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SENSOR NETWORK DESIGN FOR FAILURE DETECTION AND ISO LATION
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Abstract: The model-based approach to fault deteaind isolation in automated process
has received considerable attention during thetlestdecades. One of the approaches to
facilitate fault isolation is to design a structireesidual set. The term structured here
means that each residual is designed to be sengiiva certain group of faults and
insensitive to others. However, despite this idsa® been recognised for a long time, the
problem of designing such residuals is not completelved. In the context of linear static
systems, this paper proposes a new method for seed$avork design respecting some
sensor failure detectability and isolability recuirents.

Key Words: sensor network design, redundancy, riaildetection and isolation, model-
based diagnosis, linear systems, carriage networks.

1. INTRODUCTION and Mah, 1987; Bagajewicz, 1995), minimisation of
cost while ensuring the observability of variables
In all industrial processes, measurements of the(Madron and Veverka, 1993), maximising the
process states are made during operation for thereliability of estimation of variables when sensor
purpose of control and supervision. The failures are likely to occur (Ali and Narasimhan,
performances of the latter depend on extensive and1993), minimise the cost or maximise the reliapilit
accurate process data which are obtained throughof the instrumentation system while satisfying
these measurements. It is never possible to measureonstraints on redundancy degrees of variables
each and every process variable, however, the(Maquinet al, 1996).
exploitation of mass and energy balance relatigushi
between different variables of a steady-state m®ce In this paper, we investigate the problem of sensor
allows some or all of the unmeasured variableseto b network design for linear processes in order to
estimated. Most of the decisions regarding the guarantee the detectability and/or the isolabitify
selection of variables to be measured and thesensor failures. An attempt to solve this type of
corresponding sensors to be used are made early iproblem has been published very recently, in &slig
the design phase of a plant. This problem is reterr different context (Carpentier and Litwak, 1996).eTh
to as thesensor network design problem proposed design is based on extensive usage of the
concept of redundancy degree of a variable (Maquin
Traditionally, the selection of sensors was dritgn et al, 1996) and structural analysis of the system
the needs of the control loop design. However, model. As the constraints of detectability and
emerging data reconciliation techniques have set upisolability are expressed in terms of redundancy
the scenario for a revision of the criteria of sgens degree constraints, they may be taken into account
location. Indeed, different criteria have been used  within other types of constraints. So, the sensor
the design, such as ensuring observability of network design, leads to minimise the cost of senso
variables (Vaclavek and Loucka, 1976), maximising installation while satisfying some constraints stiah
the accuracy of estimation of variables (Kretsavali unmeasurability of certain variables, the obligatid



measurement of other ones (or consideration of easier to use the cycle matrix of the associateghgr

already measured variables), the variable In order to transform the network into a graph tladl

observability or the insurance of a certain input/output arcs are linked to a so-called

redundancy degree. The problem may be solvedenvironment node.

either with a matricial analysis of the cycle matri

associated to the graph representing the linearThe matrixB of the fundamental cycles of the graph

process, or using technique of mixed linear may be easily deduced from the incidence matrix

programming. (Deo, 1967). Using linear combinations of the rows
of this fundamental cycle matrix, it is possible to

This paper is organised as follows. In the secondgenerate the matrig; of all the cycles of the graph.

section, the process codification is described Then

the main results of redundancy analysis are desatrib 3. REDUNDANCY ANALYSIS

in the third section. In the fourth section, the

redundancy degree of a variable is defined andLet us first recall the description of the conseter

methods of evaluation of this degree are presentedsystems, in the failure-free case:

The fifth section is dedicated to failure detectamd

isolation. These properties are remembered usig th magel equation: AX =0 (2a)

occurrence matrix of redundancy equations and the

failure signature. The links between failure

detectability, isolability and redundancy degreeaof

variable are pointed out in the sixth section. A

method for designing sensor network satisfying

failure detectability and isolability requiremenits

then described in the following section. The prable

is formulated as a linear programming problem. The

resulting optimisation problem is solved using a

binary mixed integer programming method in order

to take into account the occurrences and locatiéns

sensors. The last section presents a sensor networ%

design example.

measurement equationX, = HX +¢ (2b)

where X, (m,1) is the vector of measurements,
(myv) the measurement selection matrix (as all
process variables are not measured) aisda vector

of measurement errors which are normally distribute
with zero mean and known variance makfix

Assuming that all the measurements are direct<the
vector of variables can be splited into measured
ariable vectorX, (m21) and unmeasured variable
ector X5 ((v—m),2). Then, the system (2) may be

written:
2. PROCESS CODIFICATION AX + AXE =0 (3a)
We consider only processes which may be describedxm = X, +€ (3b)

by a carriage network (figure 1), the nodes of Wwhic

correspond to elementary equations and the arcs tQf rank(As)<v-m, the system is said to be
variables. For a physical interpretation, a nod¢ ma redundant and the redundancy equations may be
be a processing unit and an arc, a material orggner obtained by projection. Premultiplying equation)(3a
transfer stream. by a matrixQ defined by QAz =0, we obtain the
following equation:

o M, X1 =0 (4)

2 5 o 14 with M, = QA (5)
15

The matrixM, defines the redundancy equations of
the considered system.

4. DEGREE OF REDUNDANCY CONCEPT

From the preceding notion of redundancy, one may
define the concept of degree of redundancy (Maquin
Figure 1: a carriage network et al, 1996). Let us begin by the notion of minimal

observability. A variable is redundant of degree 0
This type of process may be described by a set of(minimal observability) if there exists, at least,
linear equations: configuration such that the breakdown of only one
sensor makes this variable inaccessible.

AX =0 1
@ This notion may be extended. A redundant variable

whereA (ny) is the so-called node incidence matrix ©f degreek is an observable variable which value
with n giving the number of equations andthe remains deducible even whdn whatever sensors
number of variables an&’(v,1) is the variable simultaneously breakdown. The determination of the

vector. In a certain number of applications, itisch degree of redundancy of a variable is easily obthin



by applying the following rule which uses the matri Each entryR(i) follows a normal distribution with

of all the cycles of the associated graph: zero mean and unity variance. A simple statistical
two tailed test can therefore be employed: we may

A variable is redundant of degr&sf, and only if, it concluded that residuals not a normal one if:

belongs only to cycles comprising at ledstl

measured variables. |RN @i )| >t (8)

The degree of redundancy of a variable is easily classically, one may choose the critical constant
determined by counting the minimum number of control the familywise Type | error rate at some-pr
measured variables in the cycles where it intersene assigned levetr. Even if we assume the presence of
) only one gross error, the relationship between the
The redundancy degree of a variable may also bepaq residual(s) and the suspect measurementtis no
defined from the set of redundancy equations of a g, easy. It depends on the structure of the equatio
system defined in the previous section (mauj. In and the location of the failure. In some caseis, it
fact, this set of equations is not unique ; letca  possible to suspect only one measurement. In ¢oder
this setprimary setof redundancy equations. From |ocate suspect measurements, each individual test
this primary set, it is possible to construct a yields a Boolean decision, the full set of paraésits
secondary seby generation of all the possible linear resulting in a Boolean vector, tfailure signature
combinations of primary set equations. Now, let us Thijs signature is then analysed in order to arava
consider the whole set of equations (primary plus fajlure inference. Let us defined the occurrence
secondary). Then, the redundancy degree of amatrix as the absolute value of the matrix of
variable may be defined as follows. Any variable redundancy equations. Since each column of this
belonging to whatever redundancy equation is & leas matrix corresponds to a process variable and each
redundant of degree 1 moreover if there exists arow to a residual, a 1 in any position of this rxatr
subset ofk (k>2) redundancy equations (among the sjgnifies that the given residual is influenced dy
whole set of redundancy equations as definedfajlure on the given variable. Thus under ideal
previously) with a uniqgue common measured cjrcumstances, the signature of a failure is idahto
variable, the redundancy degree of this variable is the respective column of the occurrence matrixs Thi

equal tok. implies that for each failure to be detectable, no
column of the matrix should contain only zero
5. FAILURE DETECTION AND ISOLATION elements, and for each signature to be isolable, al

) ) columns must be different (Gertler and Singer, 3985
Process measurements are subject to two main types

of errors. The first embraces random errors, gdlgera |t i important to note that the properties of ded
assumed independent and Gaussian with zero Mearyetectability and isolability_don’t dependn the
The second embraces gross errors provoked by nonghoice of the primary set of redundancy equations.
random events such as sensor malfunction orsg if a failure is detectable or isolable using th
instrument biases. failure signature constructed on the basis of the
) ) primary set of equations, so it is using the falur
Various methods have been proposed in recent yearsjgnature constructed on the basis of the wholefset

for gross error detection and isolation in proaiss redundancy equations as defined in the previous
(Mah and Tamhane, 1982; Serth and Heenan, 1986ggction.

Rosenberget al, 1987; Narasimhan and Mah, 1987;

Crowe, 1989). The parity space or imbalance residua 6. DETECTABILITY, ISOLABILITY
method, which are strictly identical (Maquin and AND REDUNDANCY DEGREE
Ragot, 1991), is briefly remember here.
In this section, the close links between failure

Due to the presence of measurement errors, thejetectability, isolability and redundancy degreeaof
measurement vectd§, does not satisfy the constraint yariable are emphasised.

equations and the residual vectRiis given by:

_ The failure of a sensor is detectable if and ohihé
R=M; X (6) corresponding variable is, at least, redundant of
degree oneThis first result is obvious. For a sensor
failure to be detectable, the corresponding vagiabl
might intervene in the calculus of, at least, one

covariance Vg =MrVMrT- In order to compare the re3|duc?l. As resm_zluals zre obta_t:jnedd from thed
elements of th& vector, let us define a normalised f€dundancy equations, the considered measure

residual vectoR,, with the entryR, (i) defined by: vqriable might belong to a redundancy equation, so
might be redundant of degree one.

With the previous hypothesis of a Gaussian
distribution of the measurement errors, the ve&or
also follows a normal distribution with zero meanda

R .
Ru(i) = /VR(i,i) fori=1,..r ™ The second result is more interestimbe failure of a
sensor is isolable if and only if the corresponding
variable is, at least, redundant of degree twet us



consider two variables; and x; which degree of

redundancy is equal to two. Using the definition of
the degree of redundancy given in section 3, itmeea
thatx, occurs in two redundancy equations,rieand
r,, of the whole set of redundancy equations syeh

the unigue common measured variable. The variable

X also occurs in two such type of redundancy
equations. So, the subvectwr of the occurrence

matrix corresponding to the two redundancy
equationg, andry, for the variable; is the following:

Taking into account the definition of the redundanc
degree of a variable, ik occurs in one of the

redundancy equations amomg and ry,, it cannot
occur in the other. Another possibility is thatdoes

\
minimum_ w;u,
i i=1

subjecttoor(x;) 2k Ox; OLy

Problem R,

9)

wherew; represents the installation cost of the sensor
measuring the variablg, u; ie a Boolean number
which indicates if the variabbe must be measured to
meet the redundancy constraints (1. must be
measured, O: elsewhere), amd(x;) denotes the
redundancy degree of the variabde In fact, some
componentsy; are fixed to 1 as all the variables on
which properties of sensor failure (detectability o
isolability) are imposed must, of course, be
measured.

The problemP; may easily be transformed into a

linear programming problem. Indeed, sensor network
design consists in measuring a given number of
variables per cycles depending on the redundancy
degree which must be ensured whilst minimising the

not occur in any of these two equations. So the associated cost. This problem can be stated as

subvectory, of the occurrence matrix corresponding
to the two redundancy equationg and ry, for the
variablex; is one of the following:

Xi Xi

ry (1 ry (O r (O
V: = V: = V: =
: r, \Q : r, \1 : r, \0

As the subvectorg andy; are systematically distinct,
and taking into account the invariance of the
isolability property with regard to the choice diet
primary set of equation, one deduces that thergilu
of a sensor is isolable if the corresponding vaeiab
is, at least, redundant of degree two.

This last result is the main result of the paper as

isolability of sensor failures may now be takerpint
account in sensor network design.

7. SENSOR NETWORK DESIGN

Now, we propose a method for designing sensor

network satisfying failure detectability and isdlap
requirements. Taking into account the previous
equivalencies, we specify the lists the variablés o
which we ought to ensure a given degree of
redundancy (lisL, for the variables which must be
redundant of degreek). Moreover, a weight,
proportional to the installation cost of the
corresponding sensor, is associated to each variabl

The main goal of the design then consists in

follows:
minimumw 'U

Problem R U (10)
subjecttoCU = N

where W = [w] is the cost or weight vector of
dimensiorv, U = [u] is a partially unknown vector of
Boolean numbers.C is a cycle matrix the
construction of which will be explained latter aNd

is a vector which entries are equal to the minimum
number of measurements per cycle for satisfying the
redundancy constraints.

Let us now explain the construction @fandN. The
matrix C is built from the matrix of all the cycles of
the graph removing the cycles involving only
variables which do not belong to any likts Indeed,
there is not any constraints on the variables lgghon

to these cycles. The entries of the vechbrare
computed as follows. If a cycle contains a variable
belonging to the list,, the redundancy constraints
will be satisfied only ifk+1 variables belonging to
this cycle are measured. As a cycle may contain
variables belonging to different listg, the entryn;

will be equal to the maximum number of variables
which must be measured. If a given cycle contains
less variables than this minimum number of varigable
to be measured, the problem has no solution, except
if we accept to use hardware redundancy, that is to
say to place more than one sensor for measuring a
variable.

determining the variables which must be measured inThe problem may be simplified when some variables
order to satisfy the constraints on the degrees ofare already measured. In fact, two situations may
redundancy whilst minimising the global cost of occur. The first one concerns a complete sensor
installation (if all the costs are identical, it tke network design, i.e. there is not any measurements
number of sensors which is minimised). This problem yet. However, taking into account a previous remark
may be formulated as follows: even in this situation, some variables must be
measured (those on which it is desired to obtain
detectability or isolability of sensor failure). &h



second situation deals with a partial design taking canonical form of this incidence matrix (table 3)
into account a list of already measured variables. where the left column denotes the names of the
all the cases, the problem of sensor network designtransformed equations:

must be solved taking into account that some

variables must be measured (or are already measured Table 3: canonical form of the incidence matrix
which is equivalent). Therefore, some of tljeare

fixed to 1 and it is very useful to take this sttoa 2 35 710111415/8|1 4 9 136 12
into account before solving the problem. Indeed, th | & -1.-1.11-1.

size of the problem (15) may be reduced, if the b 1-1-11 o SR

columns of the cycle matri€ corresponding to the c |t ... . 1.

measured variables are cancelled and if,| 4 |- - 711 . . . .- 1.
simultaneously, the vectdt of the minimum number et.-1. . .-1.1.1. . 1.

of measurements per cycle is updated (each entry f -1-1. 1

must be decreased of the number of measured E 1 1-1-1 e 1

variables in the cycle numb&r After this treatment,
some cycles of theC matrix don't support any

fr? nstraints, th?jt. s to sta[y N 0 t?]nd thef; cyclesband which lead to the above form of the incidence matri

€ cor&espon Ing entry in the vecthr may be we refer the reader to earlier published works
removed. (Maquin et al, 1987; Ragotet al, 1990). This
. L : . canonical form can be easily read. The measured
In this way, Itis also possw)le to t".’lke into agutihe .. variablesx2, x3, x5, X7, x10, x11 andx14 are linked
unmeasurablhty of certain vanables. Indeed, it by redundancy equations (defined by row a and b of
suffices o cancel in theC matrix the CO'“mF‘S the canonical form). The unmeasured variables
cqrrespondlng o th_ese unmeasurable vanablesxgy x12 andx13 can be deduced as each one of them
without other modifications. only appears as a single unknown in one equation
(rows c, e, f and h of the canonical form). The
measured variablex15 does not appear in any
redundancy equation. Finally the unmeasured
variablesx4, x6 andx8, which appear in equations
containing at least two unknowns, cannot be deduced

For a detailed description of the used transforonati

8. EXAMPLES

Let us consider the process described by figure 1.
The incidence matrix corresponding to the netwerk i
given in table 1 (for convenience, the "." states f

the value 0), and the associated fundamental cycl

e .
matrix is given in table 2: So, for the considered example, the matvix of

redundancy equations is the following:
Table 1: incidence matrix

Table 4: matrix of redundancy equations

123 456 7 8 9101112131415
| 1 1-1. . 2 3 5 7 10111415
T T T e Mr=]1.-1.11-1.
mo|.o1 . .1, . .. .. 1. . 1-1-11
7 R i o , _
v I . 11 Now, let us consider the following problem:
1Y/ P R e A
wl., o112, . . 1. 1. . . . How many sensors must be added and which
viel. 11 -1 . . variables must be measured in order to be able to
detect a sensor failure on variale5 and to isolate
Table 2: fundamental cycle matrix sensor failures on variabl&s andx11 ?
1234567 89101112131415 The reader may remark that, with the initial set of
1]p.1r111 . . . .o measurements, these constraints are not satisfied.
211 11 rir. . ... Neither sensor failure is isolable and the sensor
3 r.1r.1 ... ... failure of variablex15 is not detectable as this
4 (.11 . . . . .11 variable doesn’t occur in any redundancy equation.
sttt .. ... . 1.11. .. Taking into account the results of section 6, this
6. . ... ... 1.1 . 11, problem may be solved by designing a sensor
1. . . .. 1.1 .1 .1 network which guarantee at least a redundancy

) ) degree ofk15 equal to 1, and redundancy degrees of
As the matrix of all the cycles of the graph corsgsi 5 andx11 equals to 2, i.d.; = {x15} and
127 cycles, it is not shown here. Assume that thel_2 = {x5, x11}. In this problem, some variables are

vector of measured variables is the following already measured and using the treatment prescribed

- T H
X_m N (x_2, X3, %5, X.7’ x_lO, X1, x14, ?(15)' Using in the previous section, the matrix dimensionQf
simple linear combinations of equations (rows) and ,oquces from (127,15) to (8,7). The resulting

exchanging of variables (columns) lead to the poplem of optimisation may be solved using the



public domain code LP_SOLVE The input file is REFERENCES

given below: Ali Y. and Narasimhan S. Sensor network design for
_ maximizing reliability of linear processeAIChE

m n: ul+u4+ub6+u8+u9+ul2+ul3; JOUI‘I"IaI, 39 (5) 820'828, 1993.

uGHuBHU9>=1; Bagajewicz M.J. Optimal sensor location in process

udru9>=1; plants. Fith European Symposium on Computer

ulrudrurus U9 ULZ>=L; Aided Process Engineering, Escape’95, Bled,

e e, Slovenia, June 11-14, 1995,

neraeer Carpentier T. and Litwak R. Algorithms and criteria

12ru13ee for sensors location in view pf _supervision.

u4+u6+u8+u’12+u13>:1, Symposlym on Contr.ol, Optimization and
’ Supervision, CESA'96, Lille, France, 1996.

Crowe C.M. Test of maximum power for detection of
gross errors in process constraintlChE
Journal 35 (5) 869-872, 1989.

The reader will notice the second group of Deo N.Graph theory with application to engineering

constraints. As LP_SOLVE can only handle positve ~ @1d_computer scienceMc Graw Hill, N.Y.,
values for the variables and taking into accoustrth 1967. )

declaration as integers, the optimisation variahtes ~ Gertler J. and Singer D. Augmented models for
constrained to be Boolean (0 or 1). LP_SOLVE gives statistical fault_ isolation in complex dynamic
the following result: {u1=0, u4=0, U6=0, u8=0, u9=1 systems. American Control Conference, Boston,

ul2=1, ul3=0}which implies the measurement of the MA, 1985.
two variablesx9 andx12. Analysing the redundancy Kretsovalis A. and Mah R.S.H. Effect of redundancy

of the system with these two new measurements, one ©ON estimation —accuracy in process data
obtains the following occurrence matrix: reconciliation. Chemical Engineering Scienges
42, 671-687, 1987.

Table 5: occurrence matrix of redundancy equations Madron F. and Veverka V. Optimal selection of
measuring points in complex plant by linear

ul<=1l; ud<=1l; ub<=l; uB8<=l; u9<=1l; ul2<=1; ul3<=l;
int ul,u4,u6,u8,u9,ul2, ul3;

2 357 91011121415 models AIChE Journal 38 (2) 227-236, 1992.
1 1 1. . .1 . Mah R.SH. and A.C Tamhane A.C. Detection of
.. . 111 . . . gross errors in process daflChE Journa) 28
111 . 1. . . . (5) 828-830, 1982.
111 1 Maquin D., Fayolle J., Darouach M. and Ragot J.
Localization of sensors in large scale industrial
As the columns corresponding to the variab@snd systems.Applied Modelling and Simulatioof

x11 are unique, sensor failures measuring these Technological Systemgp. 33-39, Elsevier, 1987.
variables are isolable and as variakl® intervenes ~ Maquin D. and Ragot J. Comparison of gross errors
in a redundancy equation, the corresponding sensor detection methods in process data. 30th IEEE

failure is detectable. The reader may notice that t Conference on Decision and Control, Brighton,
proposed solution is not unique, in this case, thed England, December 11-13, 1991.
measurement of the coupb9(x13) also satisfies the ~Maquin D., Luong M. and Ragot J. About the design
constraints. of measurement systems and fault accomodation.
Engineering Simulatioril3, 1009-1024, 1996.
9. CONCLUSION Narasimhan S. and Mah R.S.H. Generalized

likelihood ratio method for gross error iden-
In this paper, the problem of sensor network deisign tification. AIChE Journal 33 (9) 1514-1521,
addressed using the powerful concept of redundancy 1987.
degree of variables. The design is formulated as aRagot J., Darouach M., Maquin D. and Bloch G.
particular optimisation problem involving Boolean Validation de données et diagnostitraité des
variables and is solved using a mixed binary intege ~ Nouvelles Technologies, série diagnostic et
linear programming method. The proposed procedure ~ maintenance, Hermes, 1990.
is developed to handle specifications of importance Rosenberg J., Mah R.S.H. and lordache C.
(expressed by redundancy degrees), measurability of Evaluation of schemes for detecting and
process variables and performances of diagnosis of identifying gross errors in process dataE C

sensor failures (detectability and isolability).nSer Research26 (3) 555-564, 1987. _
network design examples illustrate the relevance ofSerth J.E. and Heenan W.A. Gross error detection
the proposed method. and data reconciliation in steam-metering system.

AIChE Journaj 32 (5) 733-742, 1986.
Vaclavek V. and Loucka M. Selection of
measurements necessary to achieve multicom-
1 Lp soLvE is a public domain code written in C by M ponent mass balances in chemical plants,
Berkelaar (michel@es.ele.tue.nl). It can be rettkexfrom the . Chemical Engineering Sciences, 31, 1199-1205,

address ftp://ftp.es.ele.tue.nl/pub/Ip_solve 1976.




