled equations:
The first set, usually referred to as the Transverse Electric (TE) mode, involves the (Ex, Ey, Bz)
components, whereas the second set (the Transverse Magnetic mode) involves the remaining com-
ponents, namely (Ez, Bx, By). Here we shall only consider the former, since the latter can be dealt
with in a similar manner. Formally, the system reads

∂tE − c2 curlB = − 1

ε0
J (1)

∂tB + curlE = 0 (2)

div E =
ρ

ε0
(3)

where E = (Ex, Ey)
T and B = Bz denote the (relevant components of the) electric and magnetic

fields. These are the unknowns of the system, whereas J = (Jx, Jy)
T and ρ respectively denote

given current and charge density, seen as sources. As usual, the vector and scalar curl operators
are given in 2d by

curlϕ := (∂yϕ,−∂xϕ)T and curlϕ := ∂xϕy − ∂yϕx
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for any scalar- and vector-valued functions ϕ and ϕ = (ϕx, ϕy)
T , respectively (here and below, we

shall try to denote vector-valued objects – such as functions, spaces or operators – with boldface
characters). In order to have a well-posed Cauchy problem on Ω we shall later supplement (1)-(3)
with initial and boundary conditions, see Section 3 below.

In the Vlasov model, the state of the plasma is represented by a time dependent distribution
function f which, at any time t, is defined on the phase space Ω̂ := {(x,v) ∈ Ω×R2} consisting in
all possible (physical) positions x = (x, y) and velocities v = (vx, vy) for the particles. For simplic-
ity we shall only consider the evolution of one species of particles (namely, electrons) and assume
the presence of a neutralizing uniform background ion distribution. Following from Newton’s law,
the non relativistic Vlasov equation reads

∂tf + v · ∇xf +
q

m
F · ∇vf = 0, (4)

where q, m denote the charge and mass of an electron, and where the force term is given by the
Lorentz law, i.e., F := E + v ×B = (Ex + vyB,Ey − vxB)T , which yields a first coupling between
the Maxwell and Vlasov equations. The model is then completed by the second coupling which
expresses the sources of (1)-(3) in terms of the distribution f , as follows.

ρ := q

∫

R2

f dv, J := q

∫

R2

vf dv. (5)

The following equivalence, which is well known, is at the heart of our study. Let us first state it in
formal terms.

Theorem 2.1 (Charge conservation – formal level) Given Ampere’s law (1), the following
properties are equivalent:

(i) Gauss’ law (3) is satisfied at any time t,

(ii) Gauss’ law (3) is satisfied at the initial time, and the sources ρ, J satisfy a charge conservation
property (also called continuity equation)

∂tρ+ div J = 0. (6)

The proof is elementary (take the divergence of Ampere’s law), but the corollary is of greatest
importance: since ρ, J must satisfy (6) for E and B to be solutions to the Maxwell system, it
suffices to satisfy Gauss’ law at initial time for it to hold at any time. Of course, in order that there
exist solutions to the Maxwell-Vlasov system, it is necessary that the sources given by (4)-(5) do
indeed satisfy (6). Which clearly holds, since integrating the Vlasov equation (4) with respect to
v yields

∂tρ = −q
∫

R2

v ·∇xf dv− q2

m

∫

R2

F ·∇vf dv = −q
∫

R2

divx(vf) dv− q2

m

∫

R2

divv(Ff) dv = −div J

using the usual assumption that f vanishes as v → ∞. In the next sections we shall see how
Theorem 2.1 translates into a discrete framework.

3 Variational formulations for the Maxwell system

3.1 Continuous formulation

In order to define a Finite Element approximation of the Maxwell system, let us now specify (1)-(3)
in functional terms. Here we shall consider weak solutions and to do so we recall the following usual
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notations (unless specified, we suppose in the sequel that all the spaces are defined on Ω, which is
assumed polygonal and simply connected):

H1 := {v ∈ L2 : grad v ∈ L2}, H1
0 := {v ∈ H1 : v|∂Ω = 0}, H(curl) := {v ∈ L2 : curl v ∈ L2}

H(curl) := {v ∈ L2 : curlv ∈ L2} and H0(curl) := {v ∈ H0(curl) : v|∂Ω × n = 0},
see e.g. [15] for more details about these spaces (note that in 2d, H(curl) and H1 coincide).

The usual way for defining weak solutions to the TE mode is then twofold: either weaken Ampere’s
law (i.e., interpret it with test functions in H0(curl)) and consider Faraday’s law as it is (i.e., in
L2), or do the opposite, that is, interpret Faraday’s law with test functions in H0(curl) = H1

0 and
Ampere’s law with test functions in H0(div). In this article we are mainly concerned with the first
option, since the case of the second one is still not fully understood, see Remark 4.5. Let us recall
that this first option is connected with the following exact sequence:

H1
0

grad−→ H0(curl)
curl−→ L2, (7)

meaning that grad(H1
0 ) ⊂ H0(curl), ker(curl |H0(curl)) = grad(H1

0 ) and curl(H0(curl)) ⊂ L2. It
reads: find E and B, such that

E(0) = E0 ∈ H0(curl) and B(0) = B0 ∈ L2, with divE0 =
ρ(0)

ε0
(8)

and such that for almost every t in (0, T ), we have
∫

Ω
ϕ ∂tE(t) − c2

∫

Ω
B(t) curlϕ = −ε−1

0

∫

Ω
ϕ J(t) ∀ϕ ∈ H0(curl), (9)

∫

Ω
ψ ∂tB(t) +

∫

Ω
ψ curlE(t) = 0 ∀ψ ∈ L2, (10)

−
∫

Ω
E(t) · gradφ = ε−1

0

∫

Ω
φ ρ(t) ∀φ ∈ H1

0 . (11)

Since the domain Ω is assumed polygonal and simply connected, we know that as long as the
sources ρ ∈ C1(0, T ;L2), J ∈ C1(0, T ;L2) satisfy the charge conservation property (6), there exists
a unique solution to (8)-(11) with regularity

E ∈ C0(0, T ;H0(curl)) ∩ C1(0, T ;L2) and B ∈ C1(0, T ;L2) (12)

(see e.g. [3, 11]).

Remark 3.1 As the function E(t) belongs to L2 for all t, it is possible to define its divergence as
a linear form on H1

0 by setting
∫

Ω
div E(t) φ := −

∫

Ω
E(t) · gradφ ∀φ ∈ H1

0

(which coincides with the Green formula whenever E(t) is in H(div), but can be seen as a definition
for E(t) ∈ L2 \ H(div)). In the functional analysis community, the dual space of H1

0 is usually
denoted H−1, and relation (11) is equivalently rewritten as:

div E(t) = ε−1
0 ρ(t) in H−1.

In the sequel we shall nevertheless ignore such extensions of differential operators, and stick to
classical notations like in (11).
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In this context, the “charge conservation” Theorem 2.1 takes the following form.

Theorem 3.1 (charge conservation – functional level) Given (9) – i.e., Ampere’s law with
test functions in H0(curl) – the following properties are equivalent:

(i) Equation (11), i.e., Gauss’ law with test functions in H1
0 :

−
∫

Ω
E(t) · gradφ = ε−1

0

∫

Ω
ρ(t)φ ∀φ ∈ H1

0

holds for almost every time t,

(ii) Equation (11) holds at the initial time only, and ρ, J satisfy the charge conservation property
with test functions in H1

0 , i.e.,

d

dt

∫

Ω
ρ(t)φ−

∫

Ω
J(t) · gradφ = 0 ∀ φ ∈ H1

0 (13)

holds for almost every time t.

Proof. Again, the idea consists in ”taking the divergence” of Ampere’s law. In this context this
can be done by writing (9) with ϕ := gradφ, where φ is arbitrary in H1

0 . This makes sense since

gradH1
0 ⊂ H0(curl) (14)

(which is an obvious part of the exact sequence property (7)), and yields, as grad(curl) ≡ 0

d

dt

∫

Ω
E · gradφ = −ε0−1

∫

Ω
J · gradφ ∀ φ ∈ H1

0

using Green’s formula. Now, (11) clearly implies (13) :

ε−1
0

d

dt

∫

Ω
φ ρ(t) = − d

dt

∫

Ω
E(t) · gradφ = ε0

−1

∫

Ω
J · gradφ ∀φ ∈ H1

0 .

Conversely (13) yields

d

dt

(

∫

Ω
ρφ+ ε0

∫

Ω
E · gradφ

)

= 0 ∀ φ ∈ H1
0 ,

which ends the proof.

3.2 Conforming Finite Element discretizations of Maxwell’s equations

Let now V 0
h , V 1

h and V 2
h denote finite element spaces embedded into H1

0 , H0(curl) and L2, respec-
tively (such as (19) or (20) below). Moreover, assume that Jh, ρh are approximations to J, ρ. The
conforming finite element space (semi-) discretization of the system (9)-(11) reads: find Eh ∈ V 1

h

and Bh ∈ V 2
h such that

d

dt

∫

Ω
Ehϕ − c2

∫

Ω
Bhcurlϕ = −ε0−1

∫

Ω
Jhϕ ∀ϕ ∈ V 1

h (15)

d

dt

∫

Ω
Bhψ +

∫

Ω
ψ curlEh = 0 ∀ψ ∈ V 2

h (16)

−
∫

Ω
div Eh · gradφ = ε0

−1

∫

Ω
ρhφ ∀φ ∈ V 0

h , (17)
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which we again supplement with initial conditions, such as

Eh(0) = Π1
hE0 ∈ V 1

h and Bh(0) = Π2
hB0 ∈ V 2

h , (18)

with Π1
h, Π2

h denoting stable projectors on V 1
h and V 2

h , respectively.
For sake of completeness, let us recall that a usual choice for the conforming finite element

spaces is the first Nédélec family [21] corresponding to:















V 0
h = V 0

h,p := {q ∈ C0(Ω): q|κ ∈ Qp,p ∀κ ∈ Ωh},
V 1

h = V 1
h,p := {q = (qx, qy) ∈ H0(curl; Ω) : q|κ ∈ Qp−1,p × Qp,p−1 ∀κ ∈ Ωh},

V 2
h = V 2

h,p := {q ∈ L2(Ω): q|κ ∈ Qp−1,p−1 ∀κ ∈ Ωh},
(19)

on structured meshes (i.e., when Ωh consists of quadrangles); with Qp,p′ := Span{(x, y) → xayb :
0 ≤ a ≤ p, 0 ≤ b ≤ p′}. In the case of unstructured meshes (i.e., when Ωh consists of triangles),
this family corresponds to:















V 0
h = V 0

h,p := {q ∈ C0(Ω): q|κ ∈ Pp ∀κ ∈ Ωh},
V 1

h = V 1
h,p := {q = (qx, qy)

T ∈ H0(curl; Ω) : q|κ ∈ (Pp−1)
2 ⊕

( y
−x

)

P̃p−1 ∀κ ∈ Ωh},
V 2

h = V 2
h,p := {q ∈ L2(Ω): q|κ ∈ Pp−1 ∀κ ∈ Ωh},

(20)

with Pp := Span{(x, y) → xayb : 0 ≤ a, b, a+ b ≤ p} and P̃p := Span{(x, y) → xayp−a : 0 ≤ a ≤ p}.
As is well known, these discrete spaces satisfy an exact sequence property

V 0
h

grad−→ V 1
h

curl−→ V 2
h , (21)

which follows from the analogue property of their continuous counterparts, see (7). In fact the only
non-trivial property to be checked is that ker(curl |

V
1
h
) = grad(V 0

h ). To do this, observe that for

any ϕ = q +
( y
−x

)

q̃ with q ∈ (Pp−1)
2, q̃ ∈ P̃p−1 (i.e., in the case of unstructured meshes), one has

curlϕ = curlq − (p+ 1)q̃.

Since curlq clearly belongs to Pp−2, curlϕ = 0 yields q̃ = 0, hence ϕ ∈ (Pp−1)
2. Using this

observation with the continuous exact sequence property, we find ϕ = gradφ for some φ ∈ Pp.
Note that in the sequel we shall only need the embedding

gradV 0
h ⊂ V 1

h, (22)

which easily follows from (14) and the conformity of the spaces, as well as their polynomial defi-
nition. In this conforming Galerkin setting, the formal charge conservation Theorem 2.1 takes a
form completely similar to Theorem 3.1.

Theorem 3.2 (charge conservation – semi-discrete level) Given (15) – which can be seen
as Ampere’s law with test functions in V 1

h – the following properties are equivalent:

(i) Equation (11) (which can be seen as Gauss’ law with test functions in V 0
h , see Remark 3.1),

i.e.,

−
∫

Ω
Eh(t) · gradφ = ε−1

0

∫

Ω
ρh(t)φ ∀φ ∈ V 0

h

holds for almost every time t,
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(ii) Gauss’ law holds with test functions in V 0
h at the initial time only, and ρh, Jh satisfy the

charge conservation property with test functions in V 0
h , i.e.,

d

dt

∫

Ω
ρh(t)φ−

∫

Ω
Jh(t) · gradφ = 0 ∀ φ ∈ V 0

h (23)

holds for almost every time t.

Proof. Simply repeat the proof of Theorem (3.1), replacing every continuous space by its discrete
counterpart – which is possible according to (22).

4 Fully discrete scheme for the Vlasov-Maxwell system

4.1 Particle solver for the Vlasov equation

Let us recall the main lines of the Particle in Cell (PIC) solver, in the context of a second order
leap-frog time discretization (see e.g. [5] for a more detailed presentation).

• approximate the initial density f0 by a finite sum of “macro-particles”, i.e., Dirac measures
located at phase space positions {(x0

k,v
0
k) : k = 1, . . . , Npart},

f0(x,v) ≈ f0
h :=

Npart
∑

k=1

wkδ(x − x0
k,v − v0

k) (24)

with corresponding weights wk chosen in such a way that f0
h is a good approximation of f0.

• transport the particles following the explicit scheme

xn+1
k − xn

k

∆t
= v

n+ 1
2

k ,
v

n+ 1
2

k − v
n− 1

2

k

∆t
=

q

m

(

En
h(xn

k) +
1

2

(

v
n+ 1

2

k + v
n− 1

2

k

)

×Bn
h (xn

k)
)

(25)

(here we assume that consistent velocities v
− 1

2

k , k = 1, . . . , Npart, have been defined).

Note the improper notations in (24) – where the right hand side is not a function but a (Radon)
measure – used for sake of simplicity. In most practical situations however, the Dirac measures
are replaced by local smooth “shape functions” S such as B-splines, hence the initial density f0 is
indeed approximated by a (smooth) function

f0(x,v) ≈
Npart
∑

k=1

wkS(x − x0
k,v − v0

k).

Now, since this is essentially needed when the Maxwell system is approximated by a finite difference
scheme, we shall essentially be interested in the simpler case where no smoothing is performed, i.e.,
where S := δ.

Of course, it now remains to define the fully discrete fields En
h and Bn

h , which is described in
the following section.
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4.2 The coupled solver and the discrete charge conservation theorem

In order to complete the global scheme, we consider an explicit second order leap frog discretization

of (15)-(16): starting from (18), we define En+1
h ∈ V 1

h and B
n+1/2
h ∈ V 2

h , n ∈ N, by

1

∆t

∫

Ω
(En+1

h − En
h) · ϕ − c2

∫

Ω
B

n+ 1
2

h curlϕ = −ε0−1

∫

Ω
J

n+ 1
2

h · ϕ ∀ϕ ∈ V 1
h (26)

1

∆t

∫

Ω
(B

n+ 1
2

h −B
n− 1

2

h )ψ +

∫

Ω
ψ curlEn

h = 0 ∀ψ ∈ V 2
h (27)

(see also the matrix formulation below), where for simplicity it is assumed that a consistent B
−1/2
h

has been defined for the first step.

The PIC method (25) is then usually coupled with the FE scheme (26)-(27) by setting Bn
h :=

1
2(B

n+ 1
2

h +B
n− 1

2

h ) on the one hand, and

ρn
h(x) :=

Npart
∑

k=1

wkS(x − xn
k), J

n+ 1
2

h (x) :=

Npart
∑

k=1

wkv
n+ 1

2

k S(x − x
n+ 1

2

k ) (28)

on the other hand (with x
n+1/2
k := 1

2(xn+1
k + xn

k)). Here S denotes the Dirac δ in the unsmoothed
case or a smoothing function (often called shape function in the PIC literature) which is typically
a B-spline. Again, let us mention that some smoothing is already performed via the FE basis
function, so that additional smoothing is not strictly necessary, and generally not used, as opposite
to the finite difference framework. In Figure 1 we have summarized the overall structure of the
solver, with an emphasis on the ordering of the computations within every time step.

{xn+1
k : k ≤ Npart}

B
n+1
h

E
n+1
h

tn+1tn+1/2tn

E
n
h

{v
n+1/2

k : k ≤ Npart}

{xn
k : k ≤ Npart}

f

B
n
h B

n+1/2

h

J
n+1/2

h

1

3

4

2

1

Figure 1: Overall view of the coupled FE-PIC scheme.

Remark 4.1 In the case where the PIC approximation is not smoothed, i.e., when S = δ, the

approximated current J
n+1/2
h is not an L2 function. In order for the above variational formulation

(26) of Ampere’s law to still make sense, it is then necessary to replace every L2 scalar product
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∫

Ω J
n+1/2
h ϕ, ϕ ∈ V 1

h by classical duality pairings between Dirac measures and continuous functions,
i.e.,

〈Jn+ 1
2

h ,ϕ〉 =

Npart
∑

k=1

wkv
n+ 1

2

k 〈δ(· − x
n+ 1

2

k ),ϕ〉 :=

Npart
∑

k=1

wkv
n+ 1

2

k ϕ(x
n+ 1

2

k ).

Note that because the basis functions ϕ are only piecewise continuous, this only makes sense if the
particle’s positions xn

k are inside the cells (which we can always assume, up to rounding errors).

Now, as is well known – and we shall soon recall why –, defining the sources by (28) does not
guarantee the conservation of the discrete charge. In particular, the associated discrete Gauss’
law, see equation (29) below, is not satisfied a priori by the solution of (25)-(28). In order to
circumvent this obstacle, different correction schemes have been introduced in the field solvers
since the early 70s, such as the Boris correction [6], the Marder/Langdon method [18, 17], or the
so-called generalized Maxwell formulation [2, 20] (see also [3] for an analysis of these formulations).

In order to understand why the above coupling is inconsistent, and propose a better one, we
now rewrite the “charge conservation theorem” in the context of fully discrete FE-PIC schemes of
arbitrary order.

Theorem 4.1 (charge conservation – fully discrete level) Given the discrete Ampere law (26),
the following are equivalent:

(i) the fully discrete Gauss law

−
∫

Ω
En

h·gradφ = ε0
−1

∫

Ω
ρn

h φ ∀φ ∈ V 0
h (29)

holds at any time step n,

(ii) the discrete Gauss law (29) holds at the initial time step n = 0 only, and the discrete sources

ρn
h, J

n+1/2
h satisfy the following discrete charge conservation property:

∫

Ω
(ρn+1

h − ρn
h)φ− ∆t

∫

Ω
J

n+ 1
2

h · gradφ = 0 ∀ φ ∈ V 0
h and n ∈ N. (30)

Proof. Repeat the proof of Theorem 3.2, with divided differences in place of time derivatives.

Remark 4.2 In the case where S = δ, the above Theorem still makes sense if the L2 scalar products
involving sources are replaced by duality pairings, as described in Remark 4.1.

4.3 A new formulation to ensure the conservation of charge

In the light of Theorem 4.1, it is now an easy task to see why the sources (28) fail to satisfy the
discrete charge conservation, and hence the discrete Gauss law (29). Observe indeed that setting
(i.e., interpolating)

vk(t) := v
n+ 1

2

k and xk(t) := xn
k + (t− tn)v

n+ 1
2

k ∀ t ∈ [tn, tn+1],

and defining accordingly

ρh(t,x) :=

Npart
∑

k=1

wkS(x − xk(t)) and Jh(t,x) :=

Npart
∑

k=1

wkvk(t)S(x − xk(t)),

9



we have (at least formally)

∫

Ω
(ρn+1

h − ρn
h)φ =

∫ tn+1

tn

[ d

dt

∫

Ω
ρh(t)φ

]

dt. Now, for any φ ∈ V 0
h and

any smooth shape function S, a straightforward computation and a Green formula yield

d

dt

∫

Ω
S(· − xk(t)) φ = −

∫

Ω

[

vk(t) · gradS(· − xk(t))
]

φ = −
∫

Ω

[

div
(

vk(t)S(· − xk(t))
)]

φ

=

∫

Ω
vk(t)S(· − xk(t)) · gradφ,

in particular d
dt

∫

Ω ρh(t)φ is bounded, hence we can sum over every particle and compute

∫

Ω
(ρn+1

h − ρn
h) φ =

∫ tn+1

tn

[

Npart
∑

k=1

wk
d

dt

∫

Ω
S(· − xk(t)) φ

]

dt =

∫ tn+1

tn

[

∫

Ω
Jh(t) · gradφ

]

dt. (31)

Remark 4.3 If S = δ, the L2 scalar products must be replaced by duality pairings between Dirac
measures and continuous functions, i.e., for any φ ∈ V 0

h we have

〈ρh(t), φ〉 =

Npart
∑

k=1

wk〈δ(· − xk(t)), φ〉 =

Npart
∑

k=1

wkφ(xk(t)).

Because this is a Lipschitz function of t, with derivative d
dt〈ρh(t), φ〉 =

∑Npart

k=1 wkvk(t)·gradφ(xk(t)),
the principle used in the above computation applies again, i.e., we can compute

〈ρn+1
h − ρn

h, φ〉 =

∫ tn+1

tn

Npart
∑

k=1

wkvk(t) · gradφ(xk(t)) =

∫ tn+1

tn

〈Jh(t),gradφ〉. (32)

Unless Jh is affine on (tn, tn+1) the above relation has no reason to coincide with the desired (30),
which is the reason why the FE-PIC scheme (25)-(28) fails to ensure both the charge conservation
and the Gauss law. The good news is: we now have an obvious cure for the lack of consistency.
Let us state it as our main theorem (and refer to section 5.2 for a practical algorithm in the case
where no regularization is performed, i.e., S = δ).

Theorem 4.2 (Consistent coupling for FE-PIC schemes) The numerical solutions to the FE-
PIC scheme (25)-(27) complemented with the new source definitions

ρn
h(x) :=

Npart
∑

k=1

wkS(x − xn
k), J̄

n+ 1
2

h (x) :=

Npart
∑

k=1

wkv
n+ 1

2

k

1

∆t

∫ tn+1

tn

S(x − xk(t)) dt (33)

(with xk(t) := xn
k + (t − tn)v

n+1/2
k for t ∈ [tn, tn+1]) do satisfy the discrete charge conservation

property (30), hence the discrete Gauss law (29) too, provided the latter holds at the initial time
step. In other terms, defining the current appearing in the discrete Maxwell system as a time average
1

∆t

∫ tn+1

tn
Jh(t) dt in place of the instantaneous value Jh(tn+1/2) yields a consistent coupling.

Remark 4.4 By observing that (31) – or (32) in the case where S = δ – holds not only for φ in
V 0

h but for any φ in C∞
c (Ω) (the space of infinitely differentiable functions with compact support in

Ω), we see that

ρn+1
h − ρn

h + ∆t div J̄
n+ 1

2

h = 0 (34)

holds in distribution’s sense. In particular, (34) holds in a point-wise sense (on Ω) when S is a
continuous function, since in this case ρn

h is also continuous (note that this also establishes the

continuity of div J̄
n+1/2
h ).
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Remark 4.5 (the case of the second formulation) Let us emphasize the following interpre-
tation of (34): the sources given by (33) do satisfy a charge conservation property which is inde-
pendent of the given formulation of Maxwell’s equations, and hence intrinsic. In particular, one
would be tempted to define the sources in the same way when considering the second formulation
mentioned in Section 3.1. Unfortunately this does not lead to the proper discrete Gauss law, i.e.,
the analogous of (29) for the corresponding spaces.

5 Implementation issues

This section is devoted to discuss some important aspects of the implementation. In particular, we
shall describe a simple algorithm for computing the new (consistent) right hand side involved in the
matrix formulation of the Maxwell solver (26)-(27), recall mass lumping techniques for structured
meshes and show that our formulation coincides with the method of Villasenor and Buneman for
first order elements and is in some way a generalization for high order and unstructured grids of
this method.

5.1 Matrix formulation of the Maxwell solver

Let us now consider that Φ1
h = {ϕ1

i : i = 1, . . . , N1
h}, Ψ2

h = {ψ2
i : i = 1, . . . , N2

h} are given bases
of the FE spaces V 1

h and V 2
h , respectively, and that {σ1

i : i = 1, . . . , N1
h}, {σ2

i : i = 1, . . . , N2
h}

are associated degrees of freedom (i.e., dual bases of linear forms) defined on H0(curl) and L2,
respectively.

Denoting En, Bn+1/2 the column vectors containing the coefficients of En
h and B

n+1/2
h in Φ1

h

and Ψ2
h, the matrix formulation of (26)-(27) reads

M1(En+1 − En) − c2∆tRBn+ 1
2 = −∆t ε0

−1J n+ 1
2 (35)

M2(Bn+ 1
2 − Bn− 1

2 ) + ∆tRTEn = 0 (36)

with

M1 :=

(
∫

Ω
ϕ1

i · ϕ1
j

)

1≤i,j≤N1
h

, M2 :=

(
∫

Ω
ψ2

i ψ
2
j

)

1≤i,j≤N2
h

and R :=

(
∫

Ω
ψ2

j curlϕ1
i

)

1≤i≤N1
h

1≤j≤N2
h

denote respectively the mass matrices of Φ1
h, Ψ2

h and the associated (rectangular) curl matrix, and
where J n+1/2 is the discrete current vector which components are given by

J n+ 1
2

i :=

∫

Ω
J

n+ 1
2

h · ϕ1
i , 1 ≤ i ≤ N1

h .

Remark 5.1 According to the exact sequence (21), it is possible to derive another expression for
the matrix R which simplifies (36). Indeed, since curlϕ1

i ∈ V 2
h for any basis function of V 1

h, one

may decompose curlϕ1
i =

∑N2
h

ℓ=1 σ
2
ℓ (curlϕ1

i )ψ
2
ℓ . It follows that R reads

R = KM2 with K :=
(

σ2
ℓ (curlϕ1

i )
)

1≤i≤N1
h
,1≤ℓ≤N2

h

and because M2, as a mass matrix, is s.p.d., (35)-(36) can be equivalently rewritten into

M1(En+1 − En) − c2∆tKM2 Bn+ 1
2 = −∆t ε0

−1J n+ 1
2 (37)

(Bn+ 1
2 − Bn− 1

2 ) + ∆tKTEn = 0. (38)
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Note that the discrete Faraday law is now fully explicit, independently of the basis chosen for V 2
h .

Moreover this corresponds to formulations based on discrete differential forms, the matrices M1 and
M2 representing the discrete Hodge operators, see [7] for more details.

Let us end this section by observing that one last version of the “charge conservation theorem”
– completely equivalent with Theorem 4.1 – can be given, based on the above matrix formulation.
To that purpose, consider that Φh := {φ0

i : i = 1, . . . , N0
h} is a basis of V 0

h , and introduce

A :=

(

−
∫

Ω
ϕ1

j · gradφ0
i

)

1≤i≤N0
h

1≤j≤N1
h

and Rn :=

(
∫

Ω
ρn

hφ
0
i

)

1≤i≤N0
h

.

Then we have the following result.

Theorem 5.1 (charge conservation – fully discrete level in matrix form) Given the dis-
crete Ampere law in matrix form (35), the following are equivalent:

(i) the fully discrete Gauss law in matrix form

AEn = ε−1
0 Rn (39)

holds at any time step n,

(ii) the discrete Gauss law (39) holds at the initial time step n = 0 only, and the source vectors
Rn, J n+1/2 satisfy the following discrete charge conservation property:

Rn+1 −Rn + ∆tGJ n+ 1
2 = 0 ∀ n ∈ N, (40)

where G is the rectangular matrix given by Gi,j := −σ1
j (gradφ0

i ), 1 ≤ i ≤ N0
h , 1 ≤ j ≤ N1

h .

Proof. Of course we do not need a proof for this statement, since it is nothing but the matrix form of
Theorem 4.1. But observe that a direct argument can be written as follows: from grad(V 0

h ) ⊂ V 1
h,

we have grad(φ0
i ) =

∑N1
h

j=1 σ
1
j (grad(φ0

i ))ϕ
1
j for any i, hence A = GM1. In particular, multiplying

Ampere’s law (35) by G yields

A(En+1 − En) = −∆tε−1
0 GJ n+1/2, (41)

where again we have used the fact that the curl of a gradient always vanishes, and more precisely,

(

GR
)

i,j
= −

N1
h

∑

k=1

(

σ1
k(gradφ0

i )

∫

Ω
ψ2

j curlϕ1
k

)

= −
∫

Ω
ψ2

j curl(gradφ0
i ) = 0. (42)

The desired result follows then easily from (41).

5.2 Computing the new discrete current

Let us now give a simple and practical algorithm to compute the new (consistent) right hand side
J n+1/2 appearing in the matrix formulation (35)-(36) of the FE Maxwell solver. Here we restrict
to the simpler case without regularization where S = δ. In this case, indeed, the usual coupling
(28) classically leads to a discrete current given by

J n+ 1
2

i :=

∫

Ω
J

n+ 1
2

h · ϕ1
i =

Npart
∑

k=1

wkv
n+ 1

2

k ·
∫

Ω
δ(x − x

n+ 1
2

k )ϕ1
i (x) dx =

Npart
∑

k=1

wkv
n+ 1

2

k · ϕ1
i (x

n+ 1
2

k ) (43)
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for i = 1, . . . , N1
h , whereas the consistent coupling (33) yields

J n+ 1
2

i :=

∫

Ω
J

n+ 1
2

h · ϕ1
i =

1

∆t

Npart
∑

k=1

v
n+ 1

2

k ·
∫ tn+1

tn

ϕ1
i (xk(t)) dt (44)

with xk(t) := xn
k + (t− tn)v

n+1/2
k on [tn, tn+1]. Note that the right hand side of the Maxwell solver

is now well defined even in the case where the particles are located on the edges of the FE mesh,
compare with Remark 4.1. Now, even though that formula may seem rather involved compared to
the former one, it is possible to compute it exactly with almost no additional implementation costs.
Indeed, every trajectory xk being affine on [tn, tn+1], we easily infer from the piecewise polynomial
structure of ϕ1

i that if xk stays within a cell κ during a sub-interval [τ, τ + ∆τ ] of [tn, tn+1], the
function t → ϕ1

i (xk(t)) is a univariate polynomial on that interval. More precisely, in the case of
the structured finite element spaces (19), every piece ϕ1

i |κ is in Qp−1,p × Qp,p−1 therefore

t→ ϕ1
i (xk(t)) ∈ (P2p−1)

2 on [τ, τ + ∆τ ].

For spaces (20) defined on general triangulations, every piece ϕ1
i |κ is in (Pp)

2, and hence

t→ ϕ1
i (xk(t)) ∈ (Pp)

2 on [τ, τ + ∆τ ].

In particular, a Gauss-Legendre quadrature formula with respectively p or ⌈p+1
2 ⌉ points on [τ, τ+∆τ ]

will be exact for the associated integral, i.e., we have

∫ τ+∆τ

τ
ϕ1

i (xk(t)) dt =
∆τ

2

p′
∑

j=1

λp′,j ϕ1
i

(

xk(τ) +
(sp′,j + 1)∆τ

2
v

n+ 1
2

k

)

, (45)

with p′ = p or ⌈p+1
2 ⌉ depending whether the cell κ is a quadrangle or a triangle. Here λp′,i and

sp′,i denote the Gauss-Legendre weights and points corresponding to the reference interval [−1, 1],

which we recall below for p′ ≤ 5. To explicitly compute the discrete current vector J n+ 1
2 , it thus

remains to track the cells travelled by every particle k, apply (45) on every such cell (once per basis
function ϕ1

i which support intersects this cell), and sum the contributions according to (44).
In particular, the resulting code essentially consists in point-wise evaluations of the basis func-

tions ϕ1
i , as is the case whith the usual formula (43). Let us summarize it for the sake of clarity.

Algorithm 5.2 (computation of the current vector J n+1/2)

1. set J tmp[i] := 0 for all i ∈ {1, . . . , N1
h}

2. for k = 1, . . . , Npart, do {

(a) set τ := tn, and let κ be the cell containing xk(τ + 0+)

(b) while
{

∆τ := sup {θ ∈ [0, tn+1 − τ ] : xk(τ + θ) ∈ κ} > 0
}

, do {
i. for any i ∈ {1, . . . , N1

h} such that supp(ϕ1
i ) ∩ κ 6= ∅, set

J tmp[i] := J tmp[i] +
∆τ

2∆t
v

n+ 1
2

k ·
p′

∑

j=1

λp′,j ϕ1
i

(

xk(τ) +
(sp′,j + 1)∆τ

2
v

n+ 1
2

k

)

,

ii. set τ := τ + ∆τ , and let κ be the cell containing xk(τ + 0+)

}
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p′ {sp′,j : j = 1, . . . , p′} {λp′,j : j = 1, . . . , p′}

1 0 2

2 ±1
3

√
3 ≈ ±0.57735 1

3
0 8

9 ≈ 0.888889

±1
5

√
15 ≈ ±0.774597 5

9 ≈ 0.555556

4
± 1

35

√

525 − 70
√

30 ≈ ±0.339981 1
36(18 +

√
30) ≈ 0.652145

± 1
35

√

525 + 70
√

30 ≈ ±0.861136 1
36(18 −

√
30) ≈ 0.347855

5

0 128
225 ≈ 0.568889

± 1
21

√

245 − 14
√

70 ≈ ±0.538469 1
900(322 + 13

√
70) ≈ 0.478629

± 1
21

√

245 + 14
√

70 ≈ ±0.90618 1
900(322 − 13

√
70) ≈ 0.236927

Table 1: Reference Gauss-Legendre nodes and weights for p′ ≤ 5.

}

3. set J n+1/2
i := J tmp[i]

Remark 5.3 Since the time integral is always one-dimensional, the above algorithm is valid for
all kind of piecewise polynomial elements (i.e., for all geometries, orders and dimensions), as long
as the number of nodes p′ is chosen accordingly.

5.3 Mass lumping on structured meshes

Here we recall one basis proposed by Cohen and Monk in [9] for the curl-conforming Nédélec space
V 1

h in the case of a structured mesh, which allows to lump the Mass matrix M1 arising in the finite
element method, see Section 5.1. As was mentioned in (19), the space V 1

h consists in this case of
functions which restrictions to any cell κi,j = [ih, (i+ 1)h] × [jh, (j + 1)h] ∈ Ωh are polynomials of
Qp−1,p ×Qp,p−1. In order to characterize the basis functions, the degrees of freedom are defined as
follows. We first denote by

0 < ν̂1 < · · · < ν̂a < · · · < ν̂p < 1 and 0 = ν̂0,0 < · · · < ν̂0,b < · · · < ν̂0,p = 1

the Gauss-Legendre and Gauss-Lobatto nodes on the reference interval [0, 1], and next define the
2p(p+ 1) = dim(Qp−1,p × Qp,p−1) associated bivariate nodes in the reference quadrangle [0, 1]2 by

m̂(x,a,b) := (ν̂a, ν̂0,b) and m̂(y,a,b) := (ν̂0,b, ν̂a) for a = 1, · · · p, b = 0, · · · p. (46)

The associated (reference) degrees of freedom are then given by

σ̂1
(ξ,a,b)(v) = (v · τ ξ)(m̂(ξ,a,b)), ξ = x or y, a = 1, · · · p, b = 0, · · · p, (47)

where τx := ( 1
0 ) and τy := ( 0

1 ) denote the unit vectors tangent to the axes. As it can be easily
checked, these linear forms are independent on Qp−1,p × Qp,p−1, hence there exists a unique basis
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{ϕ̂1
(ξ,a,b) : ξ = x or y, a = 1, · · · p, b = 0, · · · p} of Qp−1,p × Qp,p−1, characterized by the relations

σ̂1
λ(ϕ̂1

µ) = δλ,µ. The corresponding functions are given by

ϕ̂1
(x,a,b)(x, y) :=

(

La(x)L0,b(y)
0

)

and ϕ̂1
(y,a,b)(x, y) :=

(

0
La(y)L0,b(x)

)

(48)

for a = 1, · · · p and b = 0, · · · p. Here La and L0,b denote the univariate Lagrange polynomials
of degree p − 1 and p associated with the nodes ν̂i and ν̂0,j , respectively. It is then possible to
define a curl-conforming basis of V 1

h by appropriately transporting these functions and degrees of
freedom on every quadrangle κ of Ωh. More precisely, we first transport the reference nodes as
m

κi,j

(ξ,a,b) := m̂ξ,a,b + (ih, jh), and associated with interior nodes, set

ϕ1
λ(x, y) := ϕ̂1

ξ,a,b

(x− ih

h
,
x− ih

h

)

for λ = (κi,j , ξ, a, b) such that 1 ≤ b ≤ p− 1.

Because of the curl-conformity, basis functions associated with boundary nodes (i.e., such that
b = 0 or p) are obtained by stitching together two pieces coming from adjacent cells: for instance,

ϕ1
κi,j ,x,a,0(x, y) := ϕ̂1

x,a,0

(x− ih

h
,
y − jh

h

)

+ ϕ̂1
x,a,p

(x− ih

h
,
y − (j − 1)h

h

)

is associated with m
κi,j

(x,a,0) = m
κi,j−1

(x,a,p), and so forth.

Finally, the associated mass matrix M1 can be lumped by approximating the L2 scalar product
with quadrature formulas involving the univariate Gauss-Legendre and Gauss-Lobatto nodes as
follows. Denote by λi and λ0,j are the corresponding weights on the intervall [0, 1], then set

〈u,v〉∗,κ := h2
p

∑

i=1

p
∑

j=0

λiλ0,j

(

uxvx(mκ
(x,i,j)) + uyvy(m

κ
(y,i,j))

)

≈
∫

κ
u · v

and finally

〈u,v〉∗,h :=
∑

κ∈Ωh

〈u,v〉∗,κ ≈
∫

Ω
u · v.

This yields an admissible approximation for the mass matrix (a dispersion analysis is given in [9]),
and by observing that the restriction of any basis function ϕ1

λ to some cell of Ωh coincides with one
suitably transported reference basis function ϕ̂1

(ξ,i,j), it is easily checked that the resulting matrix,

which entries read (M1,∗)λ,γ := 〈ϕ1
λ,ϕ

1
γ〉∗,h, is indeed diagonal.

5.4 Comparison with the Villasenor-Buneman scheme

Let us now observe that our formulation applied to the above lumped elements (in the first order
case, i.e., with p = 1) is equivalent to the charge conserving method of Villasenor and Buneman
coupled to Yee’s solver for the Maxwell system.

In the first order case, the curl-conforming basis functions obtained by stitching together the
polynomial pieces (48) correspond to products of the first two (univariate) B-splines rescaled at the
cell size h, namely

S0
h(x) := 1[0,1]

(x

h

)

and S1
h(x) := max

{

1 −
∣

∣

∣

x

h

∣

∣

∣
, 0

}

.

Indeed the reference nodes (46) are in this case

m̂(x,1,0) =
(1

2
, 0

)

, m̂(x,1,1) =
(1

2
, 1

)

, m̂(y,1,0) =
(

0,
1

2

)

and m̂(y,1,1) =
(

1,
1

2

)

,
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hence each global basis function is associated with a node

mi+ 1
2
,j ≡ m

κi,j

(x,1,0) = m
κi,j−1

(x,1,1) := ((i+
1

2
)h, jh) or mi,j+ 1

2

≡ m
κi,j

(y,1,0) = m
κi−1,j

(y,1,1) := (ih, (j +
1

2
)h)

together with the corresponding degree of freedom, see (47), and it reads

ϕ1
i+ 1

2
,j
(x, y) =

(

S0
h(x− ih)S1

h(y − jh)
0

)

or ϕ1
i,j+ 1

2

(x, y) =

(

0
S1

h(x− ih)S0
h(y − jh)

)

.

Note that due to the homogeneous boundary conditions, only the functions associated with nodes
interior to Ω belong to V 1

h. As for the (reference) quadrature weights, we have λ1 = 1 and
λ0,0 = λ0,1 = 1

2 , therefore all diagonal terms of the (diagonal) lumped mass matrix M1,∗ are equal
to h2. In order to write the resulting system (37)-(38), it now remains to calculate the matrices K
and M2. To this purpose we define the basis functions of the L2 conforming space V 2

h as

ψ2
i+ 1

2
,j+ 1

2

(x, y) := S0
h(x− ih)S0

h(y − jh)

with degrees of freedom σ2
i+ 1

2
,j+ 1

2

(v) := v((i+ 1
2)h, (j+ 1

2)h), According to (S1
h)′ = 1

h

[

S0
h(·+h)−S0

h

]

we have

curlϕ1
i+ 1

2
,j

= −∂y

(

ϕ1
i+ 1

2
,j

)

x
= −1

h
S0

h(x−ih)
[

S0
h(y−(j−1)h)−S0

h(y−jh)
]

=
1

h

(

ψ2
i+ 1

2
,j+ 1

2

−ψ2
i+ 1

2
,j− 1

2

)

and similarly,

curlϕ1
i,j+ 1

2

= ∂x

(

ϕ1
i,j+ 1

2

)

y
=

1

h
S0

h(y−jh)
[

S0
h(x−(i−1)h)−S0

h(x−ih)
]

= −1

h

(

ψ2
i+ 1

2
,j+ 1

2

−ψ2
i− 1

2
,j+ 1

2

)

It follows that every line of K contains two non-zero terms, namely

σ2
i+ 1

2
,j± 1

2

(

curlϕ1
i+ 1

2
,j

)

= ±1

h
and σ2

i± 1
2
,j+ 1

2

(

curlϕ1
i,j+ 1

2

)

= ∓1

h
.

As for the mass matrix M2, it is clearly diagonal, with values
∫

Ω(ψ2
i+ 1

2
,j+ 1

2

)2 = h2. Hence the

system (37)-(38) reads

1

∆t
(En+1

x − En
x )i+ 1

2
,j −

c2

h

[

(Bn+ 1
2

z )i+ 1
2
,j+ 1

2

− (Bn+ 1
2

z )i+ 1
2
,j− 1

2

]

= (J n+ 1
2

x )i+ 1
2
,j

1

∆t
(En+1

y − En
y )i,j+ 1

2

+
c2

h

[

(Bn+ 1
2

z )i+ 1
2
,j+ 1

2

− (Bn+ 1
2

z )i− 1
2
,j+ 1

2

]

= (J n+ 1
2

y )i,j+ 1
2

1

∆t
(Bn+ 1

2
z − Bn− 1

2
z )i+ 1

2
,j+ 1

2

− 1

h

[

(En
x )i+ 1

2
,j+1 − (En

x )i+ 1
2
,j − (En

y )i+1,j+ 1
2

+ (En
y )i,j+ 1

2

]

= 0

and we recognize the classical Yee scheme on staggered meshes (for simplicity we have written four
En terms in the third equation, but note that only those corresponding to interior nodes should
appear, according to the structure of K).

Finally we observe that our consistent current source definition (33), i.e., (44) in the case without
regularization, yields

(J n+ 1
2

x )i+ 1
2
,j =

1

∆t

Npart
∑

k=1

v
n+ 1

2

k,x

∫ tn+1

tn

S0
h(xk(t) − ih)S1

h(yk(t) − jh) dt

and

(J n+ 1
2

y )i,j+ 1
2

=
1

∆t

Npart
∑

k=1

v
n+ 1

2

k,y

∫ tn+1

tn

S1
h(xk(t) − ih)S0

h(yk(t) − jh) dt,

which is exactly the charge conserving expression of Villasenor and Buneman, see [26].
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6 Numerical experiments

6.1 Beam test case

Here we consider a rectangular domain Ω = [−5, 5] × [−2.5, 2.5] with boundary conditions of
absorbing Silver-Müller type on |y| = 2.5, and of perfect electric conductor type on |x| = 5.
Particles of uniform (low) velocity along the direction x are injected into the domain near the left
boundary x = −5, and then subject to a strong exterior electric field Eext also directed along the
direction x.

We have implemented finite elements of second order (p = 2) corresponding to the spaces (20),
using the unstructured mesh represented in Figure 2, left. In Figure 2, right we have represented the
velocity of the particles with respect to their position, at a time when the first particles have reached
the right boundary x = 2.5, and in Figure 3 we have represented the electric and magnetic fields at
the same time. Notice that the magnetic field is discontinuous at the interface between cells and the
electric field has a continuous tangential component and discontinuous normal component. However
because the current is integrated along the whole trajectory of each particle these discontinuities
do not degrade the solution. Here the asymmetry in the velocity corresponds to a slight expansion
of the beam and already suggests a proper computation of the sources, indeed a lack of charge
conservation usually results in an unphysical beam shrinkage, see e.g. the numerical experiments
displayed in [4].
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Figure 2: mesh used for the beam test case (left), and x and y components of the particles’ velocity,
with respect to their positions.
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Figure 3: self consistent electric (x and y components) and magnetic field (right) at the same time
than Figure 2.

More specifically, we note that the discrete Gauss law (39) is satisfied at the initial time (since
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the initial charge density is zero and the initial electric field is uniform), and by computing the
difference AEn − ε−1

0 Rn we have checked that is it also verified at any time step, as Theorem 4.2
claims.

6.2 Landau damping

The Landau damping problem is a purely electrostatic test case which strongly relies on Gauss’
law being satisfied. In this test case, the initial density f0 corresponds to a sinusoidal perturbation
of a Maxwellian distribution with respect to velocity, i.e.,

f0(x,v) :=
1

2π

(

1 + ǫ
cos(k · x)

2

)

e−
v
2

2

and is approximated by an initial distribution f0
h :=

∑Npart

k=1 ωkδ(x−x0
k,v−v0

k) of weighted macro-
particles, as described in Section 4. The resulting bunch of macro-particles is plotted – in the phase
space – in Figure 4. Now, because the corresponding charge density ρ0

h is not uniformly zero (as in
the previous test case), it is necessary to solve a Poisson problem:

find Φ0
h ∈ H1

0 (Ω) such that ∆Φ0
h =

1

ε0
ρ0

h

in order to determine a consistent initial electric field

E0
h := −gradΦ0

h (49)

that satisfies Gauss’ law at time t = 0. Note that according to (33), the charge density ρ0
h is

obtained by integrating f0
h with respect to velocity, hence if no regularization is performed it is not

an L2 (nor H−1) function. Nevertheless, by using similar arguments as in Remark 4.3 we see that
the above Poisson problem still makes sense when interpreted with the (continuous) test functions
of V 0

h , i.e., there is a unique Φ0
h ∈ V 0

h such that

−
∫

Ω
gradΦ0

h · gradφ =
1

ε0

Npart
∑

k=1

ωkφ(x0
k) ∀φ ∈ V 0

h ,

and we can actually compute it by inverting the stiffness matrix of (any given basis of) V 0
h . It is

then readily seen that the field (49) is in V 1
h and satisfies the appropriate discrete Gauss’ law, see

(29) and Remark 4.1. And again, we have checked that the discrete Gauss law (39) is verified at
any further time step. The resulting (continuous) potential Φ0

h and (curl-conforming) field E0
h are

plotted in Figure 5.
Finally we observe a correct behavior of the classical Landau damping test on Figure 6, which

represents the time evolution of the norm of the electric field (in log scale).

7 Conclusion

We have developed a general charge conserving algorithm for electromagnetic PIC codes within the
framework of Finite Element Maxwell solvers which are based on different discrete approximations
for the electric and magnetic field which satisfy an exact sequence property. The setting can be
used for arbitrary order finite elements on structured or unstructured grids of triangles and/or
quadrilaterals. Within this framework, only Ampere’s and Faraday’s equations need to be solved
numerically. A discrete version of Gauss’s law is satisfied algebraically and up to machine accuracy
in numerical experiments. This offers the possibility of using the recently developed high order
highly accurate Maxwell solvers on structured and unstructured grids in the context of PIC plasma
simulations which should be interesting for a wide range of applications.
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