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Abstract: For process control improvement, cohereat information supplied by
sensors must first be ensured. Because of the mmes# random and possibly gross
errors, the model equations of the process areg@oerally satisfied. The problem of
data reconciliation in order to satisfy the modehstraints is considered in this article.
The simultaneous presence of errors in process iapd output measurements poses
serious problem in the rectification of data. Thepwsed procedure to solve this
problem involves the use of a special filter tareate both the parameters, the states and
the inputs of a process; smoothing of both estwnatiof the input and the output is
increased by adding in the filter a variance tefpplication is proposed for rainfall data
validation in order to improve urban sewer netwooktrol.

Keywords: state and parameter estimation, lineanadyjc model, rainfall data

validation.

1. INTRODUCTION

The estimation of the state of a process is a foneddal
part of modelling, monitoring and control strategyi¢or
example, in the field of diagnosis, the succesdaoit
detection and isolation mainly depends on the editim of
the state of the process. Generally, for diagnpsipose,
estimation has to be performed through on-line nplres
either in a recursive form or not. This has bedemsively
studied and Kalman filter, in the stochastic cgkarjala,
1996) or Luenberger observer, in the deterministise,

of data reconciliation (Simson, 1988). Data reclatgdn

is mainly a physical problem: the variables of fiecess
should obey the mass and energy conservation eqmstr
In the following this concept of balance constrsinill be

considered.

On a general point of view, the problem of statéredion
of a process may be formulated as follows:

From measurementsyy(t) collected on the process,
whose functioning is characterised by state vagabl

are well known approaches. Some extensions hawe alsX(t), from the knowledge of the measurement
been considered for processes with unknown parasnéte Y (t) = g(X(t)), and from the knowledge of the model of
this case, general non linear estimation involioth data the process f(X(t),6)=0, where 6 describes the
reconciliation and parameter estimation has beeparameters of the process, is it possible to give a
developed (Roberston, 1996). However, in thes@stimationX(t) of the state of the process ?

approaches, the estimation problem is generallyaed to
the state estimation, the input of the processgolemown. ~ Generally this problem is too complex and no aizdyt
solution may be found. However, with some spedifices

Although our presentation is limited to linear mhdee ©on the measurement system and when considering

problem addressed in this article is more genbeai those
mentioned in the previous works, since it is debite
simultaneously estimate the state, the input ofpiteeess
and its parameters. In the field of process enginggestate
estimation is generally seen through the classioacept

particular descriptions of the model of the procdsss
possible to establish the existence conditions lof t
solution and the solution itself (Bousghet al, 1994;
Karjala and Himmelblau, 1996; Liebmanhal, 1992). For
example,

it is the case when the process and the



measurement system may be modelled by linear emsati
(with respect to the state) for which, when theapzters
6 are known, the observer theory (Musikeal, 1993)
gives adequate solutions.

The problem under consideration here is howeveremor

general while the parameters8 are unknown.
Consequently, our aim is to estimate the state hef t
process and simultaneously the parameters of ittm®n
a general point of view, this problem may be adsrdsas a
non-linear estimation one. Cox (1964) is probabhe @f
the first being concerned with such difficultiesdahas
proposed an iterative solution based of the maxitioa of
the likelihood function of the measurement conatdi by

function of measurement errors. As previously said
estimations have to satisfy the constraint:

(k)= 2a (k= i)+ 2 hX(k-i)

i=1 i=1

®)

The computation of the estimations of the variabjgs)
and x(k) and the parameters; and b; is achieved by
minimising the criterion (2) taking into accounteth
constraint (3) which is applied at each samplingetiOn a
numerical point of view, the problem is reducedthe
optimisation of a quadratic criterion (with respéetstate
variable and parameters) subject to non-linear lagua
constraints (the non-linearity resulting from thankl

the model of the system. El Sherief (1982) has alsBetween variables and parameters). Despite of ssichl

proposed an estimation method based on the Kalittan f
These methods are also known as "Bootstrap” methods
Puthenpura (1986) has given some refinement inrdale
increase the robustness of the estimation. Witlartego
existing techniques, our contribution may be paut in
the following directions. First, a complete analyti
formulation of the estimation problem
Second, errors affecting the measurement of bqtht iand
output of the process are taken into account. Thieda
which are representative of the system, i.e. vieghall the
state equations with some good properties of snmgth
are estimated.

2. GENERALISED ESTIMATION METHOD

When considering single-input-single-output systesnus
note x(t) the input andy(t) the output, both being
sampled at the same constant ratg(t) and ym(t) will
represent the corresponding measurements. It igosep
that the true datx(t) and y(t) are subjected to a linear
dynamic constraint:

Y(k)=zn:ai>’(k-i)+§hx(k-i) nzm

i=1 i=1

(1)

From N measurementgm(t) and xn,(t), the aim is to
estimate the parametess and b; of the system model.
Unfortunately, the measured data being subjectritorse

they don't verify the model constraints; thus, dries to

simultaneously estimate the true dgt&) and x(k) ; in the

following, these estimations are notgk) and x(k) .

The principle used for the extended estimationirtegion
of the parameters and the variables) is the canstia
minimisation between the estimation and the measené
here, for reason of simplicity, a quadratic crieriis
suggested:

N ~ 2 N-1 ~
® =Y [0 -ym()) + 2 (K -xm®@W) )
k=1 k=1

Without restriction to generality, the deviationtleen

and well know formulation, the dimension of the lpemn
(number of variables and parameters in a dynamicalel)
being high and noise affecting the measurements,
conventional techniques for the resolution are alatays
powerful; consequently, we have developed and mego
an original way based on a hierarchical estimation.

is presented.

3. PRACTICAL IMPLEMENTATION

In order to solve the preceding optimisation prabl¢he
following Lagrange function is considered:

N N-1 2
L= () - ym(OF + X (%() - xn(K)¥ +
k=1 k=1

4)
N-1 n m
> ?\(k)[if(k) -2 ayk-i->Q i(k-i)]

k=1 i=1 i=1

The complexity of the optimisation procedure isafle
simplified if a matricial presentation is used. Fiat
purpose, let us define the following vectors ofiables
and parameters:

Z=(y0) ) A2) .. XN-D y(N)'  (5)
2= %1) %2) ... *(N-1) §(\)' (5b)
0=(a ... an by ... ) (5¢)

The constraint (3), expressed for the durathén may be
condensed under the form:

M(©)Z =0 (6)
where M OON"MCND an46 OOP with p=n+m.

The Lagrangian (4) associated to the optimisatiailem
may be written:

L=%I2—Z"2+)\TM(6)2 @)

estimation and measurement have not been weightegh\which we recall the dimensions:

however, it is easy to introduce weights, for exkmp
according to the precision of the measurement ouse®
more specific information about the probability digy

02N
M 0oN-M(2N-D)

2DD2N4
rooh-n



The optimality conditions are formulatgd, being the
identity matrix of dimensiom):

o _5_ T(aW =

5 SZZM e =0 (8a)

gk M(8)Z =0 (8b)
(| )\T)MZ 0 (8c)

(See the involved derivative rule)

Equations (8), which are non-linear,
according to the following strategy. From equati¢8a)
and (8b), one obtains:

(92)

A =(MEMT () M(E)z

2=(lona -MT@MEM @) 'ME)z  (@b)

It is important to note that iM(B) is a full row rank

matrix, then the matrixM(e)MT(e) is regular. The
equation (8c) being non-linear with respectbtpthis last
parameter may be obtained by an iterative way. tRar
purpose, a Newton-Raphson algorithm is used anmuhast
at iterationi+1 is expressed:

)

It is useful to write the two forms allowing theraputation
of the gradient of the criterion with respecttto

62
90007

oL

ou=o-of 2] (2

(10)

(| )\T)Mﬁ (11a)
aL T\M(8
ae_(|pmz 25 N (11b)

From (11a) and (11b), the second order derivatine a

computed:
oz | 07TWT2A
)\Ao 207 ( P )VIO
with the following definition of the constant matrMg :

MOZGM!GQ

00

12a
aeaeT ( P (122)

(12b)

The derivatives oft and Z with respect td@ are given by:

IDerivative rule of a matrix product with regard #o

matrix:
ADR”m BDRm'q pOR ¢
(| 0B)+ (I, DA)

200

with:
may be solved

07 )
ae_ZT: [aeT (1, 0A)+M T(e)aT] (13a)
aeT (M(e)M (e))

oM(6)
007

T )a(lv|(e)|\/|T(e))(IO )\)} (13b)

|

o(MEM'(8)) am(e)
20" Y

M(e)aMTge)

Ll

(,0MT())

(13c)

Summarising, the estimation is performed accordinthe
following steps:

i=0
select initial values for the parametéxs

computeM (Gi )
compute the stat& of the system (9b)

with (14a, b, c), compute the gradient @dJ
the Hessian (12a)
adjust the values of the parametérs;

if the gradient of the criterion is mdnatta given
threshold, start again at step 2, elsewhere the las
estimation is considered as satisfactorily.

Step 1:

Step 2:

Step 3:

Step 4:

4. SOME SIMULATION RESULTS

The figure 1la shows the input and the output sgyoéla
dynamical system of first order; the data are sonaw
noisy. After applying the proposed estimation mdthm a
first order model, the following parameters haveerbe
obtained:

{al =0.89¢
by = 0.202

0.4

0.3} T#m%

0.2} e ot ++t‘='+ ]
o1l 4 - i

s
offst H A ;
-0.1 : - - :
0 10 20 30 40 50

Fig. 1a. Measurement of the input and the output.

The figure 1b compares the estimated values ofripet
and output variables. One may appreciate the guaiithe
model through its ability to reconstruct the inpurd the
output variables of the process. However, let ug rioat
these reconstructions may be characterised byteaitii
effect which seems more important for the outpantfor
the input data. Moreover, in many situations, weeha



observed that, although data reconciliation is quyfthe 0.4
estimation of the input is not well smoothed.

0.4
0.3
0.2
0.1

0

-0.1 . . . .
0 10 20 30 40 50 0.2
0.3 . : ; .
0.1
0.2
0
0.1
-0.1 . . . .
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Fig. 2b. Measurement and estimation of input artgdwdu

-0.1

Fig. 1b. Measurement and estimation of input artgwtu

N-1 R R 5
0= (X(k+1)-X(k)) (14)
5. IMPROVEMENT OF THE METHOD k=1

When measurement are corrupted by an importanenois'®presents the sum of squares of the variationshef
input signal with a certain degree of smoothneltspagh  the estimation problem:
the obtained estimation perfectly verifies the estat

equations of the process. The figure 2 corresptmdsich _ N _
situation; we have used the same example as psdyibut Pm l(z_:l(y(k) ym(k))2 *
involving more important noise measurements (fa). 2 No1 - N-1 (15)
- - A W2
o > (3K) - xm(QF +a? 3 (k(k+1)- %(K))
. T -F;_ T N k=1 k=1
0.3} 1
Lo _,f:..i ++_*=+_+ + with respect to the constraint (3).
01} 4+ + T ﬁgh_ - The parametea” allows modulating the filtering effect of
+4+++ +.|.+-H+ f‘ + + the estimate of the input data. Its precise chimdbe fact
0 [+ 'Hq'bq. of the user according to the particular problem b
0.1 . . . . solved.
10 20 30 40 50

As previously, a matricial formulation is more atttive.

Fig. 2a. Measurement of the input and the output : - )
For that purpose, the followinG matrix is defined:

It clearly appears, on figure 2b, poor filterindeet on the
input signal although the output signal is corsectl 0 1 0-10
smoothed. It is a well known problem due to the that .. 01 0-1 0
the reconstruction of an input signal generallyolmes an
"inversion" of the transfer function of the systemder
consideration. 0 10-10
In order to reduce variation of the input estimageghal, a that allows writing the criteriop (14):
supplementary constraint have been added. Intlyitiey
taking into account the results shown in figure Hie _ 2
variations of the estimated input of two conseautiv ¢'"CZ1|
samples are minimised.
The reader should modify this choice and use other
filtering effects, for example, by reducing the iafions of
magnitude between sampléls+ 2) andk.



The optimality conditions of the Lagrangian asstexlato
the optimisation problem are expressed as:

g; =z-z+a’C’'cz+MT(8)A=0 (16a)

oL

0)\ =M(8)Z =0 (16b)
(| D)\T)M@ 7 (16¢)

The resolution technique is similar as those prestio
given. First, the equations (16a) and (16b) areesbl

A =(M@)QMT (8) " M(8)QZ (17a)
2=Q(ln-1-MT (B)M(B)QM' (B) "M(B)Q)
(17b)
with:

Q= Q +o(2cTc)_1 (17¢)

The values ofd are obtained by solving, with a recursive
procedure, the equations (16c¢). To illustrate

previous example are used. The weight associatdtieto
filtering criterion is a =2. The figure 3 points out the
filtering effect on the input data estimations dhe reader
could compare the results obtained without (fig2iog and
with filtering (figure 3).

0.4

0.3
0.2
0.1

0

_01 1 1 1 1
0 10 20 30 40 50
0.3
0.2
0.1
0
-0.1 L . . .
0 10 20 30 40 50
Fig. 3. Measurement and estimation of input ang .t

6. RAINFALL DATA VALIDATION

The proposed technique is still under validation @n
process involving rainfall data validation. Theuig 4 has
been drawn using the data collected during a naémteand
is issued from the data bank of the Urban Disto€t
Nancy, France. The upper part of the figure relatethe
precipitation (in mm/h of water) and the lower p#st
dedicated to the flowrate of water in pipes3@h which

the
performances of the proposed method, the data @f th

constitute the input and the output of the procéhke
parameters of a first order linear model have been
estimated:

a=0.615¢
b =0.012¢

The estimations (height and flowrate) are giventhg
superposed curves. One can compare the measuredeand
estimated values and appreciate the good level of
smoothing of the estimated values.

15

20 40 60 80

Fig. 4. Measurement and estimations of input anigwiu

6.1 Application to sensor fault detection

The figure 5 shows the occurrence of a fault onathgput
sensor; this fault is a bias between samples 10L&ndhe
upper part of the figure shows the measured flaaveatd
its estimation obtained from the model and
measurement of input and output; the lower parthef
figure shows the residual between the two flowrates
(estimated and measured) and the jump corresporiding
the failure can be easily detected. A systematicaighis
technique may be done and although the estimagon i
performed off line after the data collecting, iveg the user

a real help for analysing the sensor behaviour.

the

40 60

20

20 40 60 80

Fig. 5. Presence of a of rain gauge fault between
samples 10 and 15



6.2 Extension to several events 7. CONCLUSION

In order to establish a more realistic model, th@ppsed In this paper, an estimation technique of the patars of

technique may be extended when several data sames a linear dynamic model when both input and outrals

available. The problem may be formulated as folldwach are corrupted by errors has been presented. #sscon a

data serie is now marked by the subscripThe vectors of simultaneous estimation of the state and parametéms

the different variables are noteql for the measurement amount of calculus is limited because a hierar¢hica

and 2‘ for the estimations. The dimensions of theProcedure is used. The estimation of the varialsietone

analytically; only the estimation of the parameterguires

an iterative calculus. The proposed technique could
ON: -1 A IN -1 probably be extended to an on-line treatment apqsed

Z 0o~ Z 0o~ in (Muske et al, 1993; Ragotet al, 1990) for state

estimation.

corresponding vectors depend on data series:

where N; corresponds to the number of samples inittne

campaign. However, it is important to remember that

parameters® are constant for the different campaigns

because a unique model is considered. Consequenty, REFERENCES
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It is important to notice that the analysis of sale
campaigns increases the robustness of the model, th
parameters of the model being representative ofoee m
important amount of data, which also increasegjtiaity

of the failure diagnosis i.e. the analysis of tlesiduals
between the measured and estimated flowrates.



