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Quantum control is traditionally expressed through bilinear models and their associated Lie algebra controllability criteria. But, the first order approximation are not always sufficient and higher order developpements are used in recent works. Motivated by these applications, we give in this paper a criterion that applies to situations where the evolution operator is expressed as sum of possibly non-linear real functionals of the same control that multiplies some time independent (coupling) operators.

Background on quantum control

Controlling the evolution of molecular systems at quantum level has been envisioned from the very beginings of the laser technology. However, approaches based on designing laser pulses based on intuition alone did not succed in general situations due to the very complex interactions that are at work between the laser and the molecules to be controlled, which results e.g., in the redistribution of the incoming laser energy to the whole molecule. Even if this circumstance initially slowed down investigations in this area, the realization that this inconvenient can be recast and attacked with the tools of (optimal) control theory [START_REF] Judson | Teaching lasers to control molecules[END_REF] greatly contributed to the first positive experimental results [START_REF] Assion | Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[END_REF][START_REF] Levis | Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[END_REF][START_REF] Weinacht | Controlling the shape of a quantum wavefunction[END_REF][START_REF] Bardeen | Feedback quantum control of molecular electronic population transfer[END_REF][START_REF] Bardeen | Quantum control of population transfer in green flourescent protein by using chirped femtosecond pulses[END_REF][START_REF] Hornung | Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain[END_REF][START_REF] Kunde | Adaptive feedback control of ultrafast semiconductor nonlinearities[END_REF].

The regime that is relevant for this work is related to time scales of the order of the femtosecond (10 -15 ) up to picoseconds (10 -12 ) and the space scales from the size of one or two atoms to large polyatomic molecules.

Historically, the first applications that were envisionned were the manipulation of chemical bonds (e.g., selective dissociation) or isotopic separation. Although initially, only few atoms molecules were investigated (di-atomics) the experiments soon were designed to treat more complex situations [START_REF] Assion | Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[END_REF] as selective bond dissociation in an organi-metalic complex CpF e(CO) 2 Cl (Cp is the cyclopentadienyl ion) by maximizing or minimizing the quotient of CpF eCOCl + ions obtained with respect to F eCl + ions.

Continuing this breakthrough, other poly-atomic molecules were considered in strong fields. For instance, in [START_REF] Levis | Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[END_REF] the molecules are the acetone (CH 3 ) 2 CO, the trifluoroacetone CH 3 COCF 3 and the acetophenone C 6 H 5 COCH 3 . Using tailored laser pulses it was shown possible to obtain CH 3 CO from (CH 3 ) 2 CO, CF 3 (or CH 3 ) from CH 3 COCF 3 but also C 6 H 5 CH 3 (toluene) from C 6 H 5 COCH 3 .

But the applications of laser control do not stop here. High Harmonic Generation) [START_REF] Bartels | Shaped-pulse optimization of coherent emission of highharmonic soft X-rays[END_REF] is a technique that allows to obtain output lasers whose frequency is large interger multiples of the input pulses.

A different class of applications works in a different regime of shorter time scales and large intensity. This regime is additionally not compatible with the standard Born-Oppenheimer approximation and requires to consider both nucleari and electrons as quantum particles with entangled wevefunction [START_REF] André | Numerical methods for molecular time-dependent schrödinger equations -bridging the perturbative to nonperturbative regime[END_REF].

In a different framework, the manipulation of quantum states of atoms and molecules allows to envision the construction of quantum computers [START_REF] Deutsch | Quantum theory, the Church-Turing principle and the universal quantum computer[END_REF][START_REF] Shor | Algorithms for quantum computation: Discrete logarithms and factoring[END_REF] Finally, biologically related applications are also the object of ongoing research.

Background on controllability criteria

We start in this section to investigate the theoretical controllability results that are nowadays available for quantum systems. The evolution of the system will be described by the driving Schrödinger equation (we work here in atomic units i.e. = 1)

i ∂ ∂t Ψ(t, x) = H(t)Ψ(t, x) (2.1) Ψ(t 0 , x) = Ψ 0 (x).
where H(t) is the Hamiltonian of the system and x ∈ IR γ the set of internal degrees of freedom. We introduce the Hilbert space structure given by the scalar product

f, g = I R γ f (x)g(x)dx (2.2)
where a + ib = a -ib the conjugate of a complex number. We only consider in this paper situations when the Hamiltonian is autoadjoint H(t) † = H(t); we denoted by T † the adjoint of a operator T . The autoadjointeness of H implies that the L 2

x (IR γ ) norm of the evolving state is conserved.

Indeed d dt Ψ(x, t) L 2 x (I R γ ) = d dt Ψ(x, t), Ψ(x, t) = d dt Ψ(x, t), Ψ(x, t) + Ψ(x, t), d dt Ψ(x, t) = H(t) i Ψ(x, t), Ψ(x, t) + Ψ(x, t), H(t) i Ψ(x, t) = 0. (2.3) Thus Ψ(x, t) L 2 x (I R γ ) = Ψ 0 L 2 (I R γ ) , ∀t > 0, (2.4) 
so the wave function Ψ(t), evolves on the (complex) unit sphere

S = ψ ∈ L 2 (IR γ ) : ψ L 2 (I R γ ) = 1 .
When the system evolves freely under its own internal dynamics i.e. when isolated molecules are considered, the free evolution Hamiltonian H 0 is introduced. This Hamiltonian is the sum of the kinetic part T and the potential operator V (x) : H 0 = T + V (x). A prototypical example of T is the Laplace operator while for V (x) one can encounter Coulomb potential or Lennard-Jones type dependence. We obtain the following evolution in the absence of external interaction:

i ∂ ∂t Ψ(t, x) = H 0 Ψ(t, x) (2.5) 
Ψ(t 0 , x) = Ψ 0 (x).
But, when the free evolution of the system does not generate a satisfactory dynamical output, an external interaction is introduced to control it. An example of external control of paramount importance is a laser source of intensity ǫ(t) ∈ IR, t ≥ 0. The purpose of control may be formulated as to drive the system from its initial state Ψ 0 to take a convenient dynamical path to a final state compatible with predefined requirements. The control is here the laser intensity ǫ(t). We will come back later with details on the laser field ǫ(t). This laser will modify the Hamiltonian H(t) of the system. A first order approximation can be considered by introducing a time-independent dipole moment operator µ(x) resulting in the dynamics:

i ∂ ∂t Ψ(t, x) = (H 0 + ǫ(t)µ) Ψ(t, x) (2.6) Ψ(t 0 , x) = Ψ 0 (x).
This is the so-called bi-linear framework (the control enters linearly multiplying the state), that is the object of much theoretical and numerical work in quantum control. We also review below some of the results that are available in this formulation. However, recently, higher order field dependence has been considered in different circumstances see e.g., [START_REF] Dion | Twofrequency IR laser orientation of polar molecules. numerical simulations for HCN[END_REF][START_REF] Dion | Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability[END_REF] for details. In these situations the Hamiltonian H(t) is developped further as :

H(t) = H 0 + ǫ(t)µ 1 + ǫ 2 (t)µ 2 + ... + ǫ L (t)µ L . (2.7) 
The question that will be of interest to us in this work is the study of all possible final states for the quantum system. This question is important in order to understand the capabilities that a laboratory experiment will be able to provide and also, in a more general setting, to accompany the introduction of new experimental protocols.

More specifically, we will show how the criteria available for bilinear control can be extended to treat the Hamiltonian (2.7) where a single control amplitude ǫ(t) appears before different coupling operators µ 1 , ..., µ L .

Many of the questions regarding the properties of the quantum control procedures, such as controllability, optimal control definition, etc, ... need, in order to be defined, to specify the admissible control class, i.e., the set U where the control ǫ(t) is alowed to vary. Among the properties that can define this admissible set, some are related to the regularity of the time-dependence (L 2 , H 1 , ... etc) or of the Fourier expression (sum of sinusoidal functions multiplied by an overall enveloppe, etc,...) or to additional structure: e.g. piecewise continuous, piecewise constant, locally bounded ... The choice of one or several conditions in the list above is motivated in practice by capability to reproduce that particular form or to inherent experimental restrictions (finite total laser energy/fluence, etc). As the laser technology is constantly evolving, the first class of constraints becomes less critical and thus it is realistic to consider very weak constraints on the control set, e.g. U = L 2 (IR) ∩ L ∞ loc (IR). However, to treat even more general situations, we will consider in this work controls ǫ(t) that are piecewise constant, taking any value in a set V , which will remain fully general.

Infinite dimensional bilinear control

When compared to the finite dimensional control equations (see Section 2.2), controllability of the infinite dimensional version of the bilinear Time Dependent Schrödinger Equation is much less understood at this time. In fact, most of the progress obtained so far takes the form of negative results, in contradiction with the positive results available in finite dimensional settings. However we see the absence of positive controllability results is rather a failure of today's control theory tools to provide insight into controllability rather than an actual restriction. We do believe that new tools and concepts will make positive results possible.

Let us write the solution of (2.6) in the following form:

Ψ(t) = e -iH0t Ψ 0 -i t 0 ǫ(s)e -iH0(t-s) µΨ(s)ds (2.8)
This formulation (see [START_REF] Thierry | Semilinear Schrödinger equations[END_REF] for details) is granted by the properties of the operator µ :

H 1 0 (IR γ ) → H -1 (IR γ
) which is continuous when µ is bounded; we also recall that the control ǫ can be considered bounded in both L ∞ and L 2 .

The application ǫ(t) → Ψ(x, t) possesses an important compacity property which is the key of the controllability results (we refer the reader interested in details to [START_REF] Ball | Controllability for distributed bilinear systems[END_REF][START_REF] Salomon | Numerical analysis of simulations in quantum control[END_REF]) : Lemma 2.1. Suppose that µ : X → X is a bounded operator and that H 0 generates a C 0 semigroup of bounded linear operators on some Banach space X (e.g. X = H 1 0 (IR γ )). Denote for T > 0 and ǫ ∈ L 1 ([0, T ]) by Ψ ǫ (x, t) the solution of (2.6) with control ǫ. Then ǫ → Ψ ǫ is a compact mapping in the sense that for any ǫ n that converges weakly to

ǫ in L 1 ([0, T ]) Ψ ǫn converges strongly in C([0, T ]; X) to Ψ ǫ .
This compactness property allows to give negative results for general bilinear controllability settings as in [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] where they were applied to the wave and rod equations. Specific statements for quantum control have been latter derived (Thm. 1 from [START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF] ; see also [START_REF] Ball | Controllability for distributed bilinear systems[END_REF][START_REF] Turinici | Controllable quantities for bilinear quantum systems[END_REF]) and can be stated as: Theorem 2.2. Let S be the complex unit sphere of L 2 (IR γ ). Let µ be a bounded operator from the Sobolev space X (e.g., X = H 1

x (IR γ )) to itself and let H 0 generate a C 0 semigroup of bounded linear operators on X. Denote by Ψ ǫ (x, t) the solution of (2.6). Then the set of attainable states from Ψ 0 defined by

AS = ∪ T >0 {Ψ ǫ (x, T ); ǫ(t) ∈ L 2 ([0, T ])} (2.9)
is contained in a countable union of compact subsets of X. In particular its complement S ∩ X \ AS with respect to S ∩ X is everywhere dense on S ∩ X. The same holds true for the complement with respect to S.

In a different formulation, the theorem implies that for any Ψ 0 ∈ X ∩ S, within any open set around an arbitrary point Ψ ∈ X ∩ S there exists a state unreachable from Ψ 0 with L 2 controls.

Remark 2.3. Note that the result does not give information on the closure of the set AS. In particular it may well be that while AS still has dense complement its closure be the whole space X. This would be the so-called approximate controllability i.e. the possibility to reach targets arbitrarily close to any given final state.

Despite some attempts in the litterature, at this time there is no answer (positive or negative) to this question. Among the ingredients that make this study difficult we can mention the possibility to use arbitrary large final time T , the necessity to treat the continuous spectrum of the operator H 0 and the intrinsically unbounded domain on which the problem is posed.

To complicate even more the landscape, situations exists where the results obtained in infinite and finite dimensional representation are of different nature. We will illustrate with a classical result on the harmonic oscillator.

Lemma 2.4. The infinite dimensional harmonic oscillator

H 0 = -∂ 2 ∂x 2 + x 2 , µ = x is not controllable. Moreover the set of all admissible states is a low-dimensional manifold of L 2 .
Proof. Let us begin by noting that the operators -iH 0 and -iµ form a Lie algebra of dimension 4. Indeed, let us compute the iterated commutators of

H 0 = -∂ 2 ∂x 2 +x 2 and µ = x : [i(- ∂ 2 ∂x 2 + x 2 ), ix] = 2 ∂ ∂x (2.10) [ix, ∂ ∂x ] = -i (2.11) [i(- ∂ 2 ∂x 2 + x 2 ), i ∂ ∂x ] = -2ix (2.12)
Thus the dimension of the Lie algebra = 4 and as such the system cannot be controllable (all the states are on a low dimensional manifold of L 2 ). We refer to [START_REF] Mirrahimi | Controllability of quantum harmonic oscillators[END_REF] for recent contributions when the algebra of the operators H 0 and µ is finite dimensional.

This result is to be contrasted with additional works that show that any (spectral) truncation of the harmonic oscillator is controllable (see [START_REF] Schirmer | Complete controllability of quantum systems[END_REF] for details).

What can be deduced from the above result is that truncating an infinite dimensional system is not always justified and care must be taken to check that the control obtained in the resulting finite dimensional approximation remain a good control for the initial, infinite dimensional system. Of course, this is not needed for situations which are inherently finite dimensional quantum systems (e.g., spins).

Finite dimensional bilinear control

Here our focus will be on finite dimensional systems. We introduce an orthonormal basis D = {ψ i (x); i = 1, .., N } for a finite dimensional space. An important example of such a space is the one spanned by the first N eigenstates of the internal Hamiltonian H 0 . This example is also motivated in bi-linear settings by the "perturbation" argument that considers the control term ǫ(t)µ as a first order developpement of H(t) around H 0 . Note however that no concept of "smallness" is introduced in the definition of admissible controls U.

Denote by M the linear space that D generates, and let H 0;a,b = H 0 ψ a , ψ b and µ ℓ;a,b = ψ a , µ ℓ ψ b be the expressions of the operators H 0 and µ ℓ with respect to this basis, ℓ = 1, ..., L. To keep notations simple we will still denote from now on by H 0 and µ ℓ the resulting N × N symmetric matrices.

In the Galerkin approach, expressing the Schrödinger equation in the space M is equivalent to supposing Ψ(x, t)

= N i=1 ψ i (x)c i (t). i dc(t; ǫ; c 0 ) dt = H 0 c(t; ǫ; c 0 ) + ǫ(t)µ 1 + ... + ǫ L (t)µ L c(t; ǫ; c 0 ) (2.13) c(t = 0; ǫ; c 0 ) = c 0 .
In the following, when no ambiguity prevents it, we will also simply denote c = c(t; ǫ; c 0 ). The finite dimensional counterpart of the norm conservation property (2.4) reads:

N n=1 |c n | 2 = 1.
i.e., the state c evolves on the unit sphere S N of C | N . The controllability can be formulated in this case as: Although specific results for this setting exist [START_REF] Turinici | Quantum wave function controllability[END_REF][START_REF] Turinici | Wavefunction controllability in quantum systems[END_REF], a different alternative is to see (2.13) as a system posed on U (N ) 1 . We introduce the evolution equation on U (N ):

i dU (t; ǫ) dt = H 0 + ǫ(t)µ 1 + ... + ǫ L (t)µ L U (t; ǫ) (2.14) U (t = 0; ǫ) = Id.
Since H 0 and µ ℓ are symmetric matrices, U (t; ǫ) will remain unitary for all t ≥ 0.

It is classical to remark then that the evolution of c(t; ǫ; c 0 ) can be obtained from the evolution of U (t; ǫ) by c(t; ǫ; c 0 ) = U (t; ǫ)c 0 .

In particular it follows that if the set of all attainable matrices U (t; ǫ) is at least SU (N ) then the system is controllable. This is almost a necessary condition for controllability, a notable exception being the circumstance when N is even: in this case, if the set of all attainable matrices contains Sp(N/2) then controllability still holds. We refer to [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF][START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] for more detailed information.

Let us just mention that different representations of the system include the density matrix formulation with time dependent density matrix operator ρ(t) satisfying

i ∂ ∂t ρ(t; ǫ; ρ 0 ) = [H 0 + ǫ(t)µ 1 + ... + ǫ L (t)µ L , ρ(t; ǫ; ρ 0 )] (2.15) ρ(t = 0; ǫ; ρ 0 ) = ρ 0
Then one can show ρ(t; ǫ; ρ 0 ) = U (t; ǫ)ρ 0 U † (t; ǫ). Controllability in this case is the possibility to steer any initial mixed state ρ 0 to any other state ρ f unitarily equivalent to it2 . Note that the density matrix controllability is equivalent to requiring that the set of all matrices attainable from identity be at least SU (N ).

At a general level, the evolution equation (2.14) can be re-written as

dx(t; ǫ; x 0 ) dt = (A + ǫ(t)B 1 + ...ǫ L (t)B L )x(t; ǫ; x 0 ) (2.16)
x(0) = x 0 .

(2.17) where x(t; ǫ; x 0 ) belongs to a Lie group G ( see [START_REF] Gorbatsevich | Foundations of Lie Theory and Lie Transformation Groups[END_REF][START_REF] Bourbaki | Elements of mathematics. Lie groups and Lie algebras[END_REF][START_REF] Bourbaki | Elements of mathematics. Lie groups and Lie algebras[END_REF] for basic facts about the lie groups) and A,B 1 ,...,B K to its associated Lie algebra L(G). The equation above is to be taken in the usual sense (using the exponential map) when e.g., ǫ(t) is piecewise continuous/constant and in a weak sense (integral form) for general ǫ(t) (see e.g. [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] for additional details). For the quantum control problem A = -iH 0 and

B ℓ = -iµ ℓ , G = U (N ).
Remark 2.6. Everything that will be said in this and following sections applies with trivial modifications to the situation of several laser fields. For notational convenience we will only give here the results for a unique laser field.

We will denote by L A,B1,...,B k ⊂ L(G) the Lie algebra spanned by A, B k , k = 1, ..., K and by e the unity of G.

Let us now consider the set of all reachable states from an initial state y: R t U (y) = {x(t; ǫ; y) solution of (2.16) ; ǫ ∈ U}.

(2.18)

It is immediate to see that R t U (y) = R t U (e)y (2.19)
and thus, describing the set R t U (e) allows to completely describe all other reachable sets. When the final time is not specified, we will denote

R U (y) = ∪ t≥0 R t U (y). (2.20)
The central question is to characterize R U (e). When the bi-linear setting is considered i.e. L = 1 and we note B = B 1 , we have the following result [START_REF] Jurdevic | Control systems on Lie groups[END_REF][START_REF] Lobry | Controllability of nonlinear systems on compact manifolds[END_REF]:

Theorem 2.7. Consider the system (2.16) defined on a Lie group G with associated Lie algebra L(G) containing A and B. If G is compact and the Lie algebra L A,B generated by A and B is the complete algebra L(G) : L A,B = L(G) then the set R U (e) of all states states from the identity is the Lie group G. Moreover, there exists 0 < T < ∞ such that R T ′ U (e) = G for all T ′ ≥ T . This gives, when applied to quantum control [START_REF] Ramakrishna | Controllability of molecular systems[END_REF]: (L = 1, µ = µ 1 ): Theorem 2.8. If the Lie algebra L -iH0,-iµ generated by -iH 0 and -iµ has dimension N 2 (as a vector space over the real numbers) then the system (2.14) is density matrix controllable. Furthermore, if both -iH 0 and -iµ are traceless then sufficient condition for the density matrix (thus wavefunction) controllability of quantum system is that the Lie algebra L -iH0,-iµ has dimension N 2 -1.

Although the results above conveniently address the situation of a bi-linear setting, we are not aware of any similar results for the general quantum control situations (2.7). In particular, we know by the result above that, if u 1 ,...,u L are independent controls, i.e., dx(t; ǫ; x 0 ) dt

= (A + u 1 (t)B 1 + ... + u L (t)B L )x(t; ǫ; x 0 ) (2.21) x(0) = x 0 , (2.22) 
an equivalent condition for the controllability of the above system on its compact Lie group G is that A,B 1 ,...,B L generate the whole Lie algebra L(G). But, there is no obvious way to say what will happen when the controls u ℓ are not independent but related by the condition u ℓ = ǫ ℓ (t). This study is the purpose of the next section.

Criteria for non linear operators

In order to extend the controlability results above beyond bi-linear interaction Hamiltonians, we will introduce in this section a more general setting: we will rewrite the control equation (2.16) as dx(t; ǫ; x 0 ) dt = (F 1 (ǫ(t))B 1 + ... + F l (ǫ(t))B L )x(t; ǫ; x 0 ) (3.1)

x(0) = x 0 . (3.2) 
where F k : V → IR are real functionals. Note in particular that we do not impose any assumption on the regularity of the functionals F k . Of course, one can recover the equation (2.16) by setting F k (x) = x k and adding F 0 = 1. In order to avoid trivialities, we will suppose in the following that the functionals (F k ) L k=1 are linearly independent.

Otherwise one may just consider a subset of functionals that are linearly independent and adjust the matrices B k accordingly. Of course, since we do not specify the set V that lists all the possible control values ǫ the hypothesis above needs to be understood in the following acception: the functionals F k are said to be linearly dependent if there exist constants λ 1 , ..., λ L ∈ IR such that L j=1 λ j F j (v) = 0 for all v ∈ V . Otherwise the functionals are said to be linearly independent.

In order to obtain the quantum controllability results, we begin in this section with a controllability criterion on compact Lie groups. These results build on classical references for bilinear controllability [START_REF] Jurdevic | Control systems on Lie groups[END_REF]. We give first a weak but intuitive form and then we state the fully general one. Theorem 3.1. Let (3.1) be a control system posed on a compact connected Lie group G, with linearly independent functionals (F k ) L k=1 . Then if the Lie algebra generated by B 1 ,...,B L is the full Lie algebra L(G) of the group G, then the system is approximatelly controllable, i.e. for any a, b ∈ G, b is an accumulation point of the set of all states x(t) attainable from x(0) = a with admissible controls.

Proof. Let us begin by noting that if F k are independent then there exist values e j ∈ V , j = 1, ..., L such that the vectors v(e j ) = (F 1 (e j ), ..., F L (e j )) are linearly independent. Suppose on the contrary that this is not true. Consider then a maximal set of vectors v(E 1 ), ..., v(E p ) that are linearly independent. The matrix (F k (E j )) L;p k=1;j=1 has rank preciselly p and thus one can extract p functionals, denoted for notational convenience F 1 , ..., F p such that rank(F k (E j )) p;p k=1;j=1 = p. Take now some functional F p+1 not in this set. It follows that rank(F k (E j )) p+1;p+1 k=1;j=1 = p and as such det(F k (E j )) p+1;p+1 k=1;j=1 = 0 for any E p+1 ∈ V . This determinant can be computed as:

det(F k (E j )) p+1;p+1 k=1;j=1 = λ 1 F 1 (E p+1 ) + ... + λ p+1 F p+1 (E p+1 ) = 0. (3.4)
Note that λ k do not depend on E p+1 and that in particular

λ p+1 = det(F k (E j )) p;p k=1;j=1 = 0.
Thus eq. (3.4) implies that a linear combination with at least one non-null coefficient λ p+1 exists such that p+1 k=1 λ k F k (E) = 0 for all E ∈ V . This is prevented by hypothesis.

We have thus proved the existence of e j ∈ V , j = 1, ..., L with the v(e j ) = (F 1 (e j ), ..., F L (e j )) linearly independent. This means that M j = L k=1 F k (e j )B k are also linearly independent and span the same linear space as B k , k = 1, ..., L and thus M j span also the Lie algebra L(G). Moreover, all states {e tMj x(0); t ∈ IR + , j ≤ L} are atainable from x(0) for the control system (3.1).

It is clear that to prove approximate controllability is sufficient to set a = e the neutral element of the group G. i.e. we have to prove that the closure R U (e) (with respect to the Lie group topology) of the reachable states from identity is the whole G. From the hypothesis and sujectivity of the exponential mapping this is equivalent to proving that

{e M ; M ∈ L(G)} ⊂ R U (e).
We will begin by noting that R U (e) is a group. Indeed, take two elements x(t 1 ; ǫ 1 ; e), x(t 2 ; ǫ 2 , e) ∈ R U (e). Then,defining the control ǫ 12 : [0, t 1 + t 2 ] → IR by ǫ 12 (t) = ǫ 1 (t) for all 0 ≤ t ≤ t 1 and ǫ 12 (t 1 + t) = ǫ 2 (t) for all 0 ≤ t ≤ t 2 we obtain x(t 1 +t 2 ; ǫ; e) = x(t 2 ; ǫ 2 ; e)x(t 1 ; ǫ 1 , e) and thus x(t 2 ; ǫ 2 ; e)x(t 1 ; ǫ 1 , e) ∈ R U (e). Hence R U (e) is a semi-group which implies that R U (e) is a semi-group too.

Let us now consider a ∈ R U (e). Then a n ∈ R U (e) for any n = 1, 2, .... Since R U (e) ⊂ G which is a compact group, R U (e) is compact at its turn. Then there exists a sequence, that we can take such that

n k with n k -n k-1 ≥ 2, with a n k → b ∈ G. But then R U (e) ∋ a n k -n k-1 -1 → bb -1 a -1 and thus a -1 ∈ R U (e).
It is immediate to see that, since the solution for the control ǫ(t) ≡ e j is x(t; 0, ǫ) = e tMj we have the inclusion {e tMj ; t ≥ 0, j ≤ L} ⊂ R U (e). Since R U (e) is a group, we will also have {e tMj ; t ∈ IR; j ≤ L} ⊂ R U (e). Consider now two matrices X 1 , X 2 ∈ L(G) such that

{e tXi ; t ≥ 0} ⊂ R U (e), i = 1, 2.
We invoke now the formula

e t[X1,X2] = lim n→∞ e -tX2/ √ n e -tX1/ √ n e tX2/ √ n e tX1/ √ n n (3.5) 
to conclude that

{e t[X1,X2] ; t ∈ IR} ⊂ R U (e).
Similarly, we use the formula e t1X1+t2X2 = lim n→∞ e t1X1/n e t2X2/n n to conclude that

{e t1X1+t2X2 ; t 1 , t 2 ∈ IR} ⊂ R U (e).
We have thus proved that the set {M ∈ L(G); e tM ∈ R U (e); ∀t ∈ IR} contains M j , j = 1, ..., L, is closed to commutation and is a real vector space. Thus it contains L(G) hence the conclusion of the theorem.

The Theorem above has the advantage to be both intuitive and self-contained. However it only gives approximate controllability results, which are not the strongest forms available. But, in order to obtain exact controllability more involved techniques are needed. In the litterature, similar situations are treated by making use of the Chow theorem [START_REF] Chow | zur algebraische geometrie ix[END_REF] and of the bi-linear control techniques [START_REF] Jurdevic | Control systems on Lie groups[END_REF][START_REF] Sussmann | Controllability of nonlinear systems[END_REF]. The criterion can be stated as follows: Theorem 3.2. Let (3.1) be a control system posed on a compact connected Lie group G with linearly independent functionals F k : V → IR, k = 1, ..., L and piecewise constant controls ǫ taking any value in some set V . Then a necessary and sufficient condition for the exact controllability is that the Lie algebra L B1,...,BL generated by B 1 ,...,B L be the full Lie algebra L(G) of the group G.

Proof. We recall (see also end of Section 2.2) that the set of attainable states is included in the set of attainable states for the system dx(t; ǫ;

x 0 ) dt = [u 1 (t)B 1 + ... + u L (t)B L ]x(t; ǫ; x 0 ) (3.6) x(0) = e, (3.7) 
whose controllability is equivalent to "L B1,...,BL = L(G)". Thus L B1,...,BL = L(G) is a necessary condition for controlability. To prove that is also sufficient, consider as in the proof of the Theorem 3.1, the matrices M j = L k=1 F k (e j )B k , j = 1, ..., L that generate the same Lie algebra L B1,...,BL . We recall that all states {e tMj ; t ∈ IR + , j ≤ L} and all finite products of such states are atainable from the identity e.

We invoke now a technique present in the proof of Thm. 3.1 of [START_REF] Sussmann | Controllability of nonlinear systems[END_REF]: for any P ∈ IN and any multi-index i = (i 1 , ..., i r ) ∈ {1, ..., L} r denote by A(i, T ) the atainable states with the sequence of operators i and total time less than T :

A(i, T ) = r ℓ=1 e t ℓ Mi ℓ ; r ℓ=1 |t ℓ | ≤ P, t 1 , ..., t r ∈ IR .
We know by the Chow theorem that the union of the sets A(i, T ) is the whole Lie group G. Also, it is immediate that any A(i, T ) is image of a compact set thus compact. It follows by the Baire category theorem that A(i, P ) has non-empty interior at least for a couple (i,P ). For such an i = (i 1 , ..., i m ) we introduce the mapping F : IR m → G defined by t = (t 1 , ..., t ℓ ) → F (t) = r ℓ=1 e t ℓ Mi ℓ . This mapping is analytic and its image is has nonempty interior. By the Sard theorem its differential dF (t) has full rank (i.e. equals the dimension of the tangent space T G of G) at least at some point t and thus in a neighborhood. But since dF (t) depends analytically on t the set of points where the rank is full is dense in IR m and as such the rank is full for some t with all components strictly positive. Using a local inverse mapping theorem it follows that the image F (T ) has non-empty interior where T is an open subset of IR m + . But all points in F (T ) are realisable with admissible controls and thus the set of reachable points R U (e) contains an open subset D of G.

By the previous Theorem, R U (e) is a subgroup i.e. for any y ∈ R U (e) the set Dy is also reachable. Since in addition R U (e) is dense in G it follows that R U (e) = G.

Applications to quantum control

The purpose of this section is to instantiate the results obtained previously to the specific situation of the quantum control. We will give two results, one for the density matrix formalism and the second for the wave function.

Density matrix

To consider the specific situation of the density matrix formalism, we use the results of the Section 3 for the Lie group U (N ). We obtain a first ρ(t = 0; ǫ; ρ 0 ) = ρ 0 and suppose that the family {1, F 1 , ..., F L } is linearly independent.

Then, when at least one matrix H 0 ,µ 1 ,...,µ L has nonzero trace, the equation (4.1) is density matrix controllable if and only if the Lie algebra L iH0,iµ1,...,iµL spanned by the matrices iH 0 ,iµ 1 ,...,iµ L is the Lie algebra u(N ) of all skew-hermitian matrices or equivalently dim I R L iH0,iµ1,...,iµL = N 2 .

Otherwise, when all matrices H 0 ,µ 1 ,...,µ L have zero trace, a necessary and sufficient condition for controllability is that L iH0,iµ1,...,iµL = su(N ) or equivalently dim I R L iH0,iµ1,...,iµL = N 2 -1.

Proof. The first part of the conclusion follows from Theorem 3.2 for the Lie group G = (N ).

When all matrices have zero trace one uses the same result for G = SU (N ) noting that if two matrices ρ 1 and ρ 2 are unitarily equivalent ρ 2 = M ρ 1 M † then there exists γ ∈ R with M su = M e iγ ∈ SU (N ) and ρ 2 = M su ρ 1 M † su .

An algorithmic verification of the above theorem can be devised as follows:

1. Test whether the functions {1, F 1 , ..., F L } are linearly independent. If the answer is yes go to next step, otherwise keep only a subset F i1 , ..., F ip with {1, F i1 , ..., F ip } linearly independent and modify the B 1 ... ,B L accordingly.

For notational convenience we suppose all functionals are independent (p = L). Even more precise results can be derived for the situation in Eqn 2.15.

Construct the traceless matrices H

0 = H 0 -T r(H0) N Id, µ 1 = µ 1 -T r(µ1) N Id,..., µ L = µ 1 -T r(µL)
Theorem 4.2. Consider the developpement of the interaction Hamiltonian H = H 0 + ǫ(t)µ 1 + ... + ǫ L (t)µ L resulting in the following evolution equation

i ∂ ∂t ρ(t; ǫ; ρ 0 ) = [H 0 + ǫ(t)µ 1 + ... + ǫ L (t)µ L , ρ(t; ǫ; ρ 0 )] (4.2) 
ρ(t = 0; ǫ; ρ 0 ) = ρ 0 3 Some optimizations are possible at this point as only new commutators are generally needed to be computed. We do not enter into details here.

Then, when at least one matrix H 0 ,µ 1 ,...,µ L has nonzero trace, the equation (4.2) is density matrix controllable if and only if the Lie algebra L iH0,iµ1,...,iµL spanned by the matrices iH 0 ,iµ 1 ,...,iµ L is the Lie algebra u(N ) of all skew-hermitian matrices or equivalently dim I R L iH0,iµ1,...,iµL = N 2 .

Otherwise, when all matrices H 0 ,µ 1 ,...,µ L have zero trace, a necessary and sufficient condition for controllability is that L iH0,iµ1,...,iµL = su(N ) or equivalently dim I R L iH0,iµ1,...,iµL = N 2 -1.

Wave function

To derive results for the wave function of the same nature as the two criterions above one has to analyse the transitive subsets of U (N ). We recall that a subset A ⊂ U (N ) is called transitive when for any two vectors a, b on the unit sphere of C | N there exists a matrix X ∈ A with b = Xa. For the situation of quantum control, such a study is available in the literature [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF]. To be able to state the corresponding result for this specific situation here, we introduce the centralizer C G z of an element z ∈ G which is defined as the set of all elements that commute with z:

C G z = {x ∈ G : xz = zx}.
We also define P = i • diag(1, 0, ..., 0) ∈ U (N ). In particular a sufficient condition for controllability is that dim I R L iH0,iµ1,...,iµL = N 2 .

Proof. The proof follows from arguments in [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF].

The following procedure allows to implement the above criteria:

1. Test whether the functions {1, F 1 , ..., F L } are linearly independent. If the answer is yes go to next step, otherwise keep only a subset F i1 , ..., F ip with {1, F i1 , ..., F ip } linearly independent and modify the B 1 ... ,B L accordingly.

For notational convenience we suppose all functionals are independent i.e. p = L. In particular a sufficient condition for controllability is that dim I R L iH0,iµ1,...,iµL = N 2 .

Remark 4.5. All the above results basically state that controllability with linearly independent functionals of a single control ǫ is true whenever the same equation, but with completelly independent controls, is controllable.

Definition 2 . 5 .

 25 The system (H 0 , µ 1 , ..., µ L ) is called (wavefunction) controllable, if for any two states c k ∈ S N , k = 1, 2 there exists a final time T < ∞ and control ǫ(t) ∈ L 2 ([0, T ]) such that the solution of eqn. (2.13) starting from c 1 ends in c 2 at final time T : c(T ; ǫ; c 1 ) = c 2 .

Theorem 4 . 1 .

 41 Consider the system i ∂ ∂t ρ(t; ǫ; ρ 0 ) = [H 0 + F 1 (ǫ(t))µ 1 + ... + F L (ǫ(t))µ L , ρ(t; ǫ; ρ 0 )] (4.1)

NId.

  Denote by O = {i H 0 , i µ 1 , ..., i µ L } . 3. Write any element of O as a column vector and compute the rank r = rank(O) over the real numbers. 4. Construct all commutators C of matrices in O 3 and test whether rank(O ∪ C) = r. If not, set O := O ∪ C and return to previous step. 5. Test whether r = N 2 -1. If yes the system is controllable, if not the controllability does not hold.

Theorem 4 . 3 .

 43 Consider the system i dc(t; ǫ; c 0) dt = [H 0 + F 1 (ǫ(t))µ 1 + ... + F L (ǫ(t))µ L ] c(t; ǫ; c 0 ) (4.3) c(t = 0; ǫ; c 0 ) = c 0 .with c 0 = 1. Suppose that the family {1, F 1 , ..., F L } is linearly independent and denote by L iH0,iµ1,...,iµL the Lie algebra spanned by the matrices iH 0 ,iµ 1 ,...,iµ L . Then the equation (4.3) is (wave function) controllable if and only if dim I R L iH0,iµ1,...,iµL -dim(L iH0,iµ1,...,iµL ∩ C G P ) = 2N -2.

2 . 4 .

 24 Denote O = {iH 0 , iµ 1 , ..., iµ L } . 3. Write any element of O as a column vector and compute the rank r = rank(O) over the real numbers. Construct all commutators C of matrices in O 4 and test whether rank(O ∪ C) = r. If not, set O := O ∪ C and return to previous step. 5. Extract from O the matrices that commute with P and compute the rank d of this ensemble over IR. Test whether r -d = 2N -2. If yes the system is controllable, if not the controllability does not hold. We also obtain Theorem 4.4. Consider the developpement of the interaction Hamiltonian H = H 0 + ǫ(t)µ 1 + ... + ǫ L (t)µ L resulting in the following evolution equation i dc(t; ǫ; c 0 ) dt = H 0 + ǫ(t)µ 1 + ... + ǫ L (t)µ L c(t; ǫ; c 0 ) (4.4) c(t = 0; ǫ; c 0 ) = c 0 . with c 0 = 1. Denote by L iH0,iµ1,...,iµL the Lie algebra spanned by the matrices iH 0 ,iµ 1 ,...,iµ L . Then the equation (4.4) is (wave function ) controllable if and only if dim I R L iH0,iµ1,...,iµL -dim(L iH0,iµ1,...,iµL ∩ C G P ) = 2N -2.

U (N ) is the set of all N × N complex unitary matrices.

A N × N matrix ρ 2 is said unitarily equivalent to a N × N matrix ρ 1 if there exists M ∈ U (N ) such that ρ 2 = M ρ 0 M † .

Here again, optimizations are possible.
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