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Abstract:  All the methods of fault detection and isolation (FDI) 
are based, either explicitly or implicitly, on the use of 
redundancy, i.e. relations among the measured variables. Since 
the founder work of Potter and Suman [22], the problem of 
generation of redundancy relations has been widely addressed. 
This paper presents the fundamental results obtained in this 
area. 
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I. INTRODUCTION 
 

Modern control systems are often large and complex. 
If faults occur, consequences can be extremely serious in 
terms of human lives, environmental impact and economic 
loss. Higher performances and more rigorous security 
requirements have invoked an ever increasing demand to 
develop real time fault detection and isolation systems. 
The problem of fault diagnosis using analytical 
redundancy (model-based) methods has received 
increasing attention during recent years due to the rapid 
growth in available computer power. All the methods, in 
one way or another, involve generation and evaluation of 
signals that are accentuated by faults that have actually 
occurred. The procedures for generating such signals, 
called residuals, are based on two main distinct 
approaches. The first one (direct approach) consists in the 
elimination of all the unknown variables (states, unknown 
inputs, ...) keeping input-output relations involving only 
observable variables. The second one (indirect approach) 
estimates states, outputs or parameters in order to generate 
discrepancy signals obtained by the difference between 
the actual variables and their estimates. 

 
However, the main problem obstructing the progress 

and improvement in reliability of fault diagnosis is the 
robustness with respect to uncertainties which arises, for 
example, due to process noise, parameter variations and 
modelling errors. For methods which use the direct 
approach, when perfect de-coupling cannot be achieved, a 
performance index which measures the sensitivity with 
respect to faults and the insensitivity with respect to 
uncertainties must be defined and optimised. For the 

indirect approaches, the estimation procedure must be as 
insensitive as possible with respect to unknown inputs. 

 
This paper is focused on the presentation of methods 

for generating input-output relations (the direct approach). 
Its organisation is the following: in the second section, the 
main concepts of model-based monitoring are reminded. 
The section III is dedicated to the structural analysis 
which allows the study of the monitoring ability of large 
scale system through a structural canonical 
decomposition. The results of this analysis provide a way 
to generate residuals. The basic residual generators 
allowing a perfect de-coupling with respect to unknown 
variables and perturbations are presented in section IV in 
the case of polynomial models, which often provide a 
good approximation of systems non linearities. Some 
results issued from Elimination Theory and especially the 
concept of Gröbner basis are briefly presented in this 
section. Linear systems are the simplest case of 
polynomial ones. Variable elimination, in this case, is 
equivalent to projections into specific subspaces. The 
Parity Space approach is presented in section V, for static 
as well as for dynamic models. When perfect de-coupling 
is not possible, approximate solutions may be searched. 
Section VI presents some optimisation approaches which 
can be used. The last section illustrates the residual 
generation method for an induction machine. 

II. MODEL-BASED MONITORING 
 

A. System modelling 
 

The behavioural model of a system gives some 
information about the variables the plant involves. It can 
indicate the values that some variables should have in 
their simpler expression or express some knowledge about 
the generating process of these variables. 

 

The analytical model gives an explicit formulation of 
the behavioural model. It is generally made up of two 
parts: 

 

− the first one describes the operation of the plant, 
including the actuators and the process dynamics. It 



expresses the way in which the controls are 
transformed into states. The state trajectories depend 
on the initial state for dynamic models. 

 
− the second one describes the measurements which are 

available. It expresses the way in which the sensors 
transform some states of the process into output signals 
which can be used for control or FDI purposes. 
 

Both parts of the analytical model may depend on 
some parameters. 

 
B. Residual generation 

 
Let us consider a dynamical system observed on a 

temporal window. The analytical model of the system first 
expresses the relations between the internal variables   X  
(as the state variables) and the control variables   U  and 
secondly the measurement   Y  as functions of the internal 
variables. 

 

  F(X (t ),U(t )) = 0  (1a) 

  Y (t ) = G(X (t))  (1b) 
 

where ( )TTT ptztztzt )()1()()( −−= LZ  is the 
vector of values of a vector z on a temporal window of 
size p. However, notice that (1) also stands for static 
systems. 

 
In order to perform the FDI algorithms in real time, 

those algorithms must only make use of known variables, 
namely the values of   U  and   Y . The unknown variables 
  X  have thus to be eliminated in the system (1). Parity 
equations or Analytical Redundancy Relations (A.R.R.) 
may be obtained by re-writing the plant and measurement 
models in which only known variables intervene. It leads 
to an input-output model which expresses some invariance 
property of the form: 

 

  Φ U (t ),Y (t )( ) = 0  (2) 
 

Because of measurement uncertainties and modelling 
errors, the equality (2) is never exactly verified. That 
leads to a residual vector: 

 

  r (t ) = Φ U(t),Y (t )( ) (3) 
 

The design of residual based FDI algorithms rises the 
two following questions: 

 

− Is it possible for a given system to obtain equations like 
(2) ? Structural analysis is aimed at answering this 
question. 

 

− How should one proceed for effective calculation of 
equations (2) ? Elimination theory (and parity space 
approach which traduces it in the linear case) answers 
the second question. 

 
III. STRUCTURAL ANALYSIS 

 
On a structural point of view, the system is modelled 

as a network of elementary activities, each of them 
processing a subset of variables. Among the set of all the 

variables, only some of them are known (computed by 
elementary activities) or measured. For a given 
instrumentation scheme, the canonical decomposition [11, 
27] of the system structure exhibits a subsystem on which 
failure detection and identification procedures can be 
designed. Note that since only structural information is 
used, this approach applies to large scale systems 
described by a great number of variables, even when their 
analytical models are not precisely known. 

 
A. Structure of the model 

 
From the very general point of view which is that of 

structural analysis, the model of the system is only 
considered as a set of constraints which apply to a set of 
variables. 

 
Let F = { f1 , f2 ,..., fm}  be the set of the constraints 

which represent the system model and Z = {z1 ,z2, ...,zn}  
be the set of variables. The set Z contains two subsets K 
and X where K is the set of known variables: the control 
variables set U and the measured variables set Y. The set 
X is the subset of unknown variables. The structure of the 
model is a digraph (F,Z,AZ )  which associates the two 
sets F and Z through the set of links between their 
elements AZ . 

 
F × Z ⊃ AZ  
( fi ,zj ) ∈AZ ⇔  constraint fi  applies to variable xj  
 
Let a belong to AZ , v(a)  denotes the extremity of a 

in Z and c(a)  the extremity of a in F, so a can be written: 
a = c(a),v(a)( ) . 

 
B. Monitorable subsystems 

 
Let P(E)  be the set of the subsets of a given set E. 

Constraint and variable structure are defined using the 
following application: 

 

  

Q:P(F) → P(Z)
      F   → Q(F) = { zj  |  ∃fi ∈F( )∧ ( fi ,zj ) ∈AZ}  

 
A subsystem is a pair   (F,Q(F)) where F is a subset of F 
 
Let   Q(F )= Qk (F)∪ Qx(F)  where   Qk (F)  is the subset 

of known variables while   Qx (F)  is the subset of unknown 
ones. The constraints which define the subsystem may be 
written as: 

 

  F Qk (F),Qx(F )( )= 0  (4) 
 
Then a subsystem is monitorable if it is equivalent to 

analytical redundancy relations of form (2). This property 
can be expressed as follows: 

 
The system   (F,Q(F)) is monitorable if and only if a 

transformation T can be found such that 

  T[(F,Q(F))] = ( ′ F ,Q( ′ F ))  with   K ⊃ Q( ′ F ). The analytical 
redundancy relations are then expressed as: 

 

  ′ F Q( ′ F )( ) = 0  (5) 

 



C. Canonical decomposition 
 
According to the previous definitions, the problem of 

finding monitorable subsystems is equivalent to the 
finding of subsystems in which   Qx (F)  can be eliminated. 
The analysis of the system structure with regard to the 
unknown variables set X can be a guideline for 
researching these subsystems. 

 
Let us consider the graph G(FX ,X,AX ) which is the 

restriction of the system structural graph to the set of 
vertices X. The subset AX  only contains the arcs of A 
which link F to X: 

 
FX = { fi  |  ∃xi ∈Z( )∧ ( fi , xj ) ∈AX}  

 
Definitions: 

 

• G(F,X,A)  is a matching on G(FX ,X,AX ) if and 
only if: 
 

i) A ⊂ AX  
ii) ∀a1,a2 ∈A  with a1 ≠ a2,  
 c(a1 ) ≠ c(a2 )  and v(a1) ≠ v(a2 ) 
 

• A maximal matching on G(FX ,X,AX ) is a matching 
G(F,X,A)  such that: 
 

∀ ′ A ⊃ A,  A ≠ ′ A ,  G(F,X, ′ A ) is not a matching. 
 

• A matching on G(FX ,X,AX ) is complete with regard 
to F (respectively with regard to X) if and only if: 
 

∀f ∈F,  ∃a ∈A | c(a) = f  

resp. ∀x ∈X,  ∃a ∈A |  v(a) = x( ) 
 

The problem of finding a maximal matching has been 
intensively addressed [2, 20, 26] in order to propose 
algorithms whose complexity is only polynomial instead 
of exponential. 

 

It has been demonstrated [11] that a system can be 
decomposed according to a canonical form using a 
maximal matching. The fig. 1 exhibits this decomposition 
of the incidence matrix of the structure. The oblique 
straight line symbolises a maximal matching G(F,X,A) . 
Some other results concerning digraph decomposition and 
algorithms in order to find canonical components can be 
found in [12, 21]. 

 
The different subsets of X and F are defined as 

follows: 
 

The matching ),,(G* *
X

** AXF  is complete with 

regard to X* . 
 
The matching G * (F *,X *,A X

* ) is complete with 

regard to F * . 
 

The matching G* (F* ,X* ,A* X)  is complete with 
regard to X*   (but card(F* ) > card(X* ) ) 

 

Let us now give an interpretation of the notion of 
complete matching. Let us consider a subsystem 
( ′ F , Q( ′ F )) . In the case of numerical analytical model, the 
set of constraints applied to ( ′ F , Q( ′ F ))  can be processed 
as a set of equations to be solved with regard to 

′ X = Qu ( ′ F ) : 
 

′ F Qk ( ′ F ), ′ X ( )= 0 (6) 
 

known X* X*

X*
X

0 0

0

F
F*

F*

F*

 
Fig. 1: Canonical decomposition 

 

The existence of a complete matching with regard to 
′ X  and ′ F  is a necessary condition for the system (6) to 

be solved in ′ X  [11]. 
 

So, analysing the canonical decomposition of Fig. 1, 
the subsystem (F* ,X* )  is monitorable. Moreover this 
subsystem may be decomposed according Fig. 2: 

 

X*

F*

F*
+

F*
=

 
Fig.2: Monitorable subsystem 

Let XS (Qk (F*
= ))  be the solution of the corresponding 

system of equations for given values of Qk (F*
= ) . Using 

the remaining relations F*
+  leads to: 

 
F*

+(Qk (F*
+ ),XS (Qk (F*

= ))) = 0  (7) 
 
which constitutes a set of analytical redundancy relations. 

 
The structural analysis of a system constitutes a good 

way to exhibits redundancy. Indeed this approach makes 
no hypothesis about the kind of model which will be used 
and can then be applied to various process models. From 
this point of view, it can be considered as a very powerful 
pre-processing of any classical residual generation method 
applied to large scale systems. 

 
Notice that structural analysis is not limited to the 

finding of the monitorable subsystems of a given system. 



Indeed, when the set X of the unknown variables only 
contains the unknown states, structural analysis gives the 
possibility or not to obtain some ARR like equation (2). 
Moreover, if we include in the set X some unknown 
parameters, then the resulting ARR, when they exist, will 
be robust with respect to them [7]. Further, if X contains a 
subset of known parameters or outputs (which are 
considered as if they were unknown), then the resulting 
ARR, when they exist, are not sensitive to the faults on 
those parameters and outputs. In this way, structured 
residuals by perfect de-coupling may be achieved. 

 
From a computational point of view, a complete 

matching with respect to some variables X leads to solve 
the system of equations (6) in order to obtain the ARR 
given by (7). One easily sees that the whole procedure is 
equivalent to eliminate the variables X from the system of 
equations (6)-(7). 

IV. THEORY OF ELIMINATION 
 
Basically, perfect de-coupling consists in the 

elimination, from a set of equations, of all the unknown 
variables. Some very interesting results issued from 
commutative algebra and algebraic geometry may be used 
for this purpose. Knowledge about this kind of 
mathematics is not very wide-spread among engineers but 
there is not place enough here to recall the basics of this 
branch [13]. We refer the reader to [10]. Roughly 
speaking, let us consider a system modelled by a set of 
constraints 

  
F = { f1 ,L , fm}  involving a set of unknown 

variables 
  
X = { x1,L ,xp}  and known variables 

  
K = {k1,L,kq} . Each fi  is described by 

  
fi (x1,L,xp,k1,L,kq ) = 0. The following presentation is 

limited to polynomial functions of the form: 
 

  

fi = cj
j
∑ x1

aj ,1
Lxp

aj , pk1
b j,1

Lkp
bj ,q  (8) 

 
where c j ∈R , exponents aj ,k ,bj ,k ∈N . 

The set (or more precisely, the ring) of polynomials in 
the variables 

  
x1,L, xp ,k1 ,L ,kq  with coefficients from R 

is denoted 
  
R[ x1,L,xp,k1,L,kq ] . 

 
Let 

  
f1,L , fm ∈R[x1,L,xp,k1,L,kq ] . The ideal 

generated by the fi  is the set of all polynomials f that can 
be written 

  
f = α1 f1 + α2 f2 +L+αn fn  for some 

  
α i ∈R[ x1,L,xp,k1,L,kq ] . It is denoted 

  
f1,L, fn( ). 

 
The theory of ideals and their cousins is called 

commutative algebra or, if the main interest is in zero-sets 
of the polynomials, algebraic geometry. 

 
The objective is to eliminate elements of X, leading to 

a non trivial polynomial relation containing only variables 
of K. The theory of elimination provides mathematical 
tools to find these polynomials relations. 

 
A first approach is based on direct elimination of 

variables using Euclidean and generalised Euclidean 
polynomial division [9]. The theory of Gröbner bases, 
invented by Bruno Buchberger [3] which generalises the 
previous ideas, is a special generating set of an ideal. It 
has the following property: 

Consider the two sets of variables, X and K. If G is a 
Gröbner basis for the ideal I ⊂ R[X,K]  with regard to 
the ranking   X f K  then: 

 
I ∩ R[K ] = G∩ R[K]( ) (9) 
 
The ranking of the variables determines which 

variables to eliminate first. So I ∩ R[K ]  constitutes a set 
of polynomials which are a consequence of the original 
ones in which any variables belonging to X has been 
eliminated, so this set is composed of Analytical 
Redundancy Relations [14]. 

 
Another interesting thing in commutative algebra is the 

concept of algebraic dependence. We say that 

  
p1,L, pm ∈R[x1,L ,xn ]  are algebraically dependent over 
R if there is a nonzero polynomial f such that 

  
f p1,L, pm( )≡ 0 . A nice way to retrieve the dependency 

relation f using the Gröbner bases is simply to form the 
ideal: 

 

  
I = z1 − p1 (x),z2 − p2( x),L,zm − pm (x)( ) (10) 

 
and then compute one of its Gröbner basis with regard to 
some ranking that eliminates the xi . The zi  are called tag 
variables. 

V. THE CASE OF LINEAR SYSTEMS 
 

A. Static parity space 
 

Let us consider the following linear static model at 
time t: 

y(t ) = Cx(t) + e(t ) + Fd(t)  (11) 
 

where y(t )  is the measurement vector of dimension m, 
x(t )  the state vector of dimension n, d(t)  the vector of 
faults of dimension p and e(t )  the vector of measurement 
noise which is often considered to be normally distributed 
with zero mean and known covariance matrix Σ. The 
matrix C characterises the measurement system and F is 
the distribution matrix of faults. In the following, we only 
consider the case where m, the number of measurement is 
greater than n the number of variables, in order to be able 
to obtain redundancies (this condition is necessary but not 
sufficient). For such system, the parity vector may be 
written as: 

 

p(t ) = Wy(t ) (12) 
 

where W is a projection matrix which is orthogonal to C 
[22]. So we have: 

 

WC = 0  (13) 
 

That implies: 
 

p(t ) = We(t ) + WFd(t ) (14) 
 

Equation (12) is the computational form of the parity 
vector and (14) is the internal form (containing the 
influence of faults). Under ideal circumstances, the parity 
vector is statistically equal to zero. Its covariance matrix 
is equal to WΣWT . If the matrix WF is regular, (14) 
provides a mean to detect and isolate faults. It clearly 
shows that the rank of this matrix, which depends, of 



course, on W must be studied. Particularly, a “bad” choice 
of W could conceal some fault directions (when the matrix 
WF contains a column of zeros). 

 
More generally, a parity vector sensitive to certain 

faults and insensitive to the others may be designed. The 
measurement vector may be written as: 

 

y(t ) = Cx(t) + e(t ) + F+ d+ (t ) + F−d − (t )  (15) 
 

where d + (t )  and d − (t )  denotes the subvectors of faults 
with regard to which sensitivity and insensitivity is 
required. The main principle of parity vector generation is 
kept. A matrix W orthogonal to the subspace spanned by 
the columns of the matrix (C F− )  has to be found. 

 

WC = 0
WF− = 0
WF+ ≠ 0

 
 
 

  
 (16) 

 

The previous formalism may be easily extended when 
considering constraints on state variables. The 
measurement equation is completed by a constraint 
equation: 

 

y(t ) = Cx(t ) + e(t) + Fd(t )

Ax(t ) = Ed(t )

 
 
 

 (17) 

 
The structure of the previous case may be find again in 

writing this system under the following form: 
 

I

0

 
 
 
 
 
 y(t) =

C

A

 
 
 
 
 
 x(t ) +

I

0

 
 
 
 
 
 e(t ) +

F

E

 
 
 
 
 
 d(t)  (18) 

 

The parity vector is then obtained by elimination of 
the state vector: 

 

W
C
A
 
 
  
 
 = 0  (19) 

 

and its computational and internal forms are: 
 

p(t ) = W
I
0
 
 
  
 
 y(t )  (20a) 

p(t ) = W
I

0
 
 
 
 
 
 e(t) +

F

E

 
 
 

 
 
 d(t)

 

 
 

 

 
  (20b) 

 

As previously, the vector d(t)  may be split into 
components with regards to which sensitivity and 
insensitivity are required. 
 
B. Dynamic parity space 

 
Let us now consider a dynamic system modelled by a 

linear time invariant system described by the following 
state space equations: 

 

)()()()( tEdtButAxtx ++=&  (21a) 
y(t ) = Cx(t) + Du(t) + Fd(t ) + e(t)  (21b) 

 

The same principle as for static systems applies. It 
consists to eliminate the unknown variables in order to 

obtain input-output relations. Using symbolic calculus, the 
system may be re-written: 

 

B 0

−D I
 
 

 
 

u(s)

y(s)
 
 

 
 

=
sI − A

C
 
 

 
 

x(s)+
0

I
 
 
 
 
e(s)+

−E

F
 
 

 
 
d(s)  (22) 

 

The structure of this equation is the same as (11). The 
generation of the parity vector may be done in the same 
manner. It leads to a “projection” matrix 
W(s) = W1(s) W2 (s)( )  such that: 

 

W(s)
sI − A

C
 
 
  

 
 = 0  (23) 

 

The two forms of the parity vector may be written as: 
 

p(s) = −W1(s)E + W2 (s)F( )d(s) + W2(s)e(s)  (24a) 

p(s) = W1(s)B− W2 (s)D( )u(s) + W2 (s)y(s)  (24b) 
 

As the static case, the vector d(s)  may be split into 
subvectors of faults with regard to which sensitivity and 
insensitivity is required. With obvious notation, the 
problem leads to search a polynomial matrix W(s) such 
that: 

W(s)
sI − A E−

C F−

 

 
 

 

 
 = 0  (25) 

 
Equations (23) or (25) are not only mathematical 

writing. With the help of symbolic calculus software such 
as Maple or Mathematica for example, finding such 
polynomial matrix is very easy. Moreover, these softwares 
not only give a solution but all the parametrised solutions 
to the problem. 

 
This type of approach may be easily extended to the 

case of dynamical singular systems [17] or, equivalently, 
to systems with unknown inputs [24]. It unifies the case of 
static and dynamic systems. However, numerically 
efficient methods for generating redundancy relations of 
dynamical systems have also been developed [6, 25] 

VI. ENHANCEMENT OF ROBUSTNESS 
PARTIAL DE-COUPLING 

 
All previous methods present some limitations and 

lead to consider that exact de-coupling may be a too 
strong constraint. Relaxing this constraint allows to search 
a trade-off which can give better results than the previous 
approaches can do. For sake of simplicity, the static case 
is only presented. The dynamical case only differs by 
definition of the influence of the dynamic of the failure 
d on the residual vector. 

 

Let us consider again equation (15). The perfect de-
coupling is not always attainable because of the rank of 
the matrix (C F− ) . When the matrix W does not exist, it 
is interesting to search an approximate solution. The 
following objectives may be pursued: to generate a parity 
vector totally de-coupled from the state x(t ) , “very” 
sensitive to faults to be detected d + (t )  and “very” 
insensitive to the perturbations d − (t ) . For example, the 
vector w could be the solution of the optimisation 
problem: 



wTC = 0
max

w
f + wTF+( )

min
w

f − wTF−( )

 

 
  

 
 
 

 (26) 

 
where the functions f − (•) and f + (•) has to be defined 
by the user. It consists in a multicriteria problem [24] and 
the solution may be obtained only if the relative weight of 
the different objectives are given. Taking into account the 
statistical aspect of the residual leads to an additional 
constraint wTΣw = 1 (see the reference [4]). 
 
 A classical transformation of this problem consists in 
modifying (26) in a single criterion problem. If the 
statistical constraint is relaxed, that leads to find the 
solution of: 

wTC = 0

max
w

f + wTF+( )
f − wTF−( )

 

 
 

 
 

 (27) 

 

When the function to be optimised is a ratio of 
quadratic ones, the problem may be written as: 

 

wTC = 0

max
w

wTF+ 2

wTF− 2

 

 
 

 
 

 (28) 

 

It is well known that the solution of this type of 
problem may be expressed as a problem of finding 
generalised eigenvectors and eigenvalues. The vector w is 
solution of: 

 

(QA− λQB)w = 0 (29) 
 

with 
A= F+ (F+ )T  B= F− (F− )T  Q = I − CT (CCT)−1C  

 

The structure of (29) shows that w is a generalised 
eigenvector of the pair (QA QB). Moreover, it can be 
shown that the vector λ is the least eigenvalue associated 
to this vector. 

 

Another way to solve the problem consists in using 
penalty function. The problem (26) is then replaced by: 

 

wTC = 0

wTΣw = 1

max
w

f + wTF+( )− α2 f − wTF−( )( )

 

 
  

 
 
 

 (30) 

 

Where the coefficient α2  weights the two objectives 
of sensitivity and insensibility. When quadratic functions 
are used, this problem is easily solved using the following 
Lagrangian function [8]: 

 

L = wT A − α2B( )w + wTCλ + µ 1− wTΣw( ) (31) 
 

The optimal value µ*  of the criteria is the maximum 

zero of the quadripole [( A − α2B),  − Σ ,  C,  0]  and the 

vector wT λT( )T
belongs to the kernel of the matrix: 

 

R=
A − α2B − µ* Σ C

CT 0

 

 
 

 

 
  (32) 

 

When perfect de-coupling cannot be attained or when 
the quality of the partial de-coupling is not satisfactory, 
the instrument scheme must be modified or completed. 
Some works have been developed in this direction [1, 16, 
19]. 

 
The problem of de-coupling may also be viewed with 

regard to small variations of the parameter of the system 
model. Let us consider the model (11) where the matrix C 
belongs to a finite set 

  
C ∈{C0,C1,L,Cq} . Practically, C0  

may be considered as the nominal value of C and the Ci  
are “distributed” around C0 . The matrix W must satisfy 
the relations: 

 

WCi = 0 i = 1, ...,q  (33) 
 

However, in general this problem has no solution and 
it is interesting to search an approximate one. A solution 
may be obtained by searching the minimum of the 
following criteria [15]: 

 

J = WC F  (34) 
 

where ( )qCCC L10=C , and F
M  denotes the 

Frobenius norm of the matrix M , i.e. 

( ) 2/1

F
)Tr( TMMM =  where Tr( ) stands for the trace 

operator. 
 

The solution of this problem may be easily obtained. 
Considering the singular value decomposition of matrix 
C: 

C = UΣV  and 

  

Σ =

σ1 0 L 0
0 σ2 O M

M O O 0
0 L 0 σm

 

0 L 0
M M

M M

0 L 0

 

 

 
 
 

 

 

 
 
 

  (35) 

 

where U and V are orthogonal matrices, and 
  
σ1 ≤L≤ σm  

are the singular values of C, ordered by magnitude. The 
matrix W minimising (34)  is given by: 

 

  
W = u1 u2 L up( ) (36) 
 

where the ui ,  i = 1, .., p are the first p left singular vectors 
of C, i.e. the first p columns of U. In this case, the residual 
criterion, which represents a robustness index is 

∑ =
=

p

i irJ
1

2σ . 
 

This technique may be extended to systems which 
parameters belong to a given interval, C = C(θ)  with 
θ ∈[θmin ,θmax] . The problem reduces to find parity 
vectors as orthogonal as possible to all possible values of 
C. Let us consider a uniform distribution of the 



parameters in their intervals, the minimisation of the 
following criteria is intuitive: 

 

J =
θmin

θmax

∫ WC(θ) Fdθ  (37) 

 

(In this notation, the integration is done with regard to 
all the entries of the parameter vector θ ). According to 
the previous result, the optimal matrix W is given by (36) 
where the ui ,  i = 1, .., p are now the p eigenvectors 
associated to the first p least eigenvalues λ i  of the matrix 
[23]: 

C =
θmin

θmax

∫ C(θ)CT(θ)dθ  (38) 

VII. EXAMPLE 
 
In this section, the elimination theory is applied in 

order to generate a set of residuals. Let us consider a 
simplified dynamical electrical model of an induction 
machine. The chosen state variables are the stator and 
rotor currents (I), all expressed in the Park basis linked to 
the stator frame; the input is the supply voltage (V). The 
model may then be written as a classical linear dynamical 
model: 

 

)()()()( tBUtXtAtX +=&  
Y(t ) = CX(t)  
 

with 
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lsmsrω (t ) msrrs lsl rω (t ) −lsrr

 

 

 
 
  

 

 

 
 
  

 

 

B=
1

γ

l r 0
0 lr

− msr 0
0 −msr

 

 

 
 
 

 

 

 
 
 

 C = I 4× 4  γ = lsl r − msr
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X(t ) =

I sd(t )
I sq(t )
I rd (t )
I rq (t )

 

 

 
 
 

 

 

 
 
 

 U(t ) =
Vsd(t )
Vsq(t )
 
 
 

 
 
  

 
and where rs  and rr  are respectively the equivalent 
statoric and rotoric resistance, ls and l r  the equivalent 
statoric and rotoric cyclic inductance and msr , the 
equivalent cyclic mutual stator/rotor. If the statoric 
currents are systematically measured, it is not the case for 
the rotoric currents. However, these variables may be 
indirectly observed by the measurement of the fluxes 
provided some expensive devices may be set up. 
However, for sake of simplicity in this didactic 
presentation, the observation matrix C will be assigned to 
identity. 

 
The proposed model is not time invariant because of 

the presence, in the matrix A, of the angular velocity of 
the machine ω(t ). However, when the machine is in 
steady-state, this velocity may be considered as constant. 

 

Considering one of the control signals Vsd(t ) or 
Vsq(t)  as a perturbation, it is possible, using the de-
coupling methods presented in section V, to generate 
redundancy relations which do not depend on this signal. 
The general parametrised solution, which depends on 
three parameters, is to big for being presented here. For 
instance, the following relations do not depend on Vsq(t) : 

 

02 =−−++++ sqsrrqrsrsdsrsdsdsdrsdr ImIlmIrrIIVlVr ωωνγ &&&&

 

with ν = rsl r + rr ls 

02 =++++− rdsqsrrqrsrsdsrsdsdr IImIlmIrlIVl ωωγ &  

 
The general solution also shows that, for this particular 

example, it is possible to eliminate all the control signals, 
leading, for example, to the following relation: 

 

( ) 02 =−−+−+ rqrrqrrdrsqsrsdsrrssr IrIlIlImImllm γγγωγω &&  
 

Using the theory of elimination, and Gröbner bases, it 
is also possible to find three redundancy relations where 
the angular velocity does not intervene: 

 

0=−++ sdrdsrsdssds VImIlIr &&  
 

( ) 0=−+−++ sqrqsrrdrqsrrssqssqs VImIImrlIlIr γγγγ &&  
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VIII. CONCLUDING REMARKS 
 

An attempt has been made to present residual 
generation methods for fault detection purposes. The 
presentation has been organised along the concept of 
unknown or unmeasured variable elimination by using the 
model of the process which may be either consider as 
static or dynamic. The first stage of the analysis is 
independent of the nature of the model because this model 
is reduced to a set of constraints applied to a set of 
variables. The resulting structural analysis gives 
qualitative results with regard to the observability and the 
redundancy of variables. The second stage of residual 
generation gives an explicit form of the residuals 
depending only on the known variables of the process. 
Perfect elimination of unknown variables being not 
possible in some situations, partial de-coupling has been 
presented. These techniques must still be enhanced and 
deserve to be further developed. Robustness in the face of 
modelling errors is probably one of the most important 
extension to these methods. 
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