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Abstract: For process control improvement, coherency of information supplied by 
sensors must first be ensured. Because of the presence of random and possibly gross 
errors, the model equations of the process are not generally satisfied. The problem of 
data reconciliation in order to satisfy the model constraints is considered in this article. 
The simultaneous presence of errors in process input and output measurements poses 
serious problem in the rectification of data. The proposed procedure to solve this 
problem involves the use of a special filter to estimate both the parameters, the states and 
the inputs of a process; smoothing of both estimations of the input and the output is 
increased by adding in the filter a variance term. Application is proposed for rainfall data 
validation in order to improve urban sewer network control. 
 
Keywords: state and parameter estimation, linear dynamic model, rainfall data 
validation. 
 
 

 
1. INTRODUCTION 

 
The estimation of the state of a process is a fundamental 
part of modelling, monitoring and control strategies. For 
example, in the field of diagnosis, the success of fault 
detection and isolation mainly depends on the estimation of 
the state of the process. Generally, for diagnosis purpose, 
estimation has to be performed through on-line techniques 
either in a recursive form or not. This has been extensively 
studied and Kalman filter, in the stochastic case, (Karjala, 
1996) or Luenberger observer, in the deterministic case, 
are well known approaches. Some extensions have also 
been considered for processes with unknown parameters; in 
this case, general non linear estimation involving both data 
reconciliation and parameter estimation has been 
developed (Roberston, 1996). However, in these 
approaches, the estimation problem is generally reduced to 
the state estimation, the input of the process being known. 
 
Although our presentation is limited to linear model, the 
problem addressed in this article is more general than those 
mentioned in the previous works, since it is desired to 
simultaneously estimate the state, the input of the process 
and its parameters. In the field of process engineering, state 
estimation is generally seen through the classical concept 

of data reconciliation (Simson, 1988). Data reconciliation 
is mainly a physical problem: the variables of the process 
should obey the mass and energy conservation constraints. 
In the following this concept of balance constraints will be 
considered. 
 
On a general point of view, the problem of state estimation 
of a process may be formulated as follows: 
 
From measurements Ym(t)  collected on the process, 
whose functioning is characterised by state variables 
X(t ) , from the knowledge of the measurement 
Y(t ) = g X(t )( ) , and from the knowledge of the model of 
the process f X(t),θ( ) = 0 , where θ  describes the 
parameters of the process, is it possible to give an 
estimation ˆ X (t )  of the state of the process ? 
 
Generally this problem is too complex and no analytical 
solution may be found. However, with some specifications 
on the measurement system and when considering 
particular descriptions of the model of the process, it is 
possible to establish the existence conditions of the 
solution and the solution itself (Bousghiri et al., 1994; 
Karjala and Himmelblau, 1996; Liebman et al., 1992). For 
example, it is the case when the process and the 



 

measurement system may be modelled by linear equations 
(with respect to the state) for which, when the parameters 
θ  are known, the observer theory (Muske et al., 1993) 
gives adequate solutions. 
 
The problem under consideration here is however more 
general while the parameters θ  are unknown. 
Consequently, our aim is to estimate the state of the 
process and simultaneously the parameters of its model. On 
a general point of view, this problem may be addressed as a 
non-linear estimation one. Cox (1964) is probably one of 
the first being concerned with such difficulties and has 
proposed an iterative solution based of the maximisation of 
the likelihood function of the measurement constrained by 
the model of the system. El Sherief (1982) has also 
proposed an estimation method based on the Kalman filter. 
These methods are also known as "Bootstrap" methods and 
Puthenpura (1986) has given some refinement in order to 
increase the robustness of the estimation. With regard to 
existing techniques, our contribution may be point out in 
the following directions. First, a complete analytic 
formulation of the estimation problem is presented. 
Second, errors affecting the measurement of both input and 
output of the process are taken into account. Third, data 
which are representative of the system, i.e. verifying all the 
state equations with some good properties of smoothing, 
are estimated. 
 
 

2. GENERALISED ESTIMATION METHOD 
 
When considering single-input-single-output system, let us 
note x(t )  the input and y(t )  the output, both being 
sampled at the same constant rate; xm(t )  and ym(t ) will 
represent the corresponding measurements. It is supposed 
that the true data x(t )  and y(t )  are subjected to a linear 
dynamic constraint: 
 

 y(k ) = ai y(k − i)
i =1

n

∑ + bi x(k − i)
i =1

m

∑    n ≥ m (1) 

 
From N  measurements ym(t ) and xm(t ) , the aim is to 
estimate the parameters ai  and bi  of the system model. 
Unfortunately, the measured data being subject to errors, 
they don't verify the model constraints; thus, one tries to 
simultaneously estimate the true data y(k ) and x(k) ; in the 
following, these estimations are noted ˆ y (k ) and ˆ x (k) . 
 
The principle used for the extended estimation (estimation 
of the parameters and the variables) is the constrained 
minimisation between the estimation and the measurement; 
here, for reason of simplicity, a quadratic criterion is 
suggested: 
 

 Φ = ˆ y (k) − ym(k )( )2

k=1

N

∑ + ˆ x (k) − xm(k)( )2
k=1

N−1

∑  (2) 

 
Without restriction to generality, the deviation between 
estimation and measurement have not been weighted; 
however, it is easy to introduce weights, for example 
according to the precision of the measurement or to use 
more specific information about the probability density 

function of measurement errors. As previously said, the 
estimations have to satisfy the constraint: 
 

 ˆ y (k ) = ai ˆ y (k − i)
i =1

n

∑ + bi ˆ x (k − i)
i =1

m

∑  (3) 

 
The computation of the estimations of the variables ˆ y (k ) 
and ˆ x (k)  and the parameters ai  and bi  is achieved by 
minimising the criterion (2) taking into account the 
constraint (3) which is applied at each sampling time. On a 
numerical point of view, the problem is reduced to the 
optimisation of a quadratic criterion (with respect to state 
variable and parameters) subject to non-linear equality-
constraints (the non-linearity resulting from the link 
between variables and parameters). Despite of a classical 
and well know formulation, the dimension of the problem 
(number of variables and parameters in a dynamical model) 
being high and noise affecting the measurements, 
conventional techniques for the resolution are not always 
powerful; consequently, we have developed and proposed 
an original way based on a hierarchical estimation. 
 
 

3. PRACTICAL IMPLEMENTATION 
 
In order to solve the preceding optimisation problem, the 
following Lagrange function is considered: 
 

 

L = ˆ y (k) − ym(k)( )2 +
k=1

N

∑ ˆ x (k) − xm(k)( )2
k=1

N−1

∑ +

    λ(k ) ˆ y (k ) − ai ˆ y (k − i)
i =1

n

∑ − bi ˆ x (k − i)
i =1

m

∑
 

 
 

 

 
 

k=1

N−1

∑

 (4) 

 
The complexity of the optimisation procedure is greatly 
simplified if a matricial presentation is used. For that 
purpose, let us define the following vectors of variables 
and parameters: 
 

 Z = y(1)  x(1)  y(2) ...  x(N − 1)  y(N)( )T
 (5a) 

 ˆ Z = ˆ y (1)  ˆ x (1)  ˆ y (2) ...  ˆ x (N − 1)  ˆ y (N)( )T
 (5b) 

 θ = a1   …  an  b1  ...  bm( )T  (5c) 

 
The constraint (3), expressed for the duration N , may be 
condensed under the form: 
 
 M θ( ) ˆ Z = 0 (6) 
 
where M ∈ℜ(N −n).( 2N−1)  and θ ∈ℜp  with p = n + m. 
 
The Lagrangian (4) associated to the optimisation problem 
may be written: 
 

 L =
1
2

ˆ Z − Z
2

+ λTM θ( ) ˆ Z  (7) 

 
in which we recall the dimensions: 
 
 Z ∈ℜ2N −1 ˆ Z ∈ℜ2N −1 
 M ∈ℜ(N −n).( 2N−1)  λ ∈ℜN− n 
 



 

The optimality conditions are formulated ( Ip  being the 

identity matrix of dimension p ): 
 

 
∂L

∂ ˆ Z 
= ˆ Z − Z + MT θ( )λ = 0 (8a) 

 
∂L

∂λ
= M θ( ) ˆ Z = 0  (8b) 

 
∂L

∂θ
= Ip ⊗ λT( )∂M θ( )

∂θ
ˆ Z = 0  (8c) 

 
(See the involved derivative rule)1 
 
Equations (8), which are non-linear, may be solved 
according to the following strategy. From equations (8a) 
and (8b), one obtains: 
 

 λ = M θ( )MT θ( )( )−1
M θ( )Z  (9a) 

 ˆ Z = I2N −1 − MT θ( ) M θ( )M T θ( )( )−1
M θ( ) 

 
  

 
 Z  (9b) 

 
It is important to note that if M(θ)  is a full row rank 

matrix, then the matrix M(θ)MT (θ)  is regular. The 
equation (8c) being non-linear with respect to θ , this last 
parameter may be obtained by an iterative way. For that 
purpose, a Newton-Raphson algorithm is used and estimate 
at iteration i+1 is expressed: 
 

 θ i +1 = θ i − ∆
∂2L

∂θ∂θT

 

 
 

 

 
 

i

−1
∂L

∂θ
 
 
  

 
 

i
 (10) 

 
It is useful to write the two forms allowing the computation 
of the gradient of the criterion with respect to θ : 
 

 
∂L

∂θ
= Ip ⊗ λT( )∂M θ( )

∂θ
ˆ Z  (11a) 

 
∂L

∂θ
= Ip ⊗ ˆ Z T( )∂M θ( )

∂θ
λ  (11b) 

 
From (11a) and (11b), the second order derivative are 
computed: 
 

∂2L

∂θ∂θT = Ip ⊗ λT( )M0
∂ ˆ Z 

∂θT + I p ⊗ ˆ Z T( )M0
T ∂λ

∂θT  (12a) 

 
with the following definition of the constant matrix M0 : 
 

 M0 =
∂M θ( )

∂θ
 (12b) 

 
The derivatives of λ and ˆ Z  with respect to θ  are given by: 
 

                                                 
1Derivative rule of a matrix product with regard to a 
matrix: 
 A∈Rn.m,  B ∈ Rm.q,  θ ∈ Rr .s  

 
∂ AB( )

∂θ
=

∂A

∂θ
Is ⊗ B( )+ Ir ⊗ A( )∂B

∂θ
 

 
∂ ˆ Z 

∂θT = −
∂MT

∂θT Ip ⊗ λ( )+ MT θ( ) ∂λ
∂θT

 

 
 

 

 
  (13a) 

 

∂λ
∂θT = M(θ)MT (θ)( )−1

∂M(θ)

∂θT I p ⊗ Z( )−
∂ M(θ)MT (θ)( )

∂θT Ip ⊗ λ( )
 

 

 
 

 

 

 
 

 (13b) 

 

with:

∂ M θ( )MT θ( )( )
∂θT = ∂M θ( )

∂θT I p ⊗ M T θ( )( )+

            M θ( )∂M T θ( )
∂θT

 (13c) 

 
Summarising, the estimation is performed according to the 
following steps: 
 
Step 1: i = 0 
 select initial values for the parameters θ i  

Step 2: compute M θ i( ) 
 compute the state ˆ Z i  of the system (9b) 
Step 3: with (14a, b, c), compute the gradient (11) and 
 the Hessian (12a) 
 adjust the values of the parameters θ i +1  
Step 4:  if the gradient of the criterion is more that a given 

threshold, start again at step 2, elsewhere the last 
estimation is considered as satisfactorily. 

 
 

4. SOME SIMULATION RESULTS 
 
The figure 1a shows the input and the output signals of a 
dynamical system of first order; the data are somewhat 
noisy. After applying the proposed estimation method to a 
first order model, the following parameters have been 
obtained: 
 

 
a1 = 0.895

b1 = 0.202

 
 
 
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Fig. 1a. Measurement of the input and the output. 
 
The figure 1b compares the estimated values of the input 
and output variables. One may appreciate the quality of the 
model through its ability to reconstruct the input and the 
output variables of the process. However, let us note that 
these reconstructions may be characterised by a filtering 
effect which seems more important for the output than for 
the input data. Moreover, in many situations, we have 



 

observed that, although data reconciliation is perfect, the 
estimation of the input is not well smoothed. 
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Fig. 1b. Measurement and estimation of input and output. 
 
 

5. IMPROVEMENT OF THE METHOD 
 
When measurement are corrupted by an important noise, 
the method (as many others) is inadequate to reconstruct an 
input signal with a certain degree of smoothness, although 
the obtained estimation perfectly verifies the state 
equations of the process. The figure 2 corresponds to such 
situation; we have used the same example as previously but 
involving more important noise measurements (fig. 2a). 
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Fig. 2a. Measurement of the input and the output 
 
It clearly appears, on figure 2b, poor filtering effect on the 
input signal although the output signal is correctly 
smoothed. It is a well known problem due to the fact that 
the reconstruction of an input signal generally involves an 
"inversion" of the transfer function of the system under 
consideration. 
 
In order to reduce variation of the input estimated signal, a 
supplementary constraint have been added. Intuitively, by 
taking into account the results shown in figure 2b, the 
variations of the estimated input of two consecutive 
samples are minimised. 
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Fig. 2b. Measurement and estimation of input and output. 
 
The quantity: 
 

 ϕ = ˆ x (k + 1)− ˆ x (k)( )2
k=1

N−1

∑  (14) 

 
represents the sum of squares of the variations of the 
estimated input. Using the following criterion thus modifies 
the estimation problem: 
 

 

Φ m = ˆ y (k) − ym(k)( )2
k=1

N

∑ +

ˆ x (k ) − xm(k)( )2
k=1

N−1

∑ + α2 ˆ x (k + 1)− ˆ x (k )( )2

k=1

N −1

∑

 (15) 

 
with respect to the constraint (3). 
 
The parameter α2  allows modulating the filtering effect of 
the estimate of the input data. Its precise choice is the fact 
of the user according to the particular problem to be 
solved. 
 
As previously, a matricial formulation is more attractive. 
For that purpose, the following C  matrix is defined: 
 

 C =

0 1 0 −1 0 . ..

... 0 1 0 −1 0 ...

.. .

.. . 0 1 0 −1 0

 

 

 
 
 
 

 

 

 
 
 
 

 

 
that allows writing the criterion ϕ  (14): 
 

 ϕ = C ˆ Z 
2

 

 
The reader should modify this choice and use other 
filtering effects, for example, by reducing the variations of 
magnitude between samples (k + 2)  and k . 



 

The optimality conditions of the Lagrangian associated to 
the optimisation problem are expressed as: 
 

 
∂L

∂ ˆ Z 
= ˆ Z − Z + α2CTCˆ Z + M T θ( )λ = 0  (16a) 

 
∂L

∂λ
= M θ( ) ˆ Z = 0  (16b) 

 
∂L

∂θ
= Ip ⊗ λT( )∂M θ( )

∂θ
ˆ Z = 0  (16c) 

 
The resolution technique is similar as those previously 
given. First, the equations (16a) and (16b) are solved: 
 
 λ = (M(θ)QMT (θ))−1M(θ)QZ  (17a) 

 ˆ Z = Q I2N −1 − MT θ( )(M θ( )QMT θ( ))−1M θ( )Q( )Z  

  (17b) 
with: 
 

 Q = I + α2CTC( )−1
 (17c) 

 
The values of θ  are obtained by solving, with a recursive 
procedure, the equations (16c). To illustrate the 
performances of the proposed method, the data of the 
previous example are used. The weight associated to the 
filtering criterion is α = 2 . The figure 3 points out the 
filtering effect on the input data estimations and the reader 
could compare the results obtained without (figure 2b) and 
with filtering (figure 3). 
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Fig. 3. Measurement and estimation of input and output. 
 
 

6. RAINFALL DATA VALIDATION 
 
The proposed technique is still under validation on a 
process involving rainfall data validation. The figure 4 has 
been drawn using the data collected during a rain event and 
is issued from the data bank of the Urban District of 
Nancy, France. The upper part of the figure relates to the 
precipitation (in mm/h of water) and the lower part is 
dedicated to the flowrate of water in pipes (m3/s) which 

constitute the input and the output of the process The 
parameters of a first order linear model have been 
estimated: 
 

 
a = 0.6155

b = 0.0126
 

 
The estimations (height and flowrate) are given by the 
superposed curves. One can compare the measured and the 
estimated values and appreciate the good level of 
smoothing of the estimated values. 
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Fig. 4. Measurement and estimations of input and output 
 
 
6.1 Application to sensor fault detection 
 
The figure 5 shows the occurrence of a fault on the output 
sensor; this fault is a bias between samples 10 and 15. The 
upper part of the figure shows the measured flowrate and 
its estimation obtained from the model and the 
measurement of input and output; the lower part of the 
figure shows the residual between the two flowrates 
(estimated and measured) and the jump corresponding to 
the failure can be easily detected. A systematic use of this 
technique may be done and although the estimation is 
performed off line after the data collecting, it gives the user 
a real help for analysing the sensor behaviour. 
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Fig. 5. Presence of a of rain gauge fault between 
samples  10 and 15 
 



 

6.2 Extension to several events 
 
In order to establish a more realistic model, the proposed 
technique may be extended when several data series are 
available. The problem may be formulated as follows. Each 
data serie is now marked by the subscript i . The vectors of 
the different variables are noted Zi  for the measurement 

and ˆ Z i  for the estimations. The dimensions of the 
corresponding vectors depend on data series: 
 

 Zi ∈ℜ2Ni −1 ˆ Z i ∈ℜ2Ni −1 
 
where Ni  corresponds to the number of samples in the ith 
campaign. However, it is important to remember that the 
parameters θ  are constant for the different campaigns 
because a unique model is considered. Consequently, one 
must solve the stationary conditions of the Lagrangian: 
 

 L =
1

2
ˆ Z i − Zi

2
+ α2 Cˆ Z i

2
+

i =1

H

∑ λi
TM θ( ) ˆ Z i  (18) 

 
with regard to the variables ˆ Z i , λ i , and θ . The optimality 
equations may be written: 
 

 
∂L

∂ ˆ Z i
= ˆ Z i − Zi + α2CTC ˆ Z i + MT θ( )λi = 0  (19a) 

 
∂L
∂λi

= M θ( ) ˆ Z i = 0  (19b) 

 
∂L

∂θ
=

i =1

H

∑ Ip ⊗ λi
T( )∂M θ( )

∂θ
ˆ Z i = 0  (19c) 

 
These relations may be compared to those obtained in (16); 
so the results may be transformed into the form: 
 
 λi = ( M θ( )QMT θ( ))−1M θ( )QZi  (20a) 

 ˆ Z i = Q I2Ni −1 − M T θ( )( M θ( )QMT θ( ))−1M θ( )Q( )Zi  

  (20b) 
 
The parameters θ  are estimated with a Newton-Raphson 
technique: 

 θ j +1 = θ j − ∆
∂2L

∂θ∂θT

 

 
 

 

 
 

j

−1
∂L

∂θ
 
 
  

 
 

j
 (21) 

 

where the components of 
∂L

∂θ
 are given by (11) and where 

the Hessian is computed from: 
 

∂2L

∂θ∂θT = Ip ⊗ λi
T( )M0

∂ ˆ Z i
∂θT + I p ⊗ ˆ Z i

T( )M0
T ∂λ i

∂θT

 

 
 

 

 
 

i =1

H

∑  

  (22) 
 
It is important to notice that the analysis of several 
campaigns increases the robustness of the model, the 
parameters of the model being representative of a more 
important amount of data, which also increases the quality 
of the failure diagnosis i.e. the analysis of the residuals 
between the measured and estimated flowrates. 

7. CONCLUSION 
 
In this paper, an estimation technique of the parameters of 
a linear dynamic model when both input and output signals 
are corrupted by errors has been presented. It is based on a 
simultaneous estimation of the state and parameters. The 
amount of calculus is limited because a hierarchical 
procedure is used. The estimation of the variables is done 
analytically; only the estimation of the parameters requires 
an iterative calculus. The proposed technique could 
probably be extended to an on-line treatment as proposed 
in (Muske et al., 1993; Ragot et al., 1990) for state 
estimation. 
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