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Abstract: All the methods of fault detection and isolat{&l)  indirect approaches, the estimation procedure ineists
are based, either explicitty or implicitly, on these of insensitive as possible with respect to unknowmiis

redundancy, i.e. relations among the measuredhlasiaSince
the founder work of Potter and Suman [22], the [mwbof
generation of redundancy relations has been widdtressed.
This paper presents the fundamental results olatainethis

This paper is focused on the presentation of method
for generating input-output relations (the dirgep@ach).
Its organisation is the following: in the secondtam, the

area. . -V
main concepts of model-based monitoring are rentinde
Keywords: redundancy relations, fault detection and isotati The section Il is dedicated to the structural gsial
model-based diagnosis. which allows the study of the monitoring ability lafrge
scale system through a structural canonical
I. INTRODUCTION decomposition. The results of this analysis prodadeay

to generate residuals. The basic residual gensrator

Modern control systems are often large and complegllowing a perfect de-coupling with respect to umkm
If faults occur, consequences can be extremelpsein Vvariables and perturbations are presented in setan
terms of human lives, environmental impact and eoia  the case of polynomial models, which often provale
loss. Higher performances and more rigorous securigood approximation of systems non linearities. Some
requirements have invoked an ever increasing dertmndresults issued from Elimination Theory and espéctale
develop real time fault detection and isolationteys. concept of Grobner basis are briefly presentedhis t
The problem of fault diagnosis using analyticapection. Linear systems are the simplest case of
redundancy (model-based) methods has receiv@@lynomial ones. Variable elimination, in this case
increasing attention during recent years due toréped €quivalent to projections into specific subspactke
growth in available computer power. All the methots Parity Space approach is presented in section\tédic
one way or another, involve generation and evalnatif as well as for dynamic models. When perfect de-tiogp
signals that are accentuated by faults that haweathe iS not possible, approximate solutions may be $eafc
occurred. The procedures for generating such signaPection VI presents some optimisation approachashwh
called residuals, are based on two main distin€an be used. The last section illustrates the wakid
approaches. The first one (direct approach) cansighe generation method for an induction machine.
elimination of all the unknown variables (statesknown
inputs, ...) keeping input-output relations invalyionly II. MODEL-BASED MONITORING
observable variables. The second one (indirectauir)
estimates states, outputs or parameters in ordggrterate
discrepancy signals obtained by the difference beetw
the actual variables and their estimates.

A. System modelling

The behavioural model of a system gives some
information about the variables the plant involviescan
) _ indicate the values that some variables should have
However, the main problem obstructing the progresgeir simpler expression or express some knowlethgeit
and improvement in reliability of fgu!t dlagnoss _ihe the generating process of these variables.
robustness with respect to uncertainties whicheayifor
example, due to process noise, parameter variatdods The analytical model gives an explicit formulatioh
modelling errors. For methods which use the direche behavioural model. It is generally made up ved t
approach, when perfect de-coupling cannot be aeliex parts:
performance index which measures the sensitivitth wi
respect to faults and the insensitivity with resper — the first one describes the operation of the plant
uncertainties must be defined and optimised. Fer th including the actuators and the process dynamics. |



expresses the way in which the controls areariables, only some of them are known (computed by
transformed into states. The state trajectorieeni@p elementary activities) or measured. For a given
on the initial state for dynamic models. instrumentation scheme, the canonical decompoditibn
27] of the system structure exhibits a subsysterwiuich
- the second one describes the measurements wiech f&ilure detection and identification procedures dam
available. It expresses the way in which the sensodesigned. Note that since only structural inforovatis
transform some states of the process into outgoets used, this approach applies to large scale systems
which can be used for control or FDI purposes. described by a great number of variables, even wien
analytical models are not precisely known.
Both parts of the analytical model may depend on

some parameters. A. Structure of the model

B. Residual generation From the very general point of view which is thét o
structural analysis, the model of the system isyonl
Let us consider a dynamical system observed oncansidered as a set of constraints which apply $etaof
temporal window. The analytical model of the sysfest  variables.
expresses the relations between the internal Jagab

(as the state variables) and the control varialileand Let F={f,f,,..., f,} be the set of the constraints
secondly the measuremetit as functions of the internal which represent the system model ahéd {z,2,,...,2,}
variables. be the set of variables. The getontains two subsets
and X whereK is the set of known variables: the control
F(x(t),u(t)) =0 (1a) variables set U and the measured variables seh¥.sét
Y(t) = G(x (1)) (1b) X is the subset of unknown variables. The structdirde
model is a digrapHF,Z,Az) which associates the two
where Z(t)=(z(t)T zZ(t-n" - z(t—p)T) is the setsF and Z through the set of links between their

vector of values of a vectaron a temporal window of elementsA ;.
size p. However, notice that (1) also stands for static
systems. FxZ Az
(fi,z;) DAz < constraintf; applies to variable
In order to perform the FDI algorithms in real time
those algorithms must only make use of known véggb Let a belong toA,, v(a) denotes the extremity @f

namely the values o) and . The unknown variables jn 7 andc(a) the extremity o in F, soa can be written:
X have thus to be eliminated in the system (1).tyParig = (c(a),\(a)).

equations or Analytical Redundancy Relations (A.R.R
may be obtained by re-writing the plant and measerg B, Monitorable subsystems
models in which only known variables intervenelelids

to an input-output model which expresses some ianee Let P(E) be the set of the subsets of a givenEet
property of the form: Constraint and variable structure are defined usig
following application:
o(U(t), 7(1) =0 2)
Q:P(F) - P(Z)

Because of measurement uncertainties and modelling F - QF) ={z | (4 OF)O(f,z) DA}
errors, the equality (2) is never exactly verifiethat
leads to a residual vector: A subsystenis apair (F,Q(F)) whereF is a subset oF

r(t) = ®(v(r), v (t)) ®3) Let Q(F)= Q«(F) 0 Qy(F) whereQ(F) is the subset

) ] ] ] of known variables whil&, (F) is the subset of unknown
The design of residual based FDI algorithms rises t ones. The constraints which define the subsysteynbea

two following questions: written as:

- lIs it possible for a given system to obtain equetilike F(Qk (F),Qx(F)) =0 (4)
(2) ? Structural analysis is aimed at answering thi
question. Then a subsystem is monitorable if it is equivakent

. , analytical redundancy relations of form (2). Thisgert
— How should one proceed for effective calculatidn o.4n, %te expressed asyfollows: @) Pery

equations (2) ? Elimination theory (and parity spac
approach which traduces it in the linear case) arwW  The system(F,Q(F)) is monitorable if and only if a

the second question. transformation T can be found such that
T[(F,Q(F))]= (F ,Q(F")) with K OQ(F'). The analytical
ll. STRUCTURAL ANALYSIS redundancy relations are then expressed as:
On a structural point of view, the system is maatbll E (Q(F'))z 0 (5)

as a network of elementary activities, each of them
processing a subset of variables. Among the satl difie



C. Canonical decomposition Let us now give an interpretation of the notion of
complete matching. Let us consider a subsystem

According to the previous definitions, the problein (F',Q(F’)). In the case of numerical analytical model, the

finding monitorable subsystems is equivalent to theet of constraints applied {¢', Q(F')) can be processed

finding of subsystems in whic, (F) can be eliminated. as a set of equations to be solved with regard to

The analysis of the system structure with regardh® X' =Q,(F'):

unknown variables setX can be a guideline for

researching these subsystems. = (Qk (F), X') =0 (6)

Let us consider the grapB(Fx, X,Ax) which is the X
restriction of the system structural graph to tle¢ of X
verticesX. The subsetAy only contains the arcs &
which link F to X: known X

>
*

Fx ={% | (Ox 0Z)0O(%, %) OAx}

p
. ” O 0 F=
Definitions: *

* G(F,X,A) is amatchingon G(FK,X,Ayx) if and "’. F
only if; Y 0
) AOA i
i) Oay,a, DA witha; # a, ’, =
c(a) % c(ay) anc Way) # v(ap) 3

Fig. 1: Canonical decomposition

* A maximal matchingon G(Fy,X,Ax) is a matching

G(F,X,A) such that: The existence of a complete matching with regard to
X' andF' is a necessary condition for the system (6) to
OA'"OA, A£A", G(F,X,A") is not a matching. be solved inX' [11].

* A matching onG(Fy, X,Ay ) is complete with regard So, analysing the canonical decomposition of Fig. 1

to F (respectively with regard ) if and only if: the subsystem(F,X«) is monitorable.. Moreover this
subsystem may be decomposed according Fig. 2:

Of OF, CaOA | (a) = f

(resp. Ox OX, A OA | v(a) = x) X

The problem of finding a maximal matching has been +
intensively addressed [2, 20, 26] in order to pe®EpO
algorithms whose complexity is only polynomial st
of exponential. ‘e | F=

It has been demonstrated [11] that a system can be ‘e
decomposed according to a canonical form using a .
maximal matching. The fig. 1 exhibits this decompos ] -
of the incidence matrix of the structure. The olniq Fig.2: Monitorable subsystem _
straight line symbolises a maximal matchiBgF, X, A) . Let Xs(Q«(F)) be the solution of the corresponding
Some other results concerning digraph decompositioh  SYStém of equations for given values @f(F.). Using
algorithms in order to find canonical componenta be 1€ remaining relations.” leads to:

found in [12, 21]. =
ound in [12, 21] FH(QUFN), Xs(Q(FO)) =0 ()

The different subsets oK and F are defined as
follows: which constitutes a set of analytical redundantstians.

The structural analysis of a system constitutesadg
. way to exhibits redundancy. Indeed this approackesa
regard toX . no hypothesis about the kind of model which willlsed
e 1 — and can then be applied to various process moHem
The matching G (F ,X ,Ax) is complete with this point of view, it can be considered as a ymwerful
regard toF . pre-processing of any classical residual generatiethod
applied to large scale systems.
The matching G«(F,Xs,Axx) is complete with
regard toX« (butcarc(F)>carc(X«)) Notice that structural analysis is not limited foet
finding of the monitorable subsystems of a givestesy.

The matching G (F ,X",AY) is complete with



Indeed, when the seX of the unknown variables only  Consider the two sets of variables.andK. If G is a
contains the unknown states, structural analysissgthe Grébner basis for the idedl D R[X,K] with regard to
possibility or not to obtain some ARR like equati®). the rankingX >-K then:
Moreover, if we include in the set some unknown
parameters, then the resulting ARR, when they ewidit | n RIK]1=(GnR[K]) 9)
be robust with respect to them [7]. FurtheiXi€ontains a
subset of known parameters or outputs (which are The ranking of the variables determines which
considered as if they were unknown), then the tiegul variables to eliminate first. Sbn R[K] constitutes a set
ARR, when they exist, are not sensitive to thetéaoh of polynomials which are a consequence of the waigi
those parameters and outputs. In this way, stredturones in which any variables belonging Xo has been
residuals by perfect de-coupling may be achieved. eliminated, so this set is composed of Analytical
Redundancy Relations [14].

From a computational point of view, a complete
matching with respect to some variab¥deads to solve ~ Another interesting thing in commutative algebréhis
the system of equations (6) in order to obtain ARR concept of algebraic dependence. We say that
given by (7). One easily sees that the whole praeeis P, Pm OR[X, -+, Xn] are algebraically dependent over
equivalent to eliminate the variabl¥sfrom the system of R if there is a nonzero polynomiaf such that

equations (6)-(7). f(pw,-, pm)E 0. A nice way to retrieve the dependency
.relationf using the Grébner bases is simply to form the
IV. THEORY OF ELIMINATION ideal:
Basically, perfect de-coupling consists in the = (2~ P, 22 = Po(X), 1 Zi = P (X)) (10)

elimination, from a set of equations, of all thekmown

variables. Some very interesting results issuednfroand then compute one of its Grobner basis withrokta
commutative algebra and algebraic geometry maysbd u some ranking that eliminates the. The z are calledag
for this purpose. Knowledge about this kind ofvariables

mathematics is not very wide-spread among engirtmérs

there is not place enough here to recall the basitsis V. THE CASE OF LINEAR SYSTEMS
branch [13]. We refer the reader to [10]. Roughly . .

speaking, let us consider a system modelled byt afse A. Static parity space

Sgﬂ;tglzgrswts I;_:{{f;l’,_"f;“i} mvglr\]/cljng EnES\;[nOf \nglr(igg\llég ~ Let us consider the following linear static model a
K ={ky,~-,kg}. FEach f is described by UMet
f; (xl,u-,xp,ﬂl,---,kq): 0. The following presentation is y(t) = Cx(t) +e(t) + Fd(t) (1)

limited to polynomial functions of the form: where y(t) is the measurement vector of dimension

a1 aip.biq o b X(t) the state vector of dimension d(t) the vector of
f, = chxlj' ~~ij'pk1” --.kp‘ q (8) faults of dimensiomp ande(t) the vector of measurement
J noise which is often considered to be normallyriisted
with zero mean and known covariance matfix The
wherec; R, exponentsa; ., by CIN. _ matrix C characterises the measurement systemFaiwd
The set (or more precisely, the ring) of polynosiial  the distribution matrix of faults. In the followingve only
the variablesx,---, Xp,ky -+, ky with coefficients fromR  consider the case whene the number of measurement is
is denotedR[ Xy, -+, Xp, K1+, Kq]. greater tham the number of variables, in order to be able
_ to obtain redundancies (this condition is necesbatyot
Let fy,--, fy OR[Xq, -, Xp, K1,--+,Kq].  The ideal  gsyfficient). For such system, the parity vector mizy
generated by thd; is the set of all polynomialsthat can \yritten as:
be written f=o0yf+asfr+---+a,f for _some
o OR[ Xy, Xp, kg, kg It is denoted(fy, -, ). p(t) = Wy(t) (12)

The theory of ideals and their cousins is callewhereW is a projection matrix which is orthogonal @
commutative algebrar, if the main interest is in zero-sets[22]. So we have:
of the polynomialsalgebraic geometry

WC=0 (13)
The objective is to eliminate elementsXafleading to That implies:
a non trivial polynomial relation containing onlgnables
of K. The theory of elimination provides mathematical p(t)=We(t)+WFd(t) (14)

tools to find these polynomials relations.
Equation (12) is the computational form of the fyari
A first approach is based on direct elimination ofrfector and (14) is the internal form (containinge th
variables using Euclidean and generalised Euclideamfluence of faults). Under ideal circumstances, plarity
polynomial division [9]. The theory of Grobner base vector is statistically equal to zero. Its covad@rmatrix
invented by Bruno Buchberger [3] which generalifes is equal toWsW'. If the matrix WF is regular, (14)
previous ideas, is a special generating set ofdeali It provides a mean to detect and isolate faults. darty
has the following property: shows that the rank of this matrix, which depenafs,



course, oW must be studied. Particularly, a “bad” choiceobtain input-output relations. Using symbolic céls, the
of W could conceal some fault directions (when the atr system may be re-written:

WEF contains a column of zeros). (B O\(u(s) (sl-A (0) (-E)
u(s, Sl — -

More generally, a parity vector sensitive to certai \-D 1Jly(s)) | C L SMUACMEIES (22)
faults and insensitive to the others may be desighae

measurement vector may be written as: The structure of this equation is the same as (I11¢.
generation of the parity vector may be done inghme
y(t) = Cx(t) +e)+ F d"(t)+ Fd () (15) manner, It leads to a “projection” matrix

W(s):(\/\/l(s) \Nz(s)) such that:

whered”(t) andd (t) denotes the subvectors of faults

with regard to which sensitivity and insensitiviig W(s) sl-A) _ 0 (23)

required. The main principle of parity vector gext&Em is c )

kept. A matrixW orthogonal to the subspace spanned by

the columns of the matri¢C F™) has to be found. The two forms of the parity vector may be written a
WC=0 p(s) = (FWL(S)E+Wo(9F )d(5) +Wa(s)e(s)  (24a)
e zo 18)  p(s)=(Wi(9B-W(9Du(s) +Wo(s)y(s)  (24b)

] . ] As the static case, the vectd(s) may be split into

The previous formalism may be easily extended wheg}pyectors of faults with regard to which sendigivand
considering constraints on state variables. Thgsensitivity is required. With obvious notationhet
measurement equation is completed by a constraiffoplem leads to search a polynomial mawigs) such

equation: that:
= + + sl-A E-
{y(t) CX() +e(t) + Fd(t) ) W(s)( ] ~o (25)
Ax(t) = Ed(t) c F
The structure of the previous case may be findreigai ~ Equations (23) or (25) are not only mathematical
Wrmng this Sys'[em under the fo”owing form: ertlng. With the help of Symb(.)llC calculus softwasuch
as Maple or Mathematica for example, finding such
I _(C I F polynomial matrix is very easy. Moreover, thesdvsafes
[Oj y(t) = [Aj X+ (Oj et) + [Ejd(t) (18) " not only give a solution but all the parametrisetliions

to the problem.

The parity vector is then obtained by eliminatioh o . .
the state vector: This type of approach may be easily extended to the

case of dynamical singular systems [17] or, eqeividy,

W(C) o (19) to systems with unknown inputs [24]. It unifies trese of
Ay static and dynamic systems. However, numerically
efficient methods for generating redundancy retetiof
and its computational and internal forms are: dynamical systems have also been developed [6, 25]
o(t) = W( ') v (20a) VI. ENHANCEMENT OF ROBUSTNESS
0 PARTIAL DE-COUPLING

I F

p(t)=W((o)e(t)+(E)d(t)] (20Db) All previous methods present some limitations and
lead to consider that exact de-coupling may be @ to

strong constraint. Relaxing this constraint alldsearch

trade-off which can give better results thanpgtevious

pproaches can do. For sake of simplicity, thacstatse

is only presented. The dynamical case only diffeys

definition of the influence of the dynamic of thailfire

d on the residual vector.

As previously, the vectord(t) may be split into
components with regards to which sensitivity an(i
insensitivity are required.

B. Dynamic parity space

~ Let us now consider a dynamic system modelled by a Let us consider again equation (15). The perfeet de
linear time invariant system described by the folf@ coupling is not always attainable because of th i

state space equations: the matrix(C F™). When the matriXV does not exist, it
] is interesting to search an approximate solutiohe T
X(t) = AX(t) + Bu(t) + Ed(t) (21a) following objectives may be pursued: to generapaty
y(t) = Cx(t) + Du(t) + Fd(t) + &(t) (21b) vector totally de-coupled from the statet), “very”

o . ~ sensitive to faults to be detectedl* (t) and “very”
The same principle as for static systems applies. ihsensitive to the perturbatiorss (t). For example, the
consists to eliminate the unknown variables in prde vector w could be the solution of the optimisation

problem:



The optimal valueu* of the criteria is the maximum

w'C=0 .

maxf+(wTF+) (26) zero of t?e unaTdnpoIeE(A—azB), -2, C, 0] and the
Nl - vector(w A ) belongs to the kernel of the matrix:
min f (W F )

w

R=[A_O(ZB_“*z C] (32)

where the functionsf “(+) and f () has to be defined cT 0

by the user. It consists in a multicriteria problg] and

the solution may be obtained only if the relativeigit of When perfect de-coupling cannot be attained or when

the different objectives are given. Taking into@att the the quality of the partial de-coupling is not sttisory,

statistical aspect of the residual leads to antmxdil the instrument scheme must be modified or completed

constraintw ' 2w =1 (see the reference [4]). Some works have been developed in this directipri$l
19].

A classical transformation of this problem corsigt ]

modifying (26) in a single criterion problem. If&éh  The problem of de-coupling may also be viewed with

statistical constraint is relaxed, that leads todfithe regard to small variations of the parameter ofsjstem

solution of: model. Let us consider the model (11) where theimax
w'C=0 belongs to a finite se€ [{Cy, C,,--+, Gy} . Practically,Cy
fr(wTE* 27) may be considered as the nominal valu€aind theC;
max———— are “distributed” aroundC,. The matrixW must satisfy
wof (W F ) the relations:
When the function to be optimised is a ratio of WG =0 1=1..q (33)

uadratic ones, the problem may be written as: . . .
q P y However, in general this problem has no solutiod an

wiCc=0 it is interesting to search an approximate oneolit®n
I TF+I2 may be obtained by searching the minimum of the
max w . (28) following criteria [15]:
W IWTF_I —
J=lwcl: (34)
It is well known that the solution of this type of - M
problem may be expressed as a problem of findinvéhere_c (CO G Cq)’ and ” ”F denotes.the
generalised eigenvectors and eigenvalues. Thenvedo Frobenius  norm  of  the  matrix M, ie.
H . 1/2
solution of M| = (Tr(MMT)) where Tr( ) stands for the trace
(QA-AQB)w =0 (29)  operator.
with The solution of this problem may be easily obtained

A=F*(F")T B=F (F)' Q=1-c'(cc’)’c Considering the singular value decomposition ofrixat
C.

The structure of (29) shows that is a generalised oo 0 -~ 00 0
eigenvector of the pai(QA QB). Moreover, it can be 0 g, - [ :
shown that the vectox is the least eigenvalue associated C=UX*V andX=| . .° - o |: .| (35)
to this vector. ) o : :
0O - 0 6,10 - O
Another way to solve the problem consists in using
penalty function. The problem (26) is then replabgd whereU andV are orthogonal matrices, amg <---< 0,
are the singular values @f, ordered by magnitude. The
w'C=0 matrix W minimising (34) is given by:
T
W Zw:lT N (30) W:(ul U - up) (36)
ma><(f (W F )—cx f (N F ))
W where they;, i =1,.., p are the firsp left singular vectors

Where the coefficienti? weights the two objectives of C, i.e. the firstp columns ofU. In this case, the residual

of sensitivity and insensibility. When quadratinétions ~Criterion, which represents a robustness index is
are used, this problem is easily solved using tieviing j =\"P 42

. . r i .
Lagrangian function [8]: =1

This technique may be extended to systems which
parameters belong to a given intervél,= C(8) with
0 O[6min,Omax] - The problem reduces to find parity
vectors as orthogonal as possible to all possialees of
C. Let us consider a uniform distribution of the

L=w"(A-a?Bw+w'Ch +pf-w'zw) (31



parameters in their intervals, the minimisation thé Considering one of the control signaMy(t) or
following criteria is intuitive: Vsq(t) as a perturbation, it is possible, using the de-
o coupling methods presented in section V, to gemerat

axl 0)l.de redundancy relations which do not depend on thjsagi
I WCO)I 37) The general parametrised solution, which depends on

Bmin three parameters, is to big for being presented. Heor

(In this notation, the integration is done with aetto instance, the following relations do not dependvgy(t)

all the entries of the parameter vecty. According to Vg +1 Vo + - oy -m o, - 2.4 =
the previous result, the optimal matkixis given by (36) [Vea *1Vsa + P+ s + 11l o = myl, rq ~ M5t
where theu, i =1..,p are now thep eigenvectors

associated to the firgt least eigenvalues; of the matrix With v=rd; *+rils ,

[23]: ersd_Msd+|rrs|sd+msr|rajrq+msrajsq+|rd =0

emax
c= [ c@CcT(8)ds 38 . .
ej_ ©)c (38) The general solution also shows that, for thisipaler
min example, it is possible to eliminate all the cohsignals,

VIl EXAMPLE leading, for example, to the following relation:

In this section, the elimination theory is applied
order to generate a set of residuals. Let us censad
simplified dynamical electrical model of an indacti
machine. The chosen state variables are the statr
rotor currentsl, all expressed in the Park basis linked t
the stator frame; the input is the supply voltage The
model may then be written as a classical lineaadyoal

Mg, Islr +mszr)|sd_VTErl.sq+(‘jr“rd _Ir“.rq _Vrqu =0

Using the theory of elimination, and Grébner bages,
(55 also possible to find three redundancy relatiohsre
the angular velocity does not intervene:

model: sl sq +|s|.sd + msrllrd —Vsq =0
X(t) = At) X (t) + BU(t) rsqu+Isﬂsq+lsrrrrgr(l rq "rd)+ MM g = Weq =
Y(t) = CX(t)
msr(r rq +msr|sq)‘/sq+msr(|r|rd +msr|sd)\/sd
with 2 +1 (I’ smsr sq+“rq) rq
_;rrs msr(’o(t) Mg,y Irngrw(t) ( I m, | +ms( ) + M )
At) :_1 _msrw(t) _lrrs _Irmsrw(t) mg, i sosrea ' sd a v
VI omre dlmget) -l -lde) 12 —rme (12 +1 Sd)+ Mot s+ Tralsa) = 0
Im @)  mgr I () =k,
Iy 0 VIIl. CONCLUDING REMARKS
11 0 I, B
B—; -m, O C =luxs y=Idr nﬁ, An attempt has been made to present residual
0 -m generation methods for fault detection purposese Th
St presentation has been organised along the condept o
I oy(t) unknown or unmeasured variable elimination by usiheg
I () V., () model of the process which may be either consider a
X(t) = U(t):( sd j static or dynamic. The first stage of the analysis
I ( ) Vsq () independent of the nature of the model becausertbdzel
I () is reduced to a set of constraints applied to aofet

variables. The resulting structural analysis gives
and wherers and r, are respectively the equivalentqua”taﬁve results with regard to the observapiind the
statoric and rotoric resistancé, and I, the equivalent redundancy of variables. The second stage of rakidu
statoric and rotoric cyclic inductance anu, the generation gives an explicit form of the residuals
equivalent cyclic mutual stator/rotor. If the sto depending only on the known variables of the preces
currents are systematically measured, it is nottse for Perfect elimination of unknown variables being not
the rotoric currents. However, these variables rhay Ppossible in some situations, partial de-coupling baen
indirectly observed by the measurement of the Buxeoresented. These techniques must still be enhaacdd
provided some expensive devices may be set ufj)eserve to be further developed. Robustness ifatieeof
However, for sake of simplicity in this didactic modelling errors is probably one of the most imantt
presentation, the observation mat@will be assigned to extension to these methods.
identity.
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