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Abstract: The model-based approach to fault detection and isolation in automated process 
has received considerable attention during the last two decades. One of the approaches to 
facilitate fault isolation is to design a structured residual set. The term structured here 
means that each residual is designed to be sensitive to a certain group of faults and 
insensitive to others. However, despite this issue has been recognised for a long time, the 
problem of designing such residuals is not completely solved. In the context of linear static 
systems, this paper proposes a new method for sensor network design respecting some 
sensor failure detectability and isolability requirements. 
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based diagnosis, linear systems, carriage networks. 
 
 
 
 

1. INTRODUCTION 
 
In all industrial processes, measurements of the 
process states are made during operation for the 
purpose of control and supervision. The 
performances of the latter depend on extensive and 
accurate process data which are obtained through 
these measurements. It is never possible to measure 
each and every process variable, however, the 
exploitation of mass and energy balance relationships 
between different variables of a steady-state process 
allows some or all of the unmeasured variables to be 
estimated. Most of the decisions regarding the 
selection of variables to be measured and the 
corresponding sensors to be used are made early in 
the design phase of a plant. This problem is referred 
to as the sensor network design problem. 
 
Traditionally, the selection of sensors was driven by 
the needs of the control loop design. However, 
emerging data reconciliation techniques have set up 
the scenario for a revision of the criteria of sensor 
location. Indeed, different criteria have been used for 
the design, such as ensuring observability of 
variables (Vaclavek and Loucka, 1976), maximising 
the accuracy of estimation of variables (Kretsovalis 

and Mah, 1987; Bagajewicz, 1995), minimisation of 
cost while ensuring the observability of variables 
(Madron and Veverka, 1993), maximising the 
reliability of estimation of variables when sensor 
failures are likely to occur (Ali and Narasimhan, 
1993), minimise the cost or maximise the reliability 
of the instrumentation system while satisfying 
constraints on redundancy degrees of variables 
(Maquin et al., 1996). 
 
In this paper, we investigate the problem of sensor 
network design for linear processes in order to 
guarantee the detectability and/or the isolability of 
sensor failures. An attempt to solve this type of 
problem has been published very recently, in a slight 
different context (Carpentier and Litwak, 1996). The 
proposed design is based on extensive usage of the 
concept of redundancy degree of a variable (Maquin 
et al., 1996) and structural analysis of the system 
model. As the constraints of detectability and 
isolability are expressed in terms of redundancy 
degree constraints, they may be taken into account 
within other types of constraints. So, the sensor 
network design, leads to minimise the cost of sensor 
installation while satisfying some constraints such the 
unmeasurability of certain variables, the obligation of 



measurement of other ones (or consideration of 
already measured variables), the variable 
observability or the insurance of a certain 
redundancy degree. The problem may be solved 
either with a matricial analysis of the cycle matrix 
associated to the graph representing the linear 
process, or using technique of mixed linear 
programming. 
 
This paper is organised as follows. In the second 
section, the process codification is described Then, 
the main results of redundancy analysis are described 
in the third section. In the fourth section, the 
redundancy degree of a variable is defined and 
methods of evaluation of this degree are presented. 
The fifth section is dedicated to failure detection and 
isolation. These properties are remembered using the 
occurrence matrix of redundancy equations and the 
failure signature. The links between failure 
detectability, isolability and redundancy degree of a 
variable are pointed out in the sixth section. A 
method for designing sensor network satisfying 
failure detectability and isolability requirements is 
then described in the following section. The problem 
is formulated as a linear programming problem. The 
resulting optimisation problem is solved using a 
binary mixed integer programming method in order 
to take into account the occurrences and locations of 
sensors. The last section presents a sensor network 
design example. 
 

2. PROCESS CODIFICATION 
 
We consider only processes which may be described 
by a carriage network (figure 1), the nodes of which 
correspond to elementary equations and the arcs to 
variables. For a physical interpretation, a node may 
be a processing unit and an arc, a material or energy 
transfer stream. 
 

1
I

2

3 4

II

8

VII

VI

5 9

III

14

15
V

13
11

12

VIII

7

6 10

IV

 
 

Figure 1: a carriage network 
 
This type of process may be described by a set of 
linear equations: 
 
AX* = 0  (1) 
 
where A (n,v) is the so-called node incidence matrix 
with n giving the number of equations and v the 
number of variables and X*(v,1) is the variable 
vector. In a certain number of applications, it is much 

easier to use the cycle matrix of the associated graph. 
In order to transform the network into a graph, all the 
input/output arcs are linked to a so-called 
environment node. 
 
The matrix B of the fundamental cycles of the graph 
may be easily deduced from the incidence matrix 
(Deo, 1967). Using linear combinations of the rows 
of this fundamental cycle matrix, it is possible to 
generate the matrix Ct of all the cycles of the graph. 
 

3. REDUNDANCY ANALYSIS 
 
Let us first recall the description of the considered 
systems, in the failure-free case: 
 
model equation: AX* = 0  (2a) 
measurement equation: Xm = HX* + ε  (2b) 
 
where Xm (m,1) is the vector of measurements, H 
(m,v) the measurement selection matrix (as all 
process variables are not measured) and ε is a vector 
of measurement errors which are normally distributed 
with zero mean and known variance matrix V. 
 
Assuming that all the measurements are direct, the X* 
vector of variables can be splited into measured 
variable vector Xm

*  (m,1) and unmeasured variable 
vector Xm 

*  ((v − m),1) . Then, the system (2) may be 
written: 
 

AmXm
* + Am Xm 

* = 0  (3a) 
 

Xm = Xm
* + ε  (3b) 

 

If rank( Am ) < v − m, the system is said to be 
redundant and the redundancy equations may be 
obtained by projection. Premultiplying equation (3a) 
by a matrix Q defined by QAm = 0 , we obtain the 
following equation: 
 

Mr Xm
* = 0 (4) 

 

with Mr = QAm  (5) 
 

The matrix Mr defines the redundancy equations of 
the considered system. 
 

4. DEGREE OF REDUNDANCY CONCEPT 
 
From the preceding notion of redundancy, one may 
define the concept of degree of redundancy (Maquin 
et al., 1996). Let us begin by the notion of minimal 
observability. A variable is redundant of degree 0 
(minimal observability) if there exists, at least, a 
configuration such that the breakdown of only one 
sensor makes this variable inaccessible. 
 
This notion may be extended. A redundant variable 
of degree k is an observable variable which value 
remains deducible even when k whatever sensors 
simultaneously breakdown. The determination of the 
degree of redundancy of a variable is easily obtained 



by applying the following rule which uses the matrix 
of all the cycles of the associated graph: 
 
A variable is redundant of degree k if, and only if, it 
belongs only to cycles comprising at least k+1 
measured variables. 
 
The degree of redundancy of a variable is easily 
determined by counting the minimum number of 
measured variables in the cycles where it intervenes. 
 
The redundancy degree of a variable may also be 
defined from the set of redundancy equations of a 
system defined in the previous section (matrix Mr). In 
fact, this set of equations is not unique ; let us call 
this set primary set of redundancy equations. From 
this primary set, it is possible to construct a 
secondary set by generation of all the possible linear 
combinations of primary set equations. Now, let us 
consider the whole set of equations (primary plus 
secondary). Then, the redundancy degree of a 
variable may be defined as follows. Any variable 
belonging to whatever redundancy equation is a least 
redundant of degree 1 moreover if there exists a 
subset of k (k≥2) redundancy equations (among the 
whole set of redundancy equations as defined 
previously) with a unique common measured 
variable, the redundancy degree of this variable is 
equal to k. 
 

5. FAILURE DETECTION AND ISOLATION 
 
Process measurements are subject to two main types 
of errors. The first embraces random errors, generally 
assumed independent and Gaussian with zero mean. 
The second embraces gross errors provoked by non-
random events such as sensor malfunction or 
instrument biases. 
 
Various methods have been proposed in recent years 
for gross error detection and isolation in process data 
(Mah and Tamhane, 1982;  Serth and Heenan, 1986; 
Rosenberg et al., 1987; Narasimhan and Mah, 1987; 
Crowe, 1989). The parity space or imbalance residual 
method, which are strictly identical (Maquin and 
Ragot, 1991), is briefly remember here. 
 
Due to the presence of measurement errors, the 
measurement vector Xm does not satisfy the constraint 
equations and the residual vector, R is given by: 
 

R= Mr Xm  (6) 
 

With the previous hypothesis of a Gaussian 
distribution of the measurement errors, the vector R 
also follows a normal distribution with zero mean and 
covariance VR = MrVMr

T . In order to compare the 
elements of the R vector, let us define a normalised 
residual vector RN with the entry RN(i) defined by: 
 

RN(i) =
R(i)

VR( i,i )
   for i = 1, ..., r (7) 

Each entry RN(i) follows a normal distribution with 
zero mean and unity variance. A simple statistical 
two tailed test can therefore be employed: we may 
concluded that residual i is not a normal one if: 
 
RN (i ) > t  (8) 

 
Classically, one may choose the critical constant t to 
control the familywise Type I error rate at some pre-
assigned level α. Even if we assume the presence of 
only one gross error, the relationship between the 
"bad" residual(s) and the suspect measurement is not 
so easy. It depends on the structure of the equations 
and the location of the failure. In some cases, it is not 
possible to suspect only one measurement. In order to 
locate suspect measurements, each individual test 
yields a Boolean decision, the full set of parallel tests 
resulting in a Boolean vector, the failure signature. 
This signature is then analysed in order to arrive at a 
failure inference. Let us defined the occurrence 
matrix as the absolute value of the matrix of 
redundancy equations. Since each column of this 
matrix corresponds to a process variable and each 
row to a residual, a 1 in any position of this matrix 
signifies that the given residual is influenced by a 
failure on the given variable. Thus under ideal 
circumstances, the signature of a failure is identical to 
the respective column of the occurrence matrix. This 
implies that for each failure to be detectable, no 
column of the matrix should contain only zero 
elements, and for each signature to be isolable, all 
columns must be different (Gertler and Singer, 1985). 
 
It is important to note that the properties of failure 
detectability and isolability don’t depend on the 
choice of the primary set of redundancy equations. 
So, if a failure is detectable or isolable using the 
failure signature constructed on the basis of the 
primary set of equations, so it is using the failure 
signature constructed on the basis of the whole set of 
redundancy equations as defined in the previous 
section. 
 

6. DETECTABILITY, ISOLABILITY 
AND REDUNDANCY DEGREE 

 
In this section, the close links between failure 
detectability, isolability and redundancy degree of a 
variable are emphasised. 
 
The failure of a sensor is detectable if and only if the 
corresponding variable is, at least, redundant of 
degree one. This first result is obvious. For a sensor 
failure to be detectable, the corresponding variable 
might intervene in the calculus of, at least, one 
residual. As residuals are obtained from the 
redundancy equations, the considered measured 
variable might belong to a redundancy equation, so 
might be redundant of degree one. 
 
The second result is more interesting. The failure of a 
sensor is isolable if and only if the corresponding 
variable is, at least, redundant of degree two. Let us 



consider two variables xi and xj which degree of 
redundancy is equal to two. Using the definition of 
the degree of redundancy given in section 3, it means 
that xi occurs in two redundancy equations, let ra and 
rb, of the whole set of redundancy equations such xi is 
the unique common measured variable. The variable 
xj also occurs in two such type of redundancy 
equations. So, the subvector vi of the occurrence 
matrix corresponding to the two redundancy 
equations ra and rb for the variable xi is the following: 
 

vi =
ra

rb

xi
1

1

 
  
 
   

 
Taking into account the definition of the redundancy 
degree of a variable, if xj occurs in one of the 
redundancy equations among ra and rb, it cannot 
occur in the other. Another possibility is that xj does 
not occur in any of these two equations. So the 
subvector vj of the occurrence matrix corresponding 
to the two redundancy equations ra and rb for the 
variable xj is one of the following: 
 

v j =
ra

rb

xj

1

0

 
  
 
   v j =

ra

rb

xj

0

1

 
  
 
   v j =

ra

rb

xj

0

0

 
  
 
   

 
As the subvectors vi and vj are systematically distinct, 
and taking into account the invariance of the 
isolability property with regard to the choice of the 
primary set of equation, one deduces that the failure 
of a sensor is isolable if the corresponding variable 
is, at least, redundant of degree two.  
 
This last result is the main result of the paper as 
isolability of sensor failures may now be taken into 
account in sensor network design. 
 

7.   SENSOR NETWORK DESIGN 
 
Now, we propose a method for designing sensor 
network satisfying failure detectability and isolability 
requirements. Taking into account the previous 
equivalencies, we specify the lists the variables of 
which we ought to ensure a given degree of 
redundancy (list Lk for the variables which must be 
redundant of degree k). Moreover, a weight, 
proportional to the installation cost of the 
corresponding sensor, is associated to each variable. 
 
The main goal of the design then consists in 
determining the variables which must be measured in 
order to satisfy the constraints on the degrees of 
redundancy whilst minimising the global cost of 
installation (if all the costs are identical, it is the 
number of sensors which is minimised). This problem 
may be formulated as follows: 
 

Problem  P1  
minimum

ui
wiui

i=1

v

∑

subject to  ∂r( xj ) ≥ k    ∀xj ∈Lk

 
 
 

  
 (9) 

 
where wi represents the installation cost of the sensor 
measuring the variable xi, ui ie a Boolean number 
which indicates if the variable xi must be measured to 
meet the redundancy constraints (1: must be 
measured, 0: elsewhere), and ∂r (x j )  denotes the 
redundancy degree of the variable xj. In fact, some 
components ui are fixed to 1 as all the variables on 
which properties of sensor failure (detectability or 
isolability) are imposed must, of course, be 
measured. 
 
The problem P1 may easily be transformed into a 
linear programming problem. Indeed, sensor network 
design consists in measuring a given number of 
variables per cycles depending on the redundancy 
degree which must be ensured whilst minimising the 
associated cost. This problem can be stated as 
follows: 
 

Problem  P2  
minimum

U
WTU

subject to  CU ≥ N

 
 
 

  
 (10) 

 
where W = [wi] is the cost or weight vector of 
dimension v, U = [ui] is a partially unknown vector of 
Boolean numbers. C is a cycle matrix the 
construction of which will be explained latter and N 
is a vector which entries are equal to the minimum 
number of measurements per cycle for satisfying the 
redundancy constraints. 
 
Let us now explain the construction of C and N. The 
matrix C is built from the matrix of all the cycles of 
the graph removing the cycles involving only 
variables which do not belong to any lists Lk. Indeed, 
there is not any constraints on the variables belonging 
to these cycles. The entries of the vector N are 
computed as follows. If a cycle contains a variable 
belonging to the list Lk, the redundancy constraints 
will be satisfied only if k+1 variables belonging to 
this cycle are measured. As a cycle may contain 
variables belonging to different lists Lk, the entry ni 
will be equal to the maximum number of variables 
which must be measured. If a given cycle contains 
less variables than this minimum number of variables 
to be measured, the problem has no solution, except 
if we accept to use hardware redundancy, that is to 
say to place more than one sensor for measuring a 
variable. 
 
The problem may be simplified when some variables 
are already measured. In fact, two situations may 
occur. The first one concerns a complete sensor 
network design, i.e. there is not any measurements 
yet. However, taking into account a previous remark, 
even in this situation, some variables must be 
measured (those on which it is desired to obtain 
detectability or isolability of sensor failure). The 



second situation deals with a partial design taking 
into account a list of already measured variables. In 
all the cases, the problem of sensor network design 
must be solved taking into account that some 
variables must be measured (or are already measured 
which is equivalent). Therefore, some of the ui are 
fixed to 1 and it is very useful to take this situation 
into account before solving the problem. Indeed, the 
size of the problem (15) may be reduced, if the 
columns of the cycle matrix C corresponding to the 
measured variables are cancelled and if, 
simultaneously, the vector N of the minimum number 
of measurements per cycle is updated (each entry ni 

must be decreased of the number of measured 
variables in the cycle number i). After this treatment, 
some cycles of the C matrix don’t support any 
constraints, that is to say ni  = 0 and these cycles and 
the corresponding entry in the vector N may be 
removed. 
 
In this way, it is also possible to take into account the 
unmeasurability of certain variables. Indeed, it 
suffices to cancel in the C matrix the columns 
corresponding to these unmeasurable variables 
without other modifications. 
 

8.   EXAMPLES 
 
Let us consider the process described by figure 1. 
The incidence matrix corresponding to the network is 
given in table 1 (for convenience, the "." states for 
the value 0), and the associated fundamental cycle 
matrix  is given in table 2: 
 

Table 1: incidence matrix 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
I 1 −1 −1 . . . . . . . . . . . . 
II . . . 1 −1 −1 . . . . . . . . . 
III . 1 . . 1 . . . −1 . . . . 1 . 
IV . . . . . . . . 1 −1 −1 . . . . 
V . . . . . . . . . . . . 1 −1 −1 
VI . . . . . 1 −1 −1 . . . . . . . 
VII . . 1 −1 . . . 1 . -1 . . . . . 
VIII  . . . . . . . . . . 1 1 −1 . . 

 

Table 2: fundamental cycle matrix 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 . 1 1 1 1 . . . . . . . . . . 
2 1 . 1 1 . 1 1 . . . . . . . . 
3 . . . 1 . 1 . 1 . . . . . . . 
4 . 1 1 . . . . . 1 1 . . . . . 
5 1 1 . . . . . . 1 . 1 1 . . . 
6 . . . . . . . . 1 . 1 . 1. 1 . 
7 1 1 . . . . . . 1 . 1 . 1 . 1 

 
As the matrix of all the cycles of the graph comprises 
127 cycles, it is not shown here. Assume that the 
vector of measured variables is the following  
Xm = (x2, x3, x5, x7, x10, x11, x14, x15)T. Using 
simple linear combinations of equations (rows) and 
exchanging of variables (columns) lead to the 

canonical form of this incidence matrix (table 3) 
where the left column denotes the names of the 
transformed equations: 
 

Table 3: canonical form of the incidence matrix 
 

 2 3 5 7 10 11 14 15 8 1 4 9 13 6 12 
a −1 . −1 . 1 1 −1 . . . . . . . . 
b . 1 −1 −1 1 . . . . . . . . . . 
c −1 -1 . . . . . . . 1 . . . . . 
d . . −1 -1 . . . . −1 . 1 . . . . 
e −1 . −1 . . . −1 . . . . 1 . . . 
f . . . . . . −1 −1 . . . . 1 . . 
g . . . −1 . . . . −1 . . . . 1 . 
h . . . . . 1 −1 −1 . . . . . . 1 

 
For a detailed description of the used transformations 
which lead to the above form of the incidence matrix, 
we refer the reader to earlier published works 
(Maquin et al., 1987; Ragot et al., 1990). This 
canonical form can be easily read. The measured 
variables x2, x3, x5, x7, x10, x11 and x14 are linked 
by redundancy equations (defined by row a and b of 
the canonical form). The unmeasured variables x1, 
x9, x12 and x13 can be deduced as each one of them 
only appears as a single unknown in one equation 
(rows c, e, f and h of the canonical form). The 
measured variable x15 does not appear in any 
redundancy equation. Finally the unmeasured 
variables x4, x6 and x8, which appear in equations 
containing at least two unknowns, cannot be deduced. 
 
So, for the considered example, the matrix Mr of 
redundancy equations is the following: 
 

Table 4: matrix of redundancy equations 
 

 2 3 5 7 10 11 14 15 
Mr = −1 . −1 . 1 1 −1 . 
 . 1 −1 −1 1 . . . 

 
Now, let us consider the following problem: 
 
How many sensors must be added and which 
variables must be measured in order to be able to 
detect a sensor failure on variable x15 and to isolate 
sensor failures on variables x5 and x11 ? 
 
The reader may remark that, with the initial set of 
measurements, these constraints are not satisfied. 
Neither sensor failure is isolable and the sensor 
failure of variable x15 is not detectable as this 
variable doesn’t occur in any redundancy equation. 
Taking into account the results of section 6, this 
problem may be solved by designing a sensor 
network which guarantee at least a redundancy 
degree of x15 equal to 1, and redundancy degrees of 
x5 and x11 equals to 2, i.e. L1 = {x15} and 
L2 = {x5, x11}. In this problem, some variables are 
already measured and using the treatment prescribed 
in the previous section, the matrix dimension of C 
reduces from (127,15) to (8,7). The resulting 
problem of optimisation may be solved using the 



public domain code LP_SOLVE1. The input file is 
given below: 
 
min:u1+u4+u6+u8+u9+u12+u13; 

u6+u8+u9>=1; 

u4+u9>=1; 

u1+u4+u6+u8+u9+u12>=1; 

u1+u9+u12>=1; 

u4+u6+u8+u9+u13>=1; 

u9+u13>=1; 

u12+u13>=1; 

u4+u6+u8+u12+u13>=1; 

 

u1<=1; u4<=1; u6<=1; u8<=1; u9<=1; u12<=1; u13<=1; 

int u1,u4,u6,u8,u9,u12,u13; 

 
The reader will notice the second group of 
constraints. As LP_SOLVE can only handle positive 
values for the variables and taking into account their 
declaration as integers, the optimisation variables are 
constrained to be Boolean (0 or 1). LP_SOLVE gives 
the following result: {u1=0, u4=0, u6=0, u8=0, u9=1, 
u12=1, u13=0}which implies the measurement of the 
two variables x9 and x12. Analysing the redundancy 
of the system with these two new measurements, one 
obtains the following occurrence matrix: 
 
Table 5: occurrence matrix of redundancy equations 

 

2 3 5 7 9 10 11 12 14 15 
1 . 1 . 1 . . . 1 . 
. . . . 1 1 1 . . . 
. 1 1 1 . 1 . . . . 
. . . . . . 1 1 1 1 

 
As the columns corresponding to the variables x5 and 
x11 are unique, sensor failures measuring these 
variables are isolable and as variable x15 intervenes 
in a redundancy equation, the corresponding sensor 
failure is detectable. The reader may notice that the 
proposed solution is not unique, in this case, and the 
measurement of the couple (x9, x13) also satisfies the 
constraints. 
 

9. CONCLUSION 
 
In this paper, the problem of sensor network design is 
addressed using the powerful concept of redundancy 
degree of variables. The design is formulated as a 
particular optimisation problem involving Boolean 
variables and is solved using a mixed binary integer 
linear programming method. The proposed procedure 
is developed to handle specifications of importance 
(expressed by redundancy degrees), measurability of 
process variables and performances of diagnosis of 
sensor failures (detectability and isolability). Sensor 
network design examples illustrate the relevance of 
the proposed method.  
 
 
                                                 
1 LP_SOLVE is a public domain code written in C by M. 
Berkelaar (michel@es.ele.tue.nl). It can be retrieved from the 
address ftp://ftp.es.ele.tue.nl/pub/lp_solve 
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