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Considérons (T n ), un processus ponctuel de paramètre λ 0 . Puisque toute Φ-divergence s'écrit de manière unique sous la forme Φ(P, Q) = ϕ( dP dQ )dQ -où P et Q sont deux probabilités telles que P est absolument continue par rapport à Q et où ϕ est une fonction réelle, strictement convexe et telle que ϕ(1) = 0 -nous établissons tout d'abord un estimateur de λ 0 . En effet, soit Φ une divergence, en posant Λ = R + , P n la mesure empirique de (T n ) et, pour tout réel t, ϕ * (t) = tϕ -1 (t) -ϕ(ϕ -1 (t)), où ϕ est la dérivée de ϕ et où ϕ -1 est la fonction réciproque de ϕ , nous montrons que λn = arg inf α∈Λ sup λ∈Λ { ϕ ( f λ fα ) dP λ -ϕ * (ϕ ( f λ fα )) dP n } converge presque sûrement vers λ 0 . Puis, si f λ est la densité d'une loi exponentielle de paramètre λ, nous montrons que f λn converge uniformément vers Pardo (voir [Pardo, Leandro, 2006]) et Zografos (1990) (voir [Zografos, K. andFerentinos, K. andPapaioannou, T., 1990]) ont montré que T Φ n (α, λ 0 ) convergeait en loi vers une variable aléatoire de loi χ 2 . Et c'est ainsi que nous construisons un test basé sur la région critique

f λ 0 et que, pour tout réel x, |f λn (x) -f λ 0 (x)| = O P (n -1/2 ). Considérons maintenant la fonction T Φ n (α, λ 0 ) définie par T Φ n (α, λ 0 ) = 2n ϕ (1) Φn (α, λ 0 ), où Φn (α, λ) = sup α∈Λ { ϕ ( f λ f α ) dP λ - ϕ * (ϕ ( f λ f α )) dP n }. Alors, Leandro
R Φ = { 2n ϕ (1) Φn (α 0 , λ 0 ) > q 1-ε }, où q 1-ε est le quantile de niveau 1 -ε d'une loi χ 2 .

Introduction

We will define point process as randomly distributed points from a time and/or space standpoint. In this paper, we will consider a real point process and our goal will be to study the modifications of λ 0 through Φ-divergences. All reminders and proofs can be found in annex.

Convergences

Let (T n ) be a point process and let λ 0 be its parameter. Based on the work of Broniatowski in [Broniatowski, 2003] and [START_REF] Broniatowski | Dual representation of φ-divergences and applications[END_REF], we derive estimators of λ 0 . Then, after introducing certain notations, we will produce almost sure uniform convergences of these expressions.

Writing the estimators

We consider an identifiable parametric model {P λ ; λ ∈ Λ} defined on some measurable space (X , B) and Λ is an open of R. We assume for all λ in Λ, P λ has a density f λ with respect to some dominating σ-finite measure. From an i.i.d. sample X 1 , X 2 ,...,X n with distribution P λ0 , we aim at estimating λ 0 , the true value of the parameter. We first need to focus on the selection of the most appropriate model. Indeed, on the one hand, for any n > 0, T n -T n-1 is an exponential random variable and on the other hand, T n = Σ(T i -T i-1 ), with T 0 = 0, has a gamma distribution. Since we want to study the variation of λ 0 , we decide to adopt the exponential model, ie we take

X 0 = T 0 , X 1 = T 1 -T 0 , X n = T n -T n-1 and f λ0 (x) = λ 0 exp{-λ 0 x}. Now, let us introduce the concept of Φ-divergence.
Let ϕ be a strictly convex function defined by ϕ : R + → R + , and such as ϕ(1) = 0. We define a Φ-divergence of P from Q -where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P -by Φ(Q, P ) = ϕ( dQ dP )dP . Moreover, let ϕ * be a function defined by, ∀t ∈ R, ϕ * (t) = tϕ -1 (t) -ϕ(ϕ -1 (t)), where ϕ is the derivate function of ϕ, ϕ -1 the reciprocal function of ϕ and let F be the class of function defined by [Broniatowski, 2003] and [START_REF] Broniatowski | Dual representation of φ-divergences and applications[END_REF] shows that the estimator of Φ(P α , P λ0 ) -that we will call Φ(α, λ 0 )-is :

F = {x → ϕ ( f α f λ ); λ ∈ R + }, then Broniatowski in
Φn (α, λ) = sup λ∈Λ { ϕ ( f α f λ ) dP α - ϕ * (ϕ ( f α f λ )) dP n }
, where P n is the empirical of (X n ) measure and thus the minimum Φ-divergence estimate of λ 0 is : λn = arg inf α∈Λ Φn (α, λ).

Convergence studies

Let us consider

Λ α = {λ ∈ Λ | ϕ * (ϕ ( fα f λ )) dP λ 0 < ∞}, M (λ, α, x) = ϕ ( fα f λ )dP α -ϕ * (ϕ ( fα f λ )), P n M (λ, α) = ϕ ( fα f λ )dP α -ϕ * (ϕ ( fα f λ ))dP n , P M (λ, α) = ϕ ( fα f λ )dP α -ϕ * (ϕ ( fα f λ ))dP , ĉn (α) = arg sup λ∈Λ P n M (λ, α), cn (α) = arg sup λ∈Λ α P n M (λ, α), γn = arg inf α∈Λ sup λ∈Λ P n M (λ, α) and γn = arg inf α∈Λ sup λ∈Λ α P n M (λ, α).
We remark that λn is a M -estimator for λ 0 and its rate of convergence is consequently in O P (m -1/2 ). However, V an der V aart, in chapter V of his work [van der Vaart, 1998], thoroughly studies M -estimators and formulates hypotheses that we will use here in our context and for all set λ 0 : (H1) : sup α∈Λ; λ∈Λα

|P n M (λ, α) -P M (λ, α)| → 0 a.s.
(respectively in probability) (H2) : F or all ε > 0, there is η > 0, such that f or all λ ∈ Λ α verif ying λ -λ 0 ≥ ε, we have P M (λ, α) -η > P M (λ 0 , α), with α ∈ Λ.

(H3) :

∃Z < 0, n 0 > 0 such that (n ≥ n 0 ⇒ sup α∈Λ sup λ∈{Λα} c P n M (λ 0 , α) < Z) (H4) :
T here is a neighbourhood of λ 0 , V, and a positive f unction H, such that, f or all λ ∈ V we have |M (λ, λ 0 , x)| ≤ H(x) (P -p.s.) with P H < ∞, (H5) : T here is a neighbourhood V of λ 0 , such that f or all ε, there is a η such that f or all λ ∈ V and α ∈ Λ, verif ying α -λ 0 ≥ ε, we have P M (λ, λ 0 ) < P M (λ, α) -η.

According to Broniatowski, we can thus say that: Proposition 1 : Assuming conditions (H1) to (H5) hold, we have (1) sup α∈Λ ĉn (α) -λ 0 tends to 0 a.s. (respectively in probability)

(2) γn tends to λ 0 a.s. (respectively in probability).

Finally, if n is the number of vectors of the sample, we then have Theorem 1 : We have almost everywhere and even uniformly almost everywhere, the following convergence: f λn → f λ 0 , when n → ∞.

Rate of convergence

Theorem 2 : For all real x, we have |f λn (x) -f λ0 (x)| = O P (n -1/2 ).

Test

Let us consider T Φ n the function defined by

T Φ n (α, λ 0 ) = 2n ϕ (1) Φn (α, λ 0 ), where Φn (α, λ) = sup α∈Λ { ϕ ( f λ f α ) dP λ -ϕ * ( f λ f α )
dP n }, then many mathematicians, such as Zografos (1990) (see [Zografos, K. and Ferentinos, K. and Papaioannou, T., 1990]) and Leandro Pardo (see [Pardo, Leandro, 2006]), have shown that this function converges towards a χ 2 random variable if α = λ 0 . Hence, since ϕ is a positive function, we can write a new rupture detection test for any (T n ) intensity, i.e. H0 : λ = λ 0 versus H1 : λ = λ 0 , through the function T Φ n (α, λ 0 ), i.e. by the critical region R Φ = { 2n ϕ (1) Φn (α 0 , λ 0 ) > q 1-ε }, where q 1-ε is the quantile, of level 1 -ε, of a χ 2 distribution and where, under (H0), α 0 is the unique element such that Φ(α 0 , λ 0 ) = 0 according to proposition 2 (see page 5).

Simulation

First, we simulate a point process such that its parameter is equal to λ 0 = 1 and we will estimate λ 0 . Second, we will randomly change the parameter and we will observe when the rupture can be detected. Theorem 3 Let (T i ) be a point process such that its associated countable process is a P.I.S.I.. Thus, the random variables T 1 , T 2 -T 1 , T 3 -T 2 , .... are mutually independent and have the same exponential distribution with λ > 0 parameters. Moreover, for all t ≤ 0, N t is a Poisson random variable with parameter λt.

A.2. Φ-Divergences

Let ϕ be a strictly convex function defined by ϕ : R + → R + , and such that ϕ(1) = 0. Definition 3 We define Φ-divergence of P from Q -where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P -by Φ(Q, P ) = ϕ( dQ dP )dP. It will be noted that this expression also holds if P and Q are both dominated by the same probability.

The most used distances (Kullback, Hellinger or χ 2 ) belong to the Cressie-Read family (see Csiszar 1967, Cressie -Read 1984 and the book [Friedrich and Igor, 1987]). They are defined by a specific ϕ. Indeed, -with the relative entropy, we associate ϕ(x) = xln(x) -x + 1 -with the Hellinger distance, we associate ϕ(x) = 2( √ x -1) 2

-with the χ 2 distance, we associate ϕ(x) = 1 2 (x -1) 2 -more generally, with power divergences, we associate ϕ(x) = x γ -γx+γ-1

γ(γ-1)
, where γ ∈ R \ (0, 1) -and, finally, with the L 1 norm, which is also a divergence, we associate ϕ(x) = |x -1|. Finally, we have Proposition 2 A fundamental property of Φ-divergences is the fact that there is a unique case of nullity. We have Φ(P, Q) = 0 ⇔ P = Q.

Annex B -PROOFS

Proof of proposition 1 : Given that X n → X (a.s.) if ∀ε > 0, P (lim sup{|X n -X| > ε}) = 0, we prove proposition 1: Proof : Since cn (α) = arg sup λ∈Λ α P n M (λ, α), we have P n M (c n (α), α) ≥ P n M (λ 0 , α). And through condition (H1), we get P n M (c n (α), α) ≥ P n M (λ 0 , α) ≥ P M (λ 0 , α) -o P n (1), where o P n (1) does not depend on α. Thus, we get:

P M (λ 0 , α) -P n M (c n (α), α) ≤ P n M (c n (α), α) -P M (c n (α), α) + o Pn (1) ≤ sup α∈Λ; λ∈Λα |P n M (λ, α) -P M (λ, α)| → 0 a.s. ( * ).
Let ε > 0 be such that sup α∈Λ cn (α) -λ 0 > ε. We notice that if such ε had failed to exist, the result would be obvious. Therefore, for this ε, there is a n ∈ Λ such that cn (a n ) -λ 0 > ε, which implies thanks to (H2) that there exists a η such that P M (c n (a n ), a n ) -P M (λ 0 , a n ) > η. Thus, we can write :

P (sup a∈R d cn (α) -λ 0 > ε) ≤ P (P M (c n (a n ), a n ) -P M (λ 0 , a n ) > η)
→ 0 by (*). Moreover, (H1) and (H3) imply that ĉn (α) = cn (α) for all α ∈ Λ and for n big enough. This results in sup α∈Λ ĉn (α) -λ 0 → 0 a.s., which concludes our demonstration of the first part of the proposition. For the second part, we remark that (H1) and (H3) also imply that γn = γn for all α ∈ Λ. This explains why it is sufficient to demonstrate the result for γn only. Based on the first part of the demonstration and on condition (H4), we can write: 

P n M (c n (γ n ),

  γn ) ≥ P n M (c n (λ 0 ), λ 0 ) ≥ P M (c n (γ n ), λ 0 ) -o Pn (1), which implies: P M (c n (γ n ), λ 0 ) -P M (c n (γ n ), γn ) ≤ P n M (c n (γ n ), γn ) -P M (c n (γ n ), γn ) + o P n (1) ≤ sup a∈Λ; b∈Λ α |P n M (λ, α) -P M (λ, α)| → 0 a.s. ( * * ).Based on the first part of this demonstration and on (H5), we infer the existence of η such that : P ( γn -λ 0 ≥ ε) ≤ P (P M (c n (γ n ), λ 0 ) -P M (c n (γ n ), γn )) → 0 a.s. by ( * * ),

We note that as the approximations accumulate and according to the power of the calculators used, we might obtain results above or below the value of the thresholds of the different tests. Moreover, in the case where λ 0 is unknown, we will never be sure to have reached the minimum of the Φ-divergence: we have indeed used the simulated annealing method to solve our optimisation problem, and therefore it is only when the number of random jumps tends in theory towards infinity that the probability to get the minimum tends to 1. We note finally that no theory on the optimal number of jumps to implement does exist, as this number depends on the specificities of each particular problem.

Conclusion :

The present article demonstrates that our Φ-divergence method constitutes a good test of rupture detection. Indeed, the convergence results and simulations we carried out, convincingly fulfilled our expectations. We believe this test could be of great use for many industries such as transportation, for instance to deal with incoming passenger flows or for utilities to distribute electricity in real time.

Annex A -Reminders

In this section, we briefly recall the concepts that we will need below :

A.1. Process with Independent and Stationary Increments (P.I.S.I.) and point process :

Let us introduce a generalization of the Bernouilli process defined on N onto R + . Let us then consider the notion of process with independent and stationary increments. Definition 1 Let {X t ; t ∈ R + } be a process with real values. This process is called a process with independent and stationary increments (P.I.S.I.), if 1/ The applications t → X t are right-continuous on R + , 2/ For all s, t ≤ 0, X t -X s is independent from σ(X r ; r ≥ s), 3/ For all s, t ≤ 0, X t+s -X s has the same law as X t -X 0 and 4/ We have X 0 = 0. Then, we have Definition 2 We define a point process on R + as the sequence of random variable

s.. The countable process -associated with this point processis the sequence

. and finally which concludes our demonstration.
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Proof of theorem 1 : Let F a be the cumulative distribution function of a exponential random variable such that its parameter is a and ψ a is a complex function defined by ψ a (u, v) = F a (Re(u + iv)) + iF a (Re(v + iu)), for all u and v in R. First, according to proposal (9.1) page 216 of the book "Calcul Infinitésimal" of Jean Dieudonne, "Any defined and continuously differentiable, in an open set D ⊂ C, complex function is analytical in D."

We can therefore say that ψ a (u, v) is an analytic function, because x → f a (x) = ae -ax is a continuous function. Given the corollary of Dini's second theorem -according to which "A sequence of cumulative distribution functions which simply converges on R towards a continuous cumulative distribution function F on R, uniformly converges towards F on R" -we deduct that, for all sequence (a n ) converging towards a, ψ a n uniformly converges toward ψ a . Finally, the Weierstrass theorem, (see proposal (10.1) page 220 of the "Calcul infinitésimal" book of Jean Dieudonné), states that "Let (f n ) be a sequence of analytic function in an open set D ⊂ C, and let us suppose that for every closed disc ∆ included D, the sequence (f n (z)) uniformly converges in ∆ toward a limit f (z). Hence f is an analytic function in D, and for all k ≥ 1, the sequence of derivative functions (f

Applying the above reasoning to ψ a , we derive for k = 1, that all sequence ψ a,n uniformly converge towards ψ a , for all a n tending to a. We can therefore conclude.

Proof of theorem 2 : For all x, we have 2), since λn is a M -estimator for λ 0 and its rate of convergence is consequently in O P (n -1/2 ). Hence, we get the result.