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Beyond bilinear controllability :
applications to quantum control

Gabriel Turinici

Abstract. Quantum control is traditionally expressed through bilinear models
and their associated Lie algebra controllability criteria. But, the first order
approximation are not always sufficient and higher order developpements are
used in recent works. Motivated by these applications, we give in this paper a
criterion that applies to situations where the evolution operator is expressed as
sum of possibly non-linear real functionals of the same control that multiplies
some time independent (coupling) operators.
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2 Gabriel Turinici

1. Background on quantum control

Controlling the evolution of molecular systems at quantum level has been envi-
sioned from the very beginings of the laser technology. However, approaches based
on designing laser pulses based on intuition alone did not succed in general sit-
uations due to the very complex interactions that are at work between the laser
and the molecules to be controlled, which results e.g., in the redistribution of the
incoming laser energy to the whole molecule. Even if this circumstance initially
slowed down investigations in this area, the realization that this inconvenient can
be recast and attacked with the tools of (optimal) control theory [18] greatly con-
tributed to the first positive experimental results [2, 21, 33, 6, 5, 17, 20].

The regime that is relevant for this work is related to time scales of the order
of the femtosecond (10−15) up to picoseconds (10−12) and the space scales from
the size of one or two atoms to large polyatomic molecules.

Historically, the first applications that were envisionned were the manipula-
tion of chemical bonds (e.g., selective dissociation) or isotopic separation. Although
initially, only few atoms molecules were investigated (di-atomics) the experiments
soon were designed to treat more complex situations [2] as selective bond disso-
ciation in an organi-metalic complex CpFe(CO)2Cl (Cp is the cyclopentadienyl
ion) by maximizing or minimizing the quotient of CpFeCOCl+ ions obtained with
respect to FeCl+ ions.

Continuing this breakthrough, other poly-atomic molecules were considered
in strong fields. For instance, in [21] the molecules are the acetone (CH3)2CO, the
trifluoroacetone CH3COCF3 and the acetophenone C6H5COCH3. Using tailored
laser pulses it was shown possible to obtain CH3CO from (CH3)2CO, CF3 (or
CH3) from CH3COCF3 but also C6H5CH3 (toluene) from C6H5COCH3.

But the applications of laser control do not stop here. High Harmonic Gen-
eration) [7] is a technique that allows to obtain output lasers whose frequency is
large interger multiples of the input pulses.

A different class of applications works in a different regime of shorter time
scales and large intensity. This regime is additionally not compatible with the
standard Born-Oppenheimer approximation and requires to consider both nucleari
and electrons as quantum particles with entangled wevefunction [4].

In a different framework, the manipulation of quantum states of atoms and
molecules allows to envision the construction of quantum computers [13, 27]

Finally, biologically related applications are also the object of ongoing re-
search.

2. Background on controllability criteria

We start in this section to investigate the theoretical controllability results that
are nowadays available for quantum systems. The evolution of the system will be
described by the driving Schrödinger equation (we work here in atomic units i.e.
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~ = 1)

i
∂

∂t
Ψ(t, x) = H(t)Ψ(t, x) (2.1)

Ψ(t0, x) = Ψ0(x).

whereH(t) is the Hamiltonian of the system and x ∈ IRγ the set of internal degrees
of freedom. We introduce the Hilbert space structure given by the scalar product

〈f, g〉 =

∫

IRγ

f(x)g(x)dx (2.2)

where a+ ib = a− ib the conjugate of a complex number.
We only consider in this paper situations when the Hamiltonian is auto-

adjoint H(t)† = H(t); we denoted by T † the adjoint of a operator T . The auto-
adjointeness of H implies that the L2

x(IRγ) norm of the evolving state is conserved.
Indeed

d

dt
‖Ψ(x, t)‖L2

x(IRγ) =
d

dt
〈Ψ(x, t),Ψ(x, t)〉

= 〈
d

dt
Ψ(x, t),Ψ(x, t)〉 + 〈Ψ(x, t),

d

dt
Ψ(x, t)〉

= 〈
H(t)

i
Ψ(x, t),Ψ(x, t)〉 + 〈Ψ(x, t),

H(t)

i
Ψ(x, t)〉 = 0. (2.3)

Thus

‖Ψ(x, t)‖L2
x(IRγ) = ‖Ψ0‖L2(IRγ), ∀t > 0, (2.4)

so the wave function Ψ(t), evolves on the (complex) unit sphere

S =
{
ψ ∈ L2(IRγ) : ‖ψ‖L2(IRγ) = 1

}
.

When the system evolves freely under its own internal dynamics i.e. when
isolated molecules are considered, the free evolution Hamiltonian H0 is introduced.
This Hamiltonian is the sum of the kinetic part T and the potential operator V (x)
: H0 = T + V (x). A prototypical example of T is the Laplace operator while for
V (x) one can encounter Coulomb potential or Lennard-Jones type dependence.
We obtain the following evolution in the absence of external interaction:

i
∂

∂t
Ψ(t, x) = H0Ψ(t, x) (2.5)

Ψ(t0, x) = Ψ0(x).

But, when the free evolution of the system does not generate a satisfactory dynam-
ical output, an external interaction is introduced to control it. An example of exter-
nal control of paramount importance is a laser source of intensity ǫ(t) ∈ IR, t ≥ 0.

The purpose of control may be formulated as to drive the system from its
initial state Ψ0 to take a convenient dynamical path to a final state compatible
with predefined requirements. The control is here the laser intensity ǫ(t). We will
come back later with details on the laser field ǫ(t).
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This laser will modify the Hamiltonian H(t) of the system. A first order ap-
proximation can be considered by introducing a time-independent dipole moment
operator µ(x) resulting in the dynamics:

i
∂

∂t
Ψ(t, x) = (H0 + ǫ(t)µ)Ψ(t, x) (2.6)

Ψ(t0, x) = Ψ0(x).

This is the so-called bi-linear framework (the control enters linearly multiplying
the state), that is the object of much theoretical and numerical work in quan-
tum control. We also review below some of the results that are available in this
formulation. However, recently, higher order field dependence has been consid-
ered in different circumstances see e.g., [14, 15] for details. In these situations the
Hamiltonian H(t) is developped further as :

H(t) = H0 + ǫ(t)µ1 + ǫ2(t)µ2 + ...+ ǫL(t)µL. (2.7)

The question that will be of interest to us in this work is the study of all
possible final states for the quantum system. This question is important in order
to understand the capabilities that a laboratory experiment will be able to pro-
vide and also, in a more general setting, to accompany the introduction of new
experimental protocols.

More specifically, we will show how the criteria available for bilinear control
can be extended to treat the Hamiltonian (2.7) where a single control amplitude
ǫ(t) appears before different coupling operators µ1, ..., µL.

Many of the questions regarding the properties of the quantum control pro-
cedures, such as controllability, optimal control definition, etc, ... need, in order to
be defined, to specify the admissible control class, i.e., the set U where the control
ǫ(t) is alowed to vary. Among the properties that can define this admissible set,
some are related to the regularity of the time-dependence (L2, H1, ... etc) or of the
Fourier expression (sum of sinusoidal functions multiplied by an overall enveloppe,
etc,...) or to additional structure: e.g. piecewise continuous, piecewise constant,
locally bounded ...

The choice of one or several conditions in the list above is motivated in
practice by capability to reproduce that particular form or to inherent experi-
mental restrictions (finite total laser energy/fluence, etc). As the laser technol-
ogy is constantly evolving, the first class of constraints becomes less critical and
thus it is realistic to consider very weak constraints on the control set, e.g. U =
L2(IR) ∩ L∞

loc(IR).
However, to treat even more general situations, we will consider in this work

controls ǫ(t) that are piecewise constant, taking any value in a set V , which will
remain fully general.

2.1. Infinite dimensional bilinear control

When compared to the finite dimensional control equations (see Section 2.2), con-
trollability of the infinite dimensional version of the bilinear Time Dependent
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Schrödinger Equation is much less understood at this time. In fact, most of the
progress obtained so far takes the form of negative results, in contradiction with
the positive results available in finite dimensional settings. However we see the ab-
sence of positive controllability results is rather a failure of today’s control theory
tools to provide insight into controllability rather than an actual restriction. We
do believe that new tools and concepts will make positive results possible.

Let us write the solution of (2.6) in the following form:

Ψ(t) = e−iH0tΨ0 − i

∫ t

0

ǫ(s)e−iH0(t−s)µΨ(s)ds (2.8)

This formulation (see [11] for details) is granted by the properties of the operator
µ : H1

0 (IRγ) → H−1(IRγ) which is continuous when µ is bounded; we also recall
that the control ǫ can be considered bounded in both L∞ and L2.

The application ǫ(t) 7→ Ψ(x, t) possesses an important compacity property
which is the key of the controllability results (we refer the reader interested in
details to [3, 25]) :

Lemma 2.1. Suppose that µ : X → X is a bounded operator and that H0 generates
a C0 semigroup of bounded linear operators on some Banach space X (e.g. X =
H1

0 (IRγ)). Denote for T > 0 and ǫ ∈ L1([0, T ]) by Ψǫ(x, t) the solution of (2.6)
with control ǫ. Then ǫ 7→ Ψǫ is a compact mapping in the sense that for any ǫn
that converges weakly to ǫ in L1([0, T ]) Ψǫn

converges strongly in C([0, T ];X) to
Ψǫ.

This compactness property allows to give negative results for general bilinear
controllability settings as in [3] where they were applied to the wave and rod equa-
tions. Specific statements for quantum control have been latter derived (Thm. 1
from [30] ; see also [3, 29]) and can be stated as:

Theorem 2.2. Let S be the complex unit sphere of L2(IRγ). Let µ be a bounded
operator from the Sobolev space X (e.g., X = H1

x(IRγ)) to itself and let H0 generate
a C0 semigroup of bounded linear operators on X. Denote by Ψǫ(x, t) the solution
of (2.6). Then the set of attainable states from Ψ0 defined by

AS = ∪T>0{Ψǫ(x, T ); ǫ(t) ∈ L2([0, T ])} (2.9)

is contained in a countable union of compact subsets of X. In particular its com-
plement S ∩ X \ AS with respect to S ∩ X is everywhere dense on S ∩ X. The
same holds true for the complement with respect to S.

In a different formulation, the theorem implies that for any Ψ0 ∈ X ∩ S,
within any open set around an arbitrary point Ψ ∈ X ∩ S there exists a state
unreachable from Ψ0 with L2 controls.

Remark 2.3. Note that the result does not give information on the closure of the
set AS. In particular it may well be that while AS still has dense complement its
closure be the whole space X . This would be the so-called approximate controlla-
bility i.e. the possibility to reach targets arbitrarily close to any given final state.
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Despite some attempts in the litterature, at this time there is no answer (positive
or negative) to this question. Among the ingredients that make this study difficult
we can mention the possibility to use arbitrary large final time T , the necessity to
treat the continuous spectrum of the operator H0 and the intrinsically unbounded
domain on which the problem is posed.

To complicate even more the landscape, situations exists where the results
obtained in infinite and finite dimensional representation are of different nature.
We will illustrate with a classical result on the harmonic oscillator.

Lemma 2.4. The infinite dimensional harmonic oscillator H0 = − ∂2

∂x2 + x2, µ = x
is not controllable. Moreover the set of all admissible states is a low-dimensional
manifold of L2.

Proof. Let us begin by noting that the operators −iH0 and −iµ form a Lie algebra

of dimension 4. Indeed, let us compute the iterated commutators ofH0 = − ∂2

∂x2 +x2

and µ = x :

[i(−
∂2

∂x2
+ x2), ix] = 2

∂

∂x
(2.10)

[ix,
∂

∂x
] = −i (2.11)

[i(−
∂2

∂x2
+ x2), i

∂

∂x
] = −2ix (2.12)

Thus the dimension of the Lie algebra = 4 and as such the system cannot be
controllable (all the states are on a low dimensional manifold of L2). We refer
to [23] for recent contributions when the algebra of the operators H0 and µ is
finite dimensional. �

This result is to be contrasted with additional works that show that any
(spectral) truncation of the harmonic oscillator is controllable (see [26] for details).

What can be deduced from the above result is that truncating an infinite
dimensional system is not always justified and care must be taken to check that
the control obtained in the resulting finite dimensional approximation remain a
good control for the initial, infinite dimensional system. Of course, this is not
needed for situations which are inherently finite dimensional quantum systems
(e.g., spins).

2.2. Finite dimensional bilinear control

Here our focus will be on finite dimensional systems. We introduce an orthonor-
mal basis D = {ψi(x); i = 1, .., N} for a finite dimensional space. An important
example of such a space is the one spanned by the first N eigenstates of the in-
ternal Hamiltonian H0. This example is also motivated in bi-linear settings by
the “perturbation” argument that considers the control term ǫ(t)µ as a first order
developpement of H(t) around H0. Note however that no concept of “smallness”
is introduced in the definition of admissible controls U .
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Denote by M the linear space that D generates, and let H0;a,b = 〈H0ψa, ψb〉
and µℓ;a,b = 〈ψa, µℓψb〉 be the expressions of the operators H0 and µℓ with respect
to this basis, ℓ = 1, ..., L. To keep notations simple we will still denote from now
on by H0 and µℓ the resulting N ×N symmetric matrices.

In the Galerkin approach, expressing the Schrödinger equation in the space

M is equivalent to supposing Ψ(x, t) =
∑N

i=1 ψi(x)ci(t).

i
dc(t; ǫ; c0)

dt
= H0c(t; ǫ; c0) +

[
ǫ(t)µ1 + ...+ ǫL(t)µL

]
c(t; ǫ; c0) (2.13)

c(t = 0; ǫ; c0) = c0.

In the following, when no ambiguity prevents it, we will also simply denote c =
c(t; ǫ; c0). The finite dimensional counterpart of the norm conservation property (2.4)
reads:

N∑

n=1

|cn|
2 = 1.

i.e., the state c evolves on the unit sphere SN of C| N. The controllability can be
formulated in this case as:

Definition 2.5. The system (H0, µ1, ..., µL) is called (wavefunction) controllable, if
for any two states ck ∈ SN , k = 1, 2 there exists a final time T < ∞ and control
ǫ(t) ∈ L2([0, T ]) such that the solution of eqn. (2.13) starting from c1 ends in c2
at final time T : c(T ; ǫ; c1) = c2.

Although specific results for this setting exist [31, 32], a different alternative
is to see (2.13) as a system posed on U(N)1. We introduce the evolution equation
on U(N):

i
dU(t; ǫ)

dt
=

[
H0 + ǫ(t)µ1 + ...+ ǫL(t)µL

]
U(t; ǫ) (2.14)

U(t = 0; ǫ) = Id.

Since H0 and µℓ are symmetric matrices, U(t; ǫ) will remain unitary for all t ≥ 0.
It is classical to remark then that the evolution of c(t; ǫ; c0) can be obtained from
the evolution of U(t; ǫ) by

c(t; ǫ; c0) = U(t; ǫ)c0.

In particular it follows that if the set of all attainable matrices U(t; ǫ) is at least
SU(N) then the system is controllable. This is almost a necessary condition for
controllability, a notable exception being the circumstance when N is even: in this
case, if the set of all attainable matrices contains Sp(N/2) then controllability still
holds. We refer to [10, 1] for more detailed information.

1U(N) is the set of all N × N complex unitary matrices.
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Let us just mention that different representations of the system include the
density matrix formulation with time dependent density matrix operator ρ(t) sat-
isfying

i
∂

∂t
ρ(t; ǫ; ρ0) = [H0 + ǫ(t)µ1 + ...+ ǫL(t)µL, ρ(t; ǫ; ρ0)] (2.15)

ρ(t = 0; ǫ; ρ0) = ρ0

Then one can show ρ(t; ǫ; ρ0) = U(t; ǫ)ρ0U
†(t; ǫ). Controllability in this case is

the possibility to steer any initial mixed state ρ0 to any other state ρf unitarily
equivalent to it2.

Note that the density matrix controllability is equivalent to requiring that
the set of all matrices attainable from identity be at least SU(N).

At a general level, the evolution equation (2.14) can be re-written as

dx(t; ǫ;x0)

dt
= (A+ ǫ(t)B1 + ...ǫL(t)BL)x(t; ǫ;x0) (2.16)

x(0) = x0. (2.17)

where x(t; ǫ;x0) belongs to a Lie group G ( see [16, 8, 9] for basic facts about
the lie groups) and A,B1,...,BK to its associated Lie algebra L(G). The equation
above is to be taken in the usual sense (using the exponential map) when e.g., ǫ(t)
is piecewise continuous/constant and in a weak sense (integral form) for general
ǫ(t) (see e.g. [3] for additional details). For the quantum control problem A = −iH0

and Bℓ = −iµℓ, G = U(N).

Remark 2.6. Everything that will be said in this and following sections applies
with trivial modifications to the situation of several laser fields. For notational
convenience we will only give here the results for a unique laser field.

We will denote by LA,B1,...,Bk
⊂ L(G) the Lie algebra spanned by A, Bk,

k = 1, ...,K and by e the unity of G.

Let us now consider the set of all reachable states from an initial state y:

Rt
U (y) = {x(t; ǫ; y) solution of (2.16) ; ǫ ∈ U}. (2.18)

It is immediate to see that

Rt
U (y) = Rt

U (e)y (2.19)

and thus, describing the set Rt
U (e) allows to completely describe all other reachable

sets. When the final time is not specified, we will denote

RU (y) = ∪t≥0R
t
U (y). (2.20)

The central question is to characterize RU (e). When the bi-linear setting is con-
sidered i.e. L = 1 and we note B = B1, we have the following result [19, 22]:

2A N ×N matrix ρ2 is said unitarily equivalent to a N ×N matrix ρ1 if there exists M ∈ U(N)
such that ρ2 = Mρ0M†.
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Theorem 2.7. Consider the system (2.16) defined on a Lie group G with associated
Lie algebra L(G) containing A and B. If G is compact and the Lie algebra LA,B

generated by A and B is the complete algebra L(G) : LA,B = L(G) then the set
RU (e) of all states states from the identity is the Lie group G. Moreover, there

exists 0 < T <∞ such that RT ′

U (e) = G for all T ′ ≥ T .

This gives, when applied to quantum control [24]: (L = 1, µ = µ1):

Theorem 2.8. If the Lie algebra L−iH0,−iµ generated by −iH0 and −iµ has di-
mension N2 (as a vector space over the real numbers) then the system (2.14) is
density matrix controllable. Furthermore, if both −iH0 and −iµ are traceless then
a sufficient condition for the density matrix (thus wavefunction) controllability of
quantum system is that the Lie algebra L−iH0,−iµ has dimension N2 − 1.

Although the results above conveniently address the situation of a bi-linear
setting, we are not aware of any similar results for the general quantum control
situations (2.7). In particular, we know by the result above that, if u1,...,uL are
independent controls, i.e.,

dx(t; ǫ;x0)

dt
= (A+ u1(t)B1 + ...+ uL(t)BL)x(t; ǫ;x0) (2.21)

x(0) = x0, (2.22)

an equivalent condition for the controllability of the above system on its compact
Lie group G is that A,B1,...,BL generate the whole Lie algebra L(G). But, there is
no obvious way to say what will happen when the controls uℓ are not independent
but related by the condition uℓ = ǫℓ(t). This study is the purpose of the next
section.

3. Criteria for non linear operators

In order to extend the controlability results above beyond bi-linear interaction
Hamiltonians, we will introduce in this section a more general setting: we will
rewrite the control equation (2.16) as

dx(t; ǫ;x0)

dt
= (F1(ǫ(t))B1 + ...+ Fl(ǫ(t))BL)x(t; ǫ;x0) (3.1)

x(0) = x0. (3.2)

where Fk : V → IR are real functionals. Note in particular that we do not impose
any assumption on the regularity of the functionals Fk. Of course, one can recover
the equation (2.16) by setting Fk(x) = xk and adding F0 = 1.

In order to avoid trivialities, we will suppose in the following that

the functionals (Fk)L
k=1 are linearly independent. (3.3)

Otherwise one may just consider a subset of functionals that are linearly indepen-
dent and adjust the matrices Bk accordingly. Of course, since we do not specify
the set V that lists all the possible control values ǫ the hypothesis above needs to
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be understood in the following acception: the functionals Fk are said to be linearly

dependent if there exist constants λ1, ..., λL ∈ IR such that
∑L

j=1 λjFj(v) = 0 for
all v ∈ V . Otherwise the functionals are said to be linearly independent.

In order to obtain the quantum controllability results, we begin in this section
with a controllability criterion on compact Lie groups. These results build on
classical references for bilinear controllability [19]. We give first a weak but intuitive
form and then we state the fully general one.

Theorem 3.1. Let (3.1) be a control system posed on a compact connected Lie
group G, with linearly independent functionals (Fk)L

k=1. Then if the Lie algebra
generated by B1,...,BL is the full Lie algebra L(G) of the group G, then the system
is approximatelly controllable, i.e. for any a, b ∈ G, b is an accumulation point of
the set of all states x(t) attainable from x(0) = a with admissible controls.

Proof. Let us begin by noting that if Fk are independent then there exist values
ej ∈ V , j = 1, ..., L such that the vectors v(ej) = (F1(ej), ..., FL(ej)) are lin-
early independent. Suppose on the contrary that this is not true. Consider then
a maximal set of vectors v(E1), ..., v(Ep) that are linearly independent. The ma-

trix (Fk(Ej))
L;p
k=1;j=1 has rank preciselly p and thus one can extract p functionals,

denoted for notational convenience F1, ..., Fp such that rank(Fk(Ej))
p;p
k=1;j=1 = p.

Take now some functional Fp+1 not in this set. It follows that rank(Fk(Ej))
p+1;p+1
k=1;j=1 =

p and as such det(Fk(Ej))
p+1;p+1
k=1;j=1 = 0 for any Ep+1 ∈ V . This determinant can be

computed as:

det(Fk(Ej))
p+1;p+1
k=1;j=1 = λ1F1(Ep+1) + ...+ λp+1Fp+1(Ep+1) = 0. (3.4)

Note that λk do not depend on Ep+1 and that in particular

λp+1 = det(Fk(Ej))
p;p
k=1;j=1 6= 0.

Thus eq. (3.4) implies that a linear combination with at least one non-null coeffi-

cient λp+1 exists such that
∑p+1

k=1 λkFk(E) = 0 for all E ∈ V . This is prevented by
hypothesis.

We have thus proved the existence of ej ∈ V , j = 1, ..., L with the v(ej) =

(F1(ej), ..., FL(ej)) linearly independent. This means that Mj =
∑L

k=1 Fk(ej)Bk

are also linearly independent and span the same linear space as Bk, k = 1, ..., L
and thus Mj span also the Lie algebra L(G). Moreover, all states {etMjx(0); t ∈
IR+, j ≤ L} are atainable from x(0) for the control system (3.1).

It is clear that to prove approximate controllability is sufficient to set a = e
the neutral element of the group G. i.e. we have to prove that the closure RU (e)
(with respect to the Lie group topology) of the reachable states from identity is
the whole G. From the hypothesis and sujectivity of the exponential mapping this
is equivalent to proving that

{eM ;M ∈ L(G)} ⊂ RU (e).
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We will begin by noting that RU (e) is a group. Indeed, take two elements
x(t1; ǫ1; e), x(t2; ǫ2, e) ∈ RU (e). Then,defining the control ǫ12 : [0, t1 + t2] → IR by
ǫ12(t) = ǫ1(t) for all 0 ≤ t ≤ t1 and ǫ12(t1 + t) = ǫ2(t) for all 0 ≤ t ≤ t2 we obtain
x(t1+t2; ǫ; e) = x(t2; ǫ2; e)x(t1; ǫ1, e) and thus x(t2; ǫ2; e)x(t1; ǫ1, e) ∈ RU (e). Hence

RU (e) is a semi-group which implies that RU (e) is a semi-group too.

Let us now consider a ∈ RU (e). Then an ∈ RU (e) for any n = 1, 2, ....

Since RU (e) ⊂ G which is a compact group, RU (e) is compact at its turn. Then
there exists a sequence, that we can take such that nk with nk − nk−1 ≥ 2, with

ank → b ∈ G. But then RU (e) ∋ ank−nk−1−1 → bb−1a−1 and thus a−1 ∈ RU (e).

It is immediate to see that, since the solution for the control ǫ(t) ≡ ej is

x(t; 0, ǫ) = etMj we have the inclusion {etMj ; t ≥ 0, j ≤ L} ⊂ RU (e). Since RU (e)

is a group, we will also have {etMj ; t ∈ IR; j ≤ L} ⊂ RU (e). Consider now two
matrices X1, X2 ∈ L(G) such that

{etXi ; t ≥ 0} ⊂ RU (e), i = 1, 2.

We invoke now the formula

et[X1,X2] = lim
n→∞

(
e−tX2/

√
ne−tX1/

√
netX2/

√
netX1/

√
n
)n

(3.5)

to conclude that

{et[X1,X2]; t ∈ IR} ⊂ RU (e).

Similarly, we use the formula et1X1+t2X2 = limn→∞
(
et1X1/net2X2/n

)n
to con-

clude that

{et1X1+t2X2 ; t1, t2 ∈ IR} ⊂ RU (e).

We have thus proved that the set {M ∈ L(G); etM ∈ RU (e); ∀t ∈ IR}
contains Mj, j = 1, ..., L, is closed to commutation and is a real vector space.
Thus it contains L(G) hence the conclusion of the theorem. �

The Theorem above has the advantage to be both intuitive and self-contained.
However it only gives approximate controllability results, which are not the strongest
forms available. But, in order to obtain exact controllability more involved tech-
niques are needed. In the litterature, similar situations are treated by making use
of the Chow theorem [12] and of the bi-linear control techniques [19, 28]. The
criterion can be stated as follows:

Theorem 3.2. Let (3.1) be a control system posed on a compact connected Lie group
G with linearly independent functionals Fk : V → IR, k = 1, ..., L and piecewise
constant controls ǫ taking any value in some set V . Then a necessary and sufficient
condition for the exact controllability is that the Lie algebra LB1,...,BL

generated
by B1,...,BL be the full Lie algebra L(G) of the group G.
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Proof. We recall (see also end of Section 2.2) that the set of attainable states is
included in the set of attainable states for the system

dx(t; ǫ;x0)

dt
= [u1(t)B1 + ...+ uL(t)BL]x(t; ǫ;x0) (3.6)

x(0) = e, (3.7)

whose controllability is equivalent to “LB1,...,BL
= L(G)”. Thus LB1,...,BL

= L(G)
is a necessary condition for controlability. To prove that is also sufficient, consider

as in the proof of the Theorem 3.1, the matrices Mj =
∑L

k=1 Fk(ej)Bk, j = 1, ..., L
that generate the same Lie algebra LB1,...,BL

. We recall that all states {etMj ; t ∈
IR+, j ≤ L} and all finite products of such states are atainable from the identity e.
We invoke now a technique present in the proof of Thm. 3.1 of [28]: for any P ∈ IN
and any multi-index i = (i1, ..., ir) ∈ {1, ..., L}r denote by A(i, T ) the atainable
states with the sequence of operators i and total time less than T :

A(i, T ) =

{
r∏

ℓ=1

etℓMiℓ ;
r∑

ℓ=1

|tℓ| ≤ P, t1, ..., tr ∈ IR

}
.

We know by the Chow theorem that the union of the sets A(i, T ) is the whole Lie
group G. Also, it is immediate that any A(i, T ) is image of a compact set thus
compact. It follows by the Baire category theorem that A(i, P ) has non-empty
interior at least for a couple (i,P ). For such an i = (i1, ..., im) we introduce the
mapping F : IRm → G defined by t = (t1, ..., tℓ) 7→ F (t) =

∏r
ℓ=1 e

tℓMiℓ . This
mapping is analytic and its image is has nonempty interior. By the Sard theorem
its differential dF (t) has full rank (i.e. equals the dimension of the tangent space
TG of G) at least at some point t and thus in a neighborhood. But since dF (t)
depends analytically on t the set of points where the rank is full is dense in IRm

and as such the rank is full for some t with all components strictly positive. Using
a local inverse mapping theorem it follows that the image F (T ) has non-empty
interior where T is an open subset of IRm

+ . But all points in F (T ) are realisable
with admissible controls and thus the set of reachable points RU (e) contains an
open subset D of G.

By the previous Theorem, RU (e) is a subgroup i.e. for any y ∈ RU (e) the
set Dy is also reachable. Since in addition RU (e) is dense in G it follows that
RU (e) = G. �

4. Applications to quantum control

The purpose of this section is to instantiate the results obtained previously to the
specific situation of the quantum control. We will give two results, one for the
density matrix formalism and the second for the wave function.

4.1. Density matrix

To consider the specific situation of the density matrix formalism, we use the
results of the Section 3 for the Lie group U(N). We obtain a first



Beyond bilinear quantum control 13

Theorem 4.1. Consider the system

i
∂

∂t
ρ(t; ǫ; ρ0) = [H0 + F1(ǫ(t))µ1 + ...+ FL(ǫ(t))µL, ρ(t; ǫ; ρ0)] (4.1)

ρ(t = 0; ǫ; ρ0) = ρ0

and suppose that the family {1, F1, ..., FL} is linearly independent.
Then, when at least one matrix H0,µ1,...,µL has nonzero trace, the equa-

tion (4.1) is density matrix controllable if and only if the Lie algebra LiH0,iµ1,...,iµL

spanned by the matrices iH0,iµ1,...,iµL is the Lie algebra u(N) of all skew-hermitian
matrices or equivalently dimIRLiH0,iµ1,...,iµL

= N2.
Otherwise, when all matrices H0,µ1,...,µL have zero trace, a necessary and

sufficient condition for controllability is that LiH0,iµ1,...,iµL
= su(N) or equivalently

dimIRLiH0,iµ1,...,iµL
= N2 − 1.

Proof. The first part of the conclusion follows from Theorem 3.2 for the Lie group
G = U(N).

When all matrices have zero trace one uses the same result for G = SU(N)
noting that if two matrices ρ1 and ρ2 are unitarily equivalent ρ2 = Mρ1M

† then
there exists γ ∈ R with Msu = Meiγ ∈ SU(N) and ρ2 = Msuρ1M

†
su. �

An algorithmic verification of the above theorem can be devised as follows:

1. Test whether the functions {1, F1, ..., FL} are linearly independent. If the
answer is yes go to next step, otherwise keep only a subset Fi1 , ..., Fip

with
{1, Fi1 , ..., Fip

} linearly independent and modify the B1 ... ,BL accordingly.
For notational convenience we suppose all functionals are independent (p =
L).

2. Construct the traceless matrices H̃0 = H0−
Tr(H0)

N Id, µ̃1 = µ1−
Tr(µ1)

N Id,...,

µ̃L = µ1 −
Tr(µL)

N Id. Denote by O = {iH̃0, iµ̃1, ..., iµ̃L} .
3. Write any element of O as a column vector and compute the rank r =
rank(O) over the real numbers.

4. Construct all commutators C of matrices in O3 and test whether rank(O ∪
C) = r. If not, set O := O ∪ C and return to previous step.

5. Test whether r = N2 − 1. If yes the system is controllable, if not the control-
lability does not hold.

Even more precise results can be derived for the situation in Eqn 2.15.

Theorem 4.2. Consider the developpement of the interaction Hamiltonian H =
H0 + ǫ(t)µ1 + ...+ ǫL(t)µL resulting in the following evolution equation

i
∂

∂t
ρ(t; ǫ; ρ0) = [H0 + ǫ(t)µ1 + ...+ ǫL(t)µL, ρ(t; ǫ; ρ0)] (4.2)

ρ(t = 0; ǫ; ρ0) = ρ0

3Some optimizations are possible at this point as only new commutators are generally needed to
be computed. We do not enter into details here.
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Then, when at least one matrix H0,µ1,...,µL has nonzero trace, the equa-
tion (4.2) is density matrix controllable if and only if the Lie algebra LiH0,iµ1,...,iµL

spanned by the matrices iH0,iµ1,...,iµL is the Lie algebra u(N) of all skew-hermitian
matrices or equivalently dimIRLiH0,iµ1,...,iµL

= N2.
Otherwise, when all matrices H0,µ1,...,µL have zero trace, a necessary and

sufficient condition for controllability is that LiH0,iµ1,...,iµL
= su(N) or equivalently

dimIRLiH0,iµ1,...,iµL
= N2 − 1.

4.2. Wave function

To derive results for the wave function of the same nature as the two criterions
above one has to analyse the transitive subsets of U(N). We recall that a subset
A ⊂ U(N) is called transitive when for any two vectors a, b on the unit sphere

of C| N there exists a matrix X ∈ A with b = Xa. For the situation of quantum
control, such a study is available in the literature [1]. To be able to state the
corresponding result for this specific situation here, we introduce the centralizer
CGz of an element z ∈ G which is defined as the set of all elements that commute
with z:

CGz = {x ∈ G : xz = zx}.

We also define P = i · diag(1, 0, ..., 0) ∈ U(N).

Theorem 4.3. Consider the system

i
dc(t; ǫ; c0)

dt
= [H0 + F1(ǫ(t))µ1 + ...+ FL(ǫ(t))µL] c(t; ǫ; c0) (4.3)

c(t = 0; ǫ; c0) = c0.

with ‖c0‖ = 1. Suppose that the family {1, F1, ..., FL} is linearly independent and
denote by LiH0,iµ1,...,iµL

the Lie algebra spanned by the matrices iH0,iµ1,...,iµL.
Then the equation (4.3) is (wave function) controllable if and only if

dimIRLiH0,iµ1,...,iµL
− dim(LiH0,iµ1,...,iµL

∩ CGP ) = 2N − 2.

In particular a sufficient condition for controllability is that

dimIRLiH0,iµ1,...,iµL
= N2.

Proof. The proof follows from arguments in [1]. �

The following procedure allows to implement the above criteria:

1. Test whether the functions {1, F1, ..., FL} are linearly independent. If the
answer is yes go to next step, otherwise keep only a subset Fi1 , ..., Fip

with
{1, Fi1 , ..., Fip

} linearly independent and modify the B1 ... ,BL accordingly.
For notational convenience we suppose all functionals are independent i.e.
p = L.

2. Denote O = {iH0, iµ1, ..., iµL} .
3. Write any element of O as a column vector and compute the rank r =
rank(O) over the real numbers.



Beyond bilinear quantum control 15

4. Construct all commutators C of matrices in O4 and test whether rank(O ∪
C) = r. If not, set O := O ∪ C and return to previous step.

5. Extract from O the matrices that commute with P and compute the rank d
of this ensemble over IR. Test whether r − d = 2N − 2. If yes the system is
controllable, if not the controllability does not hold.

We also obtain

Theorem 4.4. Consider the developpement of the interaction Hamiltonian H =
H0 + ǫ(t)µ1 + ...+ ǫL(t)µL resulting in the following evolution equation

i
dc(t; ǫ; c0)

dt
=

[
H0 + ǫ(t)µ1 + ...+ ǫL(t)µL

]
c(t; ǫ; c0) (4.4)

c(t = 0; ǫ; c0) = c0.

with ‖c0‖ = 1. Denote by LiH0,iµ1,...,iµL
the Lie algebra spanned by the matrices

iH0,iµ1,...,iµL.
Then the equation (4.4) is (wave function ) controllable if and only if

dimIRLiH0,iµ1,...,iµL
− dim(LiH0,iµ1,...,iµL

∩ CGP ) = 2N − 2.

In particular a sufficient condition for controllability is that

dimIRLiH0,iµ1,...,iµL
= N2.

Remark 4.5. All the above results basically state that controllability with linearly
independent functionals of a single control ǫ is true whenever the same equation,
but with completelly independent controls, is controllable.
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