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Abstract: This communication deals with the problem of state estimation for a class of non 
linear singular systems. Sufficient conditions for the existence of such observers are 
provided and the design of an observer is examined. Assuming that the measurement matrix 
is full row rank involves many calculation simplifications ; therefore special emphasis in the 
computational aspect of the observer matrices is provided. 
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1. INTRODUCTION 
 

State observation of non-linear dynamical systems is 
becoming a growing topic of investigation in the 
specialised literature (Tsinias, 1989), (Walcott, 
1987). The reconstruction of state variables remains a 
major problem both in control theory and process 
diagnosis (Magni, 1991). Researcher attention is 
being particularly focused on the design of adaptive 
observers for on-line process state estimation. There 
is increasing awareness that to ensure robustness in 
performance requires simpler and stable adaptive 
observer schemes. Linear systems have received 
considerable attention leading to several stable 
adaptive observer systems. Linear observers 
involving unknown inputs have also been developed 
and analysed (Chang, 1995), (Gaddouna, 1996). 
Nevertheless, the design of asymptotically stable 
observers remains a hard task in the non-linear case, 
even when the non-linearities are fully known. 
 
This note is organised into two sections. The first 
describes and justifies the structure of the proposed 
observer, while the second deals with the 
computation of matrices involved in this observer. 
 
 
 

2. NON-LINEAR OBSERVER DEFINITION 
 
Assuming a linear part of non-linear descriptor 
system may be isolate, any non-linear descriptor 
systems can be written as: 

 
( ) ( ) ( ) ( ) ( )( )E

dx t

dt
Ax t Bu t f x t u t= + + ,  (1a) 

 y t Cx t( ) ( )=  (1b) 

where f is a vector of non linear functions which may 
represent a known non-linearity and where 

( ) ( ) ( ) ( )x t u t U y t

E A B C

n p m

q n q n q p m n

∈ℜ ∈ ⊂ ℜ ∈ℜ

∈ℜ ∈ℜ ∈ℜ ∈ℜ

            

           . . . .
 

Notice that range of u(t) is assume to belong to a ball 
U of ℜp. 
 
First, it should be noticed that the design of an 
observer for unknown inputs systems may be solved 
in the same way because they can be reduced to form 
(1a) (Gaddouna, 1996). 
 
Assume that: 
 • the matrix C is full row rank (2a) 

 • rank E
C n










 =  (2b) 



 • rank sE A
C n s−











 = ∀  (2c) 

 • f  is k-lipschitz with respect to x for any 

vector υ belonging to a ball U: 
 ( )∀υ ∈ ∀ ∈ℜ × ℜU x x n n, ,1 2 , 

 ( ) ( )f x f x k x x2 , ,υ υ− ≤ −1 2 1  (2d) 

 
The hypothesis (2a) indicates that no redundancy 
between the measurement devices is considered (this 
assumption is not very restrictive and can always be 
satisfied by redefining the measurement equation). 
The second one (2b) may be interpreted as they are 
enough measurements to compensate the singularity 
of system (1a) ; it will be used further for the design 
of the observer. Then the third one (2c) is the 
observability condition. At last, hypothesis (2d) is 
used for bounding the magnitude of the non-linearity. 
 
Our aim is to find a Luenberger observer which 
asymptotically estimates the state vector x(t). In the 
following proportional observer is used but the 
proposed technique may be easily extended to 
proportional-integral observer. 
 
Proposition. Let S(θ) be a symmetric positive 
definite matrix function of a positive scalar θ ; then, if 
the four hypothesis (2) hold, the following system is 
an observer of system 1: 

 
( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

dz t

dt
Nz t Ly t Gu t

Rf x t u t S C Cx t y tT

( )

$ , $

= + + +

− −−

K

K 1 θ
 (3a) 

 ˆ x (t) = z(t )+ Ky(t)  (3b) 
with 
 • ( )( ) { }− < > ∀ ∈θ λ θRe i N i r: 0 1, ,K  (4a) 

 • RE+ KC = I  (4b) 
 • NRE+ LC − RA = 0  (4c) 
 • G− RB= 0  (4d) 
where N, L G, R, S and K are matrices of proper 
dimensions, R is full column rank, ( )λ i N  represent 

the ith distinct eigenvalue of N and θ is a positive 
parameter. 
 
Proof. Proceeding by analogy to the classical 
observer design approach in the linear case, we seek 
an observer of the form (3a) and (3b). 
 
Let e(t) be the state reconstruction error defined by: 

 
e t x t x t

REx t z t

( ) ( ) $( )

( ) ( )

= −
= −

 (5) 

 
Direct derivation of e(t) yields: 

    

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

de t

dt
N S C C e t RB G u t

RA NRE LC x t R f f

T= − + −

+ − − + −

−1 θ K

K $
 

where ( ) ( )( ) ( ) ( )( )f f x t u t and f f x t u t≡ ≡, ,$ $ . 

 
By virtue of (4c) and (4d), the error dynamic is 
governed by the following differential equation: 

 
( ) ( ) ( )de t

dt
N S C C e t R f fT= − + −−( ( ) ) $1 θ  (6) 

 
Let us now examine the stability of e(t) by 
considering the Lyapunov function: 

 V t e t S e tT( ) ( ) ( ) ( )=
1

2
θ  (7) 

 
The calculation of the derivative of V(t) with respect 
to the time t gives: 

   
( ) ( )

( ) ( )

dV t

dt
e t N S S N C C e t

e t S R f f

T T T

T

( )
( ( ) ( ) )

( ) $

= + −

+ −

1

2
2θ θ

θ

K

K

 (8) 

 
According to the Lyapunov theory, if the linear part 
of (3a) is stable, a symmetric positive definite matrix 
Q exists such as: 
 N S S N C C QT T( ) ( )θ θ+ − = −2  
 
Let now Q satisfying the following equality : 
 ( )Q S= 2θ θ  

 
Then, the Sylvester equation may be written as: 

 ( ) ( )N I S S N I C Cn

T

n
T+ + + =θ θ θ θ( ) ( ) 2  (9) 

 
Then, it is well known that this equation admits a 
unique solution only if the eigenvalues of N+θIn 
belongs to right half plane of the complex map i.e. 
the parameter θ has to be chosen such as (4a) is 
satisfied. 
 
The solution S(θ) is given by : 

 ( ) ( ) ( )S e C Ce dN I T N In
T

nθ τθ τ θ τ= 

 


− + − +

∞

∫2
0

. 

 
Notice that S(θ) is the observability grammian. It will 
be also regular and so positive definite if (N,C) is 
observable which may be expressed as: 

 rank
sI N

C nn −











 =  ∀s  

 
By using the equations (4a) and (4c), the 
observability condition may be written: 

    ( )rank
sI RA L NK C

C
nq − + +

















 =  ∀s  

 
It is equivalent to: 

 rank
sI RA

C
nq −

















 =  ∀s  (10) 

 
The following decomposition may always be 
achieved: 



 
sI RA

C
R sK

I
sE A

C
q

m

−





= 





−



0  

 
Because the matrix R is full column rank, the 
following property is satisfy : 

 R sK
Im0







 is full column rank. 

 
The last property yields to: 

rank R sK
I

sE A
C rank sE A

C n
m0







−











 = −











 =  

 
Therefore, the observability of the pair (N,C) is 
equivalent to the hypothesis (2c). ���� 
 
Moreover, it may be proven that the eigenvalues of 
the linear part of the observer have a real part equal 
to -θ.  
The Sylvester equation (9) may be reformulated as: 

 
( )

( )
N S C C I S

S N S C C I

T
n

T

T
n

− + +

+ − + =

−

−

( ) ( )

( ) ( )

θ θ θ

θ θ θ

1

1 0

L

L
 

Let { }l Li i: , ,∈ 1 ρ  be the ρ distinct eigenvalues of 

the linear part  of the observer N S C CT− −( )θ 1  which 

appears in (6) and { }v ii : , ,∈ 1L ρ  ρ eigenvectors 

associated with each distinct eigenvalues. 
 
By multiplying respectively right and left by 
eigenvector and its conjugate, it yields: 

 
( )

( )
v N S C C I S v

v S N S C C I v

i
T

n

T

i

i
T

n i

*

*

( ) ( )

( ) ( )

− + +

+ − + =

−

−

θ θ θ

θ θ θ

1

1 0

L

L
 

  { }∀ ∈i 1, ,L ρ  

However, according to the eigenvalues and 
eigenvectors definition, it is well known that: 

 ( ) ( )N S C C I v vT
n i i i− + = +−( )θ θ θ1 l  

then ( ) ( )v N S C C I vi
T

n

T

i i

* * *( )− + = +−θ θ θ1 l . 

 
By substitution, it is obtained: 

 ( )( )2 0Reli i iv S v+ =θ θ* ( )  

and, since S(θ) is positive definite:  
 ( )Reli = −θ             { }∀ ∈i 1, ,L ρ  

 
Now examine the condition for which observer (2) is 
stable. Taking (9) into account reduces equation (8) 
to: 

     ( ) ( ) ( ) ( )dV t

dt
e t S t e t S R f fT T( )

( )e ( ) $= − + −θ θ θ  (11) 

 
From (2d), one deduces: 

 ( ) ( ) ( )e t S R f f k e t RT ( ) $ (S( ) )maxθ σ θ− ≤
2

 (12) 

where ( )σ max .  denotes the largest singular value. 

 

Substituting (12) into (11) gives: 

 ( ) ( ) ( )dV t

dt
e t S t k e t RT( )

( )e (S( ) )max≤ − +θ θ σ θ
2

 (13) 

with:     ( ) ( ) ( ) ( )e t S e t S e tT ( ) ( )minθ σ θ≥ 2
 (14) 

 
One deduces from (13): 

   ( )( ) ( )dV t

dt
S k R e t

( )
( ) (S( ) )min max≤ − +θσ θ σ θ

2
 (15) 

 
According to the Lyapunov point of view, the 
stability is ensured if: 
    ( )− + <θσ θ σ θmin max( ) ( ( ) )S k S R 0 (16) 

 
In the case of k is known, the inequality (16) is 
satisfied by adjusting the value of θ. One deduces 
from (15): 

( )
( )

dV t

V t
k

R
dt≤ − +









2 θ σ θ

σ θ
max

min

(S( ) )

(S( ))
 (17) 

thus :  

   V t V k
S R

S
t( ) ( )exp

( ( ) )

( ( ))
max

min

≤ − +


















0 2 θ σ θ

σ θ
 (18) 

 
On a practical point of view, the design of the 
observer may be done as follows: choose the 
parameter θ, sufficiently large, solve the Lyapunov 
equation with regard to S( )θ  and then verify that the 
constraint (16) holds ; modify eventually the 
parameter θ for satisfying this constraint. Evidently 
the choice of θ is not unique. Considering (18), it is 
judicious to choose θ such that 

( )( )Reθσ θ σ θmin max( ) (S( ) )S k R−  is greater as 

possible in order to ensure a rapid decreasing of 
V(t) . 
 
Remark: A second problem may be dealt with. It 
corresponds to the situation where it is of interest to 
determine what would be the maximal admissible 
value of k: 
 k S R Sσ θ θσ θmax min( ( ) ) ( ( ))< . (19) 

 
3. MATRICES COMPUTATION 

 
After having proposed the structure of the observer 
and the conditions of its existence, we now propose 
an algorithm to solve the equations defining the 
matrices of this observer. 
 
It has been demonstrated in the proof of the 
proposition that, if the hypothesis (2c) holds and if 
the parameter θ is chosen such as (4a) is satisfied, the 
Sylvester equation (9) admits an unique solution S(θ). 
 
A solution of the system (4) may be obtained by 
using the decomposition, which can always be 
achieved by transformation of system (1a): 
 [ ]C Im= 0  (20) 



This decomposition implies the following ones: 

E E E A A A

N N N
N N

R
R
R

I J J J
I

and J I

m n m

q

m n m

q

m n m

m

n m

m

n m

n

m n m

n
m

n m

=
← → ← →











=
← → ← →











=
← → ← →













= 






=
← → ← →











= 





= 





− −

−

−
−

−

−

1 2 1 2

11 12

21 22

1

2

1 2 1 20
0

b b

b
b

b
b

b :

 
3.1 Computation of matrix R 
 
According to (2b), one may write:  

 rank
E E
I

n
m

1 2

0














 = , 

it follows that rank E n m( )2 = −  i.e. 

                E2 is full column rank. (21) 
 
Thanks to decompositions, equation (4b) may be re-
written as: 

 [ ] [ ] [ ]R E E K I J Jm1 2 1 20+ =  

which is equivalent to: 

 
RE J

K J RE
2 2

1 1

=
= −





 
( )
( )
22

22

a

b
 

 
As E2 is full column rank (21), the solutions of 
system (22a) are: 

 ( )R I E E J Eq= − ++ +χ 2 2 2 2  with ( )E E E ET T
2 2 2

1

2
+ −

=  

where χ may be arbitrarily chosen. 
 
Decomposing χ as: 

 χ χ
χ

=














← →

−
1

2

q

m

n m

b

b
, 

the previous relation may be written: 

( )
( )

R I E E

R I E E E
q

q

1 1 2 2

2 2 2 2 2

= −

= − +







+

+ +

χ

χ
 

( )
( )
23

23

a

b
 

 
The matrix R has to be full column rank (see (4)). 
From (23), the matrix R may be written as: 

      R
R
R I

I E
I

I

En m

q

n m

q= 





= 





−


















− −
+

1

2

1

2

2

2

0
0

χ
χ  

It is easy to choose χ1 such that 
χ
χ

1

2

0
I n m−







 is full 

column rank ; under this condition: 

 rank R rank
I

E
qq( ) = 

















 =+

2

 

and R is therefore a full column rank matrix. 
 
3.2 Computation of matrix N 
 
By decomposing the matrices which intervene in (4c), 
it yields: 

 [ ] [ ] [ ]NR E E L I R A Am1 2 1 20+ =  

i.e. 

 
NRE RA

L RA NRE
2 2

1 1

=
= −





 
( )
( )
24

24

a

b
 

 
By taking into account (22a), equation (24a) is equal 
to: 

 N I RA
R
R

A
n m

0
2

1

2
2

−







= = 





 (25) 

and, by using the partitioned form of N, the following 
relations are equivalent to (24a): 

 
N R A

N R A
12 1 2

22 2 2

=
=





 (26) 

 
As the matrix L may be freely chosen, the equality 
(24b) is not a constraint. Then, the matrices N11 and 
N21 may be arbitrarily chosen.  
 
At last, substituting (23) in (26), the matrix N is 
expressed by: 

 
( )

( )N
N I E E A

N I E E A E A
q

q

=
−

− +















+

+ +
11 1 2 2 2

21 2 2 2 2 2 2

χ

χ
 (27) 

 
The matrices which may be freely assigned can be 
gathered in a single matrix N0: 

 N
N
N0

11 1

21 2
= 





χ
χ  (28) 

 
Then, the matrix N may be parametrized as: 
 N U N V= + 0  (29a) 

where N0 is an arbitrary matrix and where: 

U E A V
I

I E E A
m

q
= 





= −








+ +

0 0
0

0
02 2 2 2 2

     
( )

 (29b) 

 
The eigenvalues of N may be freely assigned if the 
following observability criterion is satisfy: 

 rank
sI U

V
nn −













 =   ∀s  

 
By taking into account the expressions of U and V, 
one must have: 

 rank

sI
sI E A

I
I E E A

n

m

n m

m

q

0
0

0
0

2 2

2 2 2

−
+

+

−

−





































=

( )

  ∀s  

i.e.  

        rank
sI E A
I E E A

n mn m

q

−
+

+
−

−


















 = −2 2

2 2 2( )
  ∀s  (30) 

 
The previous condition may be re-written as: 



rank
sI E A
I E E A

rank
I
E I

sI E A
I E E A

n m

n m

q

n m

q

n m

q

−
+

+

− −
+

+

−
−



















 =

= −






−

−


















 = −

2 2

2 2 2

2

2 2

2 2 2

0

( )

( )

L

L

 

from which one deduces: 

 ( )rank sI E A
sE A

rank
E
I

sE An m

q

−
+ +−

−


















 = 







 −









 =2 2

2 2

2
2 2 K  

                 ( )L= − = −rank sE A n m2 2  

 
Taking into account (2c) and the partition of E and C, 
one have: 

  rank sE A
C rank

sE A sE A
I

n
m

−











 = − −













 =1 1 2 2

0
 

which involves: 
 ( )rank sE A n m2 2− = −  (31) 

 
Thus, because of the condition (2c) the eigenvalues 
of N can always be freely assigned by adjusting N0 of 
(29a) and then the condition (4a) can always be 
satisfied. 
 
Summarising, the design of this state observer has to 
be done according the following sequence. First, 
verify that the hypotheses (2) are satisfied and that 
the basis is such that C is written as (20). Then, 
choose parameter θ=θmax such as the dynamic of the 
linear part is convenient. Second, assign the 
eigenvalues of N (29) such as (4a) is satisfied . Then 
compute R thanks to (23) and, at last, compute L 
using (24b), K and G are obtained from (22b) and 
(4d). Solve (9) for different parameter θ≤θmax until 
(14) becomes true. 
 

4. CONCLUSION 
 

A simple method has been presented for designing 
state-observers of non-linear singular systems. 
Assuming that the non-linear function is globally k-
Lipschitz, it is permitted to set the dynamics of the 
linear part while ensuring the global exponential 
stability. Necessary and sufficient conditions for 
existence and stability of the proposed observer have 
been established. 
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