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HOMOGENEOUS FRACTIONAL EMBEDDINGS

PIERRE INIZAN

Abstract. Fractional equations appear in the description of the dynamics of various
physical systems. For Lagrangian systems, the embedding theory developped by Cresson
[“Fractional embedding of differential operators and Lagrangian systems”, J. Math. Phys.
48, 033504 (2007)] provides a univocal way to obtain such equations, stemming from a
least action principle. However, no matter how equations are obtained, the dimension
of the fractional derivative differs from the classical one and may induce problems of
temporal homogeneity in fractional objects. In this paper, we show that it is necessary
to introduce an extrinsic constant of time. Then, we use it to construct two equivalent
fractional embeddings which retain homogeneity. The notion of fractional constant is also
discussed through this formalism. Finally, an illustration is given with natural Lagrangian
systems, and the case of the harmonic oscillator is entirely treated.

1. Introduction

For about twenty years, the fractional calculus has known significant development, ac-
cording to its successes in various domains, such as chaotic dynamics, viscoelasticity, acous-
tics, electricity or polymer chemistry [1, 2, 3, 6, 10]. In this context, fractional equations
are used for modeling physical phenomena. No more considered as formal objects, but as
physically significant, one may expect them to be homogeneous, a fundamental principle
of the physical equations. In other words, the objects of a same equation must have the
same dimension, expressible in terms of fundamental units, such as length L, mass M or
time T . For example, the dimension of a force F is [F ] = M L2 T−2.

However, in many fractional equations we can find in litterature, homogeneity is not
respected. Let firm up details of our topic: from a strictly mathematical point of view, this
notion of homogeneity is meaningless. The problem arises only if the equations considered
are susceptible to model a physical system. But in that case, this question is fundamental.
However, the problem is often hidden in modelisations because the constants are seen as
parameters to fit.

How to obtain fractional equations in time ? The usual approach consists in subsistuting
in the classical equation considered the derivative d/dt (homogeneous to T−1) by a new
one, dα/dtα (homogeneous to T−α), with 0 < α < 1. Clearly, this transformation does not
conserve the temporal homogeneity of the equation. This remark would apply to fractional
derivatives in space, but in this article, only the temporal ones will be considered.

The problem of the passage from the classical case to the fractional one has already been
discussed in [4]. Shifting the derivative leads to fractional equations, but, from a physical
point of view, is it the right procedure ? Do the fractional equations obtained remain
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physically relevant ? Answers are given in the case of Lagrangian systems. Extending the
least action principle, Cresson [4] provides an univocal method, the fractional embedding,
which leads to fractional equations. The respect of this other fundamental principle makes
the equations susceptible to conserve a physical meaning.

This article is in keeping with this philosphy. In section 2, it is shown that an extrinsic
characteristic time has to be introduced. After having presented the notion of embedding
in section 3, we show in section 4 that this time constant leads to two equivalent methods of
fractional embedding, which additionally conserve homogeneity. The notion of fractional
constant is also adressed. Finally, an illustration is given in section 5 with the case of
natural Lagrangian systems. A complete resolution is given for the harmonic oscillator.

2. Extrinsic characteristic time

In this paper, the notation dα/dtα will concern an unspecified fractional derivative, ex-
cept in section 5.2. Moreover, the difficulties inherent to fractional derivatives (for example,
dα/dtα ◦ dα/dtα 6= d2α/dt2α in general) won’t be addressed here.

As it has already been said, the fractional aspect of equations occurs with derivatives
generalized to noninteger orders. If this sustitution is done in one term of an equation, the
other ones have also to be modified so as to preserve homogeneity. As a first example, we
consider the damped oscillator equation,

d2

dt2
x(t) + λ

d

dt
x(t) + ω2x(t) = 0. (1)

The constants λ and ω are homogeneous to T−1. Replacing d/dt by dα/dtα gives

d2α

dt2α
x(t) + λ

dα

dtα
x(t) + ω2x(t) = 0.

This equation is non-homogeneous: the three terms have different temporal dimensions
(T−α, T−(1+α) and T−2). A homogeneous version could be

d2α

dt2α
x(t) + λα dα

dtα
x(t) + ω2αx(t) = 0. (2)

Things are getting trickier with the diffusion equation,

∂

∂t
u(x, t) − D

∂2

∂x2
u(x, t) = 0, with [D] = L2 T−1. (3)

If the operator ∂/∂t is directly remplaced by ∂α/∂tα, the only way to preserve the
temporal homogeneity is to shift D into Dα. We obtain

∂α

∂tα
u(x, t) − Dα ∂2

∂x2
u(x, t) = 0.

Unfortunately, this equation becomes now nonhomogeneous in space: ∂α/∂tα has no
spatial dimension, whereas the spatial dimension of Dα ∂2/∂x2 is L2(1−α). The only way
to preserve the spatial homogeneity is to change ∂/∂x by ∂α/∂xα, which leads to

∂α

∂tα
u(x, t) − Dα ∂2α

∂x2α
u(x, t) = 0. (4)
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Regarding the numerous studies dealing with that equation (for example, [8, 13]), one
of the most used in fractional calculus, this case seems too restrictive. According to [13,
chap. 16], anomalous transport cannot be described by (4) (because the transport exponent
remains classical).

As a last example, we consider the free fall equation,

d2

dt2
x(t) + g = 0. (5)

The dimension of the gravity acceleration g is [g] = L T−2.
If d2/dt2 is changed directly into d2α/dt2α, it is impossible to obtain an fractional and

homogeneous equation.
A first conclusion could be drawn: a necessary condition for an equation to be physically

relevant in the fractional case is the possibility of obtaining a homogeneous formulation.
In this case, the damped oscillator and the diffusion fractional equations fill this condition,
unlike the free fall equation.

However, the constants which appear the equations may be built from other constants.
For example, the gravity acceleration g is in fact defined by g = G MT R−2

T , where G is the
gravity constant, MT et RT the mass and the radius of the Earth. So, equation (5) can
provide a fractional and homogeneous equation,

d2α

dt2α
x(t) + gαR1−α

T = 0.

Therefore, the initial equation itself is not suffisant to conclude if the fractional equation
derived is physically relevant or not. This first conclusion is consequently invalid.

Moreover, if no restrictions are added, there may be several ways to obtain fractional
equations, which is unsatisfactory. Indeed, (1) can notably turn into

d2α

dt2α
x(t) + λα dα

dtα
x(t) + ω2λ2α−2x(t) = 0,

or into
d2α

dt2α
x(t) + λ2α−β dβ

dtβ
x(t) + ω2αx(t) = 0, 0 < β < 1.

Both of these equations differ from (2).
Facing this problem of underdetermination, equations have to be constrained so as to

provide a unique fractional and homogeneous equation. As it was mentioned above, the
fractional embedding plays this part in the case of Lagrangian systems. It implies, among
others, that there is a single fractional exponent in fractional equations describing such
systems. Furthermore, it does not modify the constants of the initial equation. Once the
Lagrangian is given, the structure is totally determined and the fractional aspect appears
only through the switch of d/dt into dα/dtα. Consequently, a suitable fractional operator
should not modify the homogeneity of the initial equation. Two possibilities are conceiv-
able. The first one is the temporal nondimensionalization of the system: the classical and
fractional temporal operators become dimensionless, and the homogeneity of the equation
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is preserved. The second method consists in choosing a fractional operator which dimen-
sion is the same as the classical one, i.e. T−1. Both of them require the introduction of
a time constant τ . The examples above show that τ may not be determined directly by
the equation (see (5)), or that several constants could suit for τ (see (1)). Consequently,
the time constant τ has to be postulated, and defined a priori, i.e., independently of the
classical equation. The introduction of such a constant enables to solve the problem of
homogeneity, while remaining compatible with the fractional embedding.

3. General embeddings

We adapt here the embedding notion presented in [4].

3.1. Embedding of differential operators. Let f = (f1, . . . , fp) and g = (g1, . . . , gp) be
two p-uplets of C∞ functions R

k+2 −→ R. Let a, b ∈ R with a < b. We denote by O(f, g)
the differential operator defined by

O(f, g) : C∞([a, b]) −→ C∞([a, b])

x 7−→

p
∑

i=0

(

fi ·

(

d

dt

)i

◦ gi

)(

x(•), . . . ,

(

d

dt

)k

x(•), •

)

,
(6)

where, for any function u : Rk+2 −→ R, any functions x0, . . . , xk : [a, b] −→ R,

u (x0(•), . . . , xk(•), •) : [a, b] −→ R

t 7−→ u(x0(t), . . . , xk(t), t),

and, for any functions f and g, (f · g)(t) = f(t) · g(t).
Now we extend this class of operators with an operator which generalizes d/dt.

Definition 1. Let D : C∞([a, b]) −→ C∞([a, b]) be a differential operator. With the
previous notations, the D-embedding of O(f, g), denoted E(O(f, g),D), is defined by

E(O(f, g),D) : C∞([a, b]) −→ C∞([a, b])

x 7−→

p
∑

i=0

(

fi · D
i ◦ gi

) (

x(•), . . . ,Dkx(•), •
)

.

We define the ordinary differential equation associated with O(f, g) by

O(f, g)(x) = 0, x ∈ C∞([a, b]). (7)

Definition 2. Let D : C∞([a, b]) −→ C∞([a, b]) be a differential operator. With the
previous notations, the D-embedding of equation (7) is defined by

E(O(f, g),D)(x) = 0, x ∈ C∞([a, b]).
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3.2. Embedding of Lagrangian systems. We consider a Lagrangian system, with La-
grangian L(x, v, t), t ∈ [a, b], and D : C∞([a, b]) −→ C∞([a, b]) a differential operator.

The Lagrangian L can naturally lead to a differential operator of the form (6)

O(1, L) : C∞([a, b]) −→ C∞([a, b])

x 7−→ L

(

x(•),
d

dt
x(•), •

)

.

Now we identify L and O(1, L).

The D-embedding of L, E(L,D), will be denoted L̂(D) or shortened into L̂,

L̂(D) : C∞([a, b]) −→ C∞([a, b])
x 7−→ L(x(•),D x(•), •).

In Lagrangian mechanics, the action and its minima play a central role. Let us define
an action suitable for the embedding formalism.

Definition 3. Let g : C∞([a, b]) −→ C∞([a, b]) be a mapping. The action of g, denoted
A(g), is defined by

A(g) : C∞([a, b]) −→ R

x 7−→

∫ b

a

g(x)(t) dt.

For example, with the identification L ≡ O(1, L), the action of L is given by

A(L)(x) =

∫ b

a

L

(

x(t),
d

dt
x(t), t

)

dt.

Concerning the D-embedding of L, the associated action is

A(L̂(D))(x) =

∫ b

a

L (x(t),Dx(t), t) dt.

The extremum of the associated action to a Lagrangian system provides the equation of
motion of the system trough the following theorem.

Theorem 1. The action A(L) is extremal in x if and only if x satisfies the Euler-Lagrange
equation, given by

∀t ∈ [a, b], ∂1L

(

x(t),
d

dt
x(t), t

)

−
d

dt
∂2L

(

x(t),
d

dt
x(t), t

)

= 0. (8)

Equation (8) is denoted EL(L). For the embedded Lagrangian, a connected result states
the following.

Theorem 2. Under some appropriate variations of the action (see [7]), A(L̂(D)) is ex-
tremal in x if x satisfies the causal Euler-Lagrange equation, given by

∀t ∈ [a, b], ∂1L(x(t),Dx(t), t) −D ∂2L(x(t),Dx(t), t) = 0. (9)

Equation (9) is denoted EL(L̂(D)). This leads to the following result.
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Theorem 3. In the causal case (i.e. with the appropriate variations of the action), we
have the commutative scheme,

EL(E(L,D)) ≡ E(EL(L),D).

This embedding procedure is qualified as coherent.

Proof. Equation (8) can be written in the form (7), with f = (1, 1) and g = (∂1L,−∂2L).
Its D-embedding is exactly (9).

�

4. Homogeneous fractional embeddings

Let us now explain the two methods presented in the Introduction for the Lagrangian
sytems. We show that they are equivalent. Then we present what could be a third method,
also equivalent, which is farther from the philosophy of the embedding theory, but which
makes fractional constants to appear.

Let L(x, v, t) be a Lagrangian, with t ∈ [a, b], and τ the time constant introduced in the
previous part. The temporal dimensions of the variables x, v and t are respectively T 0,
T−1 and T .

4.1. Temporal nondimensionalization. Nondimensionalization is a widespread method
used in physics, particularly in fluid mechanics, to simplify equations and to exhib relevant
parameters. Concerning fractional dynamics, the constant τ introduced above seems phys-
ically relevant. In the following part, it is used to nondimensionalize equations according
to the temporal dimension.

Definition 4. We note ã = a/τ and b̃ = b/τ . The temporal nondimensionalized La-

grangian, denoted Ln, evolving on the interval [ã, b̃], is defined by

∀u ∈ [ã, b̃], Ln(x, y, u) = L(x,
y

τ
, τu).

None of the variables of Ln has temporal dimension, which justify the denomination. We
choose here D = dα/dtα. As the new temporal evolution variable u has no dimension, the
classical derivative according to this new time, d/du, is also dimensionless, such as dα/duα.
Therefore, the substitution d/du → dα/duα does not break homogeneity anymore.

For example, if dα/dtα is taken as the Caputo derivative, defined by

s0
Dα

s f(s) =
1

Γ(1 − α)

∫ s

s0

(s − v)−αf ′(v) dv,

we see that if t0 and t have the dimension of a time, dα/dtα = t0D
α
t is homogeneous to

T−α, whereas if u0 and u are dimensionless, dα/duα = u0
Dα

u is dimensionless.

The dα/duα-embedding of Ln, L̂n (dα/duα), is

L̂n

(

dα

duα

)

: C∞([ã, b̃]) −→ C∞([ã, b̃])

x 7−→ Ln

(

x(•),
dα

duα
x(•), •

)

.
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For sake of lisibility, L̂n (dα/duα) will be shortened into L̂n. It verifies

∀x ∈ C∞([ã, b̃]), ∀u ∈ [ã, b̃], L̂n(x)(u) = L

(

x(u), τ−1 dα

duα
x(u), τu

)

.

The associated action to L̂n is

A(L̂n)(x) =

∫ b̃

ã

Ln

(

x(u),
dα

duα
x(u), u

)

du

and leads to the following result.

Theorem 4. The Euler-Lagrange equation associated with the dα/duα-embedding of the
nondimensionalized Lagrangian Ln is given, in the causal case, by

∀u ∈ [ã, b̃], ∂1Ln

(

x(u),
dα

duα
x(u), u

)

−
dα

duα
∂2Ln

(

x(u),
dα

duα
x(u), u

)

= 0, (10)

with x ∈ C∞([ã, b̃]).

This is the equation of motion of the Lagrangian system which Lagrangian is Ln, and
which dynamics evolution is fractional, according to the operator dα/duα. The solution
x of (10) depends on the nondimensionalized evolution variable u. As dα/duα has no
dimension, equation (10) is clearly homogeneous.

This method eludes the question of the dimension of the fractional operator, and, by
modifying the Lagrangian variables (but not the Lagrangian itself), it leads to an homo-
geneous fractional embedding. However, it occults the real dynamics, based on a real (i.e.,
dimensionalized) time. The following method will lift this veil.

4.2. Homogeneous fractional derivative. The time constant τ can be used to nondi-
mensionalize the temporal operator, but it also enables to build a fractional operator which
dimension remains T−1: τα−1dα/dtα. Therefore, this operator preserves the homogeneity
of the fractional embedding. Let us detail the procedure.

We consider the same initial Lagrangian L(x, v, t), with t ∈ [a, b]. Contrary to the
previous method, there is no need to define a new Lagrangian nor a new evolution variable.
Now the differential operator D becomes τα−1dα/dtα and acts on functions which depend
on the real time t.

The τα−1dα/dtα-embedding of L, L̂ (τα−1dα/dtα) will be denoted L̂h.

L̂h : C∞([a, b]) −→ C∞([a, b])

x 7−→ L

(

x(•), τα−1 dα

dtα
x(•), •

)

,

The associated action A(L̂h) verifies

∀x ∈ C∞([a, b]), A(L̂h)(x) =

∫ b

a

L

(

x(t), τα−1 dα

dtα
x(t), t

)

dt.

The equation of motion is now given by
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Theorem 5. The Euler-Lagrange equation associated with the (τα−1dα/dtα)-embedding of
L is given, in the causal case, by

∀t ∈ [a, b], ∂1L

(

x(t), τα−1 dα

dtα
x(t), t

)

− τα−1 dα

dtα
∂2L

(

x(t), τα−1 dα

dtα
x(t), t

)

= 0. (11)

In this method, the fractional Euler-Lagrange equation and its solutions x depend of
the real time t, and all of the fractional objects (variables, operator, Lagrangian, equation)
hold the same dimension as their classical predecessors.

4.3. Equivalence between the two methods. Both of these two methods constitute
homogeneous fractional embeddings. Fortunately, if a quite natural condition is respected,
they turn out to be equivalent.

We suppose that the fractional derivative dα/dtα verifies the following condition:

∀x ∈ C∞([a, b]), τα dα

dvα
x(v)|v=t =

dα

duα
x̃(u)|u=t/τ , where x̃ : u 7→ x(uτ). (12)

This property is notably verified by the usual fractional derivatives. For example, for
the Caputo derivative, we have

ãD
α
u x̃(u) =

1

Γ(1 − α)

∫ u

ã

(u − v)−αx̃′(v) dv

=
1

Γ(1 − α)

∫ uτ

ãτ

(u −
s

τ
)−αx̃′(

s

τ
)
ds

τ
, s = vτ

=
τα−1

Γ(1 − α)

∫ uτ

a

(uτ − s)−α(τx′(s)) ds

=
τα

Γ(1 − α)

∫ t

a

(t − s)−αx′(s) ds, t = uτ

= τα
aD

α
t x(t).

The two methods are related through the following result.

Theorem 6. If the fractional operator dα/dtα respects condition (12), then the two methods
are equivalent: x : t 7→ x(t) is solution of (11) if and only if x̃ : u 7→ x(uτ) is solution of
(10).

Proof. Partial derivatives of L and Ln verify

∂1Ln(x, y, u) = ∂1L
(

x,
y

τ
, uτ
)

, (13)

∂2Ln(x, y, u) =
1

τ
∂2L

(

x,
y

τ
, uτ
)

. (14)
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From (12), (13) and (14), we infer

∂1Ln

(

x̃(u),
dα

duα
x̃(u), u

)

= ∂1L

(

x(t), τα−1 dα

dtα
x(t), t

)

,

∂2Ln

(

x̃(u),
dα

duα
x̃(u), u

)

=
1

τ
∂2L

(

x(t), τα−1 dα

dtα
x(t), t

)

,

which proves that (10) and (11) are similar.
�

Therefore, if condition (12) is verified, nondimensionalized solution u ∈ [a/τ, b/τ ] 7→ x̃(u)
of (10) can be redimensionalized into t ∈ [a, b] 7→ x̃(t/τ), solution of the dimensionalized
and equivalent equation (11).

4.4. Fractional constants. In various litterature dealing with fractional equations using
the operator dα/dtα (homogeneous to T−α), homogeneity is sometimes preserved by in-
troducing fractional constants (see [9] for example). For a wide class of Lagrangians, the
dα/dtα-embedding of a modified Lagrangian leads to a homogeneous fractional equation
involving fractional constants.

We consider the same Lagrangian system as above. The temporal dimension of L is here
denoted T n0 (n0 = −2 in most of the cases). We suppose that L is equal to its Laurent
series in the variable v,

L(x, v, t) =
∑

i∈Z

ai fi(x, t) vi, (15)

where [ai] = T i+n0. The functions fi have hence no temporal dimension.
Using the fractional operator τα−1dα/dtα, we obtain for any function x ∈ C∞([a, b])

L

(

x(t), τα−1 dα

dtα
x(t), t

)

=
∑

i∈Z

ai fi(x, t)

(

τα−1 dα

dtα
x(t)

)i

=
∑

i∈Z

ai fi(x, t)τ i(α−1)

(

dα

dtα
x(t)

)i

=
∑

i∈Z

āi fi(x, t)

(

dα

dtα
x(t)

)i

, with āi = ai τ
i(α−1).

The dimension of āi is [āi] = T iα+n0 . With this fractional dimension, those coefficients
can be considered as fractional constants.

We can form a new Lagrangian with those constants.

Definition 5. For a Lagrangian L(x, v, t) =
∑

i∈Z
ai fi(x, t) vi, the fractional Lagrangian,

denoted Lf , is defined by

Lf (x, v, t) =
∑

i∈Z

āi fi(x, t) vi.
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The dα/dtα-embedding of Lf , denoted L̂f , verifies

L̂f : C∞([a, b]) −→ C∞([a, b])

x 7−→
∑

i∈Z

āifi(x(•), •)

(

dα

dtα
x(•)

)i

.

Hence we have

L̂

(

τα−1 dα

dtα

)

= L̂f

(

dα

dtα

)

, (16)

which leads to

Theorem 7. The Euler-Lagrange equation associated with the dα/dtα-embedding of Lf is
given, in the causal case, by

∀t ∈ [a, b],
∑

i∈Z

āi∂1fi(x, t)

(

dα

dtα
x(t)

)i

− i āi
dα

dtα

(

fi(x, t)
dα

dtα
x(t)

)i−1

= 0, (17)

with x ∈ C∞([a, b]).

With relation (16), we infer the following result.

Theorem 8. If condition (15) is verified, the (τα−1dα/dtα)-embedding of Lf and the
dα/dtα-embedding of Lf are equivalent,

EL

(

E

(

L, τα−1 dα

dtα

))

≡ EL

(

E

(

Lf ,
dα

dtα

))

, (18)

E

(

EL(L), τα−1 dα

dtα

)

≡ E

(

EL(Lf ),
dα

dtα

)

. (19)

In the causal case, we have besides (18) ≡ (19).

One verifies that equation (17) is homogeneous: inhomogenity of the operator dα/dtα

is counterbalanced by the fractional constants āi. However, the homogeneity problem is
here only shifted: Lf (x(t), d/dt x(t), t) and EL(Lf ) are now inhomogeneous. Furthermore,
the physical relevance of Lf is discutable, and this Lagrangian may appear as an ad hoc
construction to obtain homogeneous fractional equations. In this sense, this third method
does not fit with an underlying idea of the embedding theory. For any Lagrangian system,
its Lagrangian is independant of the dynamics: it is only the choice of the evolution
operator, i.e. the temporal derivative, which conditions the dynamics of the system.

Finally, it seems that the second method is the most relevant homogeneous fractional
embedding.

5. Natural Lagrangian systems

5.1. General case. An illustration of those methods is given here with the most wide-
spread type of Lagrangians: the natural ones.
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Definition 6. We consider an autonomous Langrangian system with Lagrangian L(x, v),
evolving on a temporal interval [a, b]. L is a natural Lagrangian if it can be written as

L(x, v) =
1

2
mv2 − V (x), (20)

where m is the mass of the system, 1
2
mv2 is the kinetic energy, and V (x) the potential

energy. The temporal dimension of L is T−2.

We introduce a time constant τ , and we apply now the three embeddings to those
systems.

5.1.1. Temporal nondimensionalization. We denote ã = a/τ and b̃ = b/τ .
The new Lagrangian is

Ln(x, y) = L
(

x,
y

τ

)

=
1

2τ 2
my2 − V (x),

and its embedding verifies

∀x ∈ C∞([ã, b̃]), ∀u ∈ [ã, b̃], L̂n(x)(u) =
1

2τ 2
m

(

dα

duα
x(u)

)2

− V (x(u)) .

The associated action is

A(L̂n)(x) =

∫ b̃

ã

Ln

(

x(u),
dα

duα
x(u)

)

du

=

∫ b̃

ã

1

2τ 2
m

(

dα

duα
x(u)

)2

− V (x(u)) du,

and the Euler-Lagrange equation, in the causal case, turns into

∀u ∈ [ã, b̃],
m

τ 2

d2α

du2α
x(u) + V ′ (x(u)) = 0.

5.1.2. Homogeneous fractional derivative. The initial Lagrangian remains inchanged. Its
embedding is now

∀x ∈ C∞([a, b), ∀t ∈ [a, b], L̂h(x)(t) =
1

2
mτ 2(α−1)

(

dα

dtα
x(t)

)2

− V (x(t)) ,

the action is given by

A(L̂h)(x) =

∫ b

a

L

(

x(t), τα−1 dα

dtα
x(t), t

)

dt

=

∫ b

a

1

2
mτ 2α−2

(

dα

dtα
x(t)

)2

− V (x(t)) dt,

and the causal Euler-Lagrange equation is

∀t ∈ [a, b], mτ 2(α−1) d2α

dt2α
x(t) + V ′ (x(t)) = 0. (21)
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5.1.3. With fractional constants. Let x0 be a position such as V (x0) 6= 0. The potential
energy can hence be written as V (x) = a0 f0(x, t), with a0 = V (x0), which temporal
dimension is T−2, and f0(x, t) = V (x)/V (x0), which is dimensionless.

The Lagrangian (20) can therefore be expressed in the form (15), with

• ai = 0 for i < 0,

• a0 = V (x0), f0(x, t) =
V (x)

V (x0)
,

• a1 = 0,

• a2 = m, f2(x, t) =
1

2
,

• aj = 0 for j > 2.

The fractional constants are

• ā0 = a0 = V (x0),
• ā2 = a2 τ 2(α−1) = m τ 2(α−1),

and lead to the new fractional Lagrangian

Lf(x, v) =
1

2
m τ 2(α−1)v2 − V (x).

The associated action is defined by

A(L̂f)(x) =

∫ b

a

1

2
mτ 2(α−1)

(

dα

dtα
x(t)

)2

− V (x(t)) dt.

Its extremum provides the following Euler-Lagrange equation:

∀t ∈ [a, b], mτ 2(α−1) d2α

dt2α
x(t) + V ′ (x(t)) = 0,

which is similar to (21).
Now, let us solve those equations in the case of the harmonic oscillator.

5.2. Harmonic oscillator. This system has already been studied in the fractional case
(see [11, 14, 12]).

The harmonic oscillator is a natural Lagrangian system which Lagrangian L is given by:

L(x, v) =
1

2
mv2 −

1

2
kx2, (22)

with [x] = L, [v] = L T−1, [m] = M et [k] = M T−2.

As above, we introduce a time constant τ (which is a priori not linked with
√

m/k).
We arbitrarily choose here the Caputo derivative for the fractional operator dα/dtα.

5.2.1. Temporal nondimensionalization. The nondimensionalized Lagrangian Ln is:

Ln(x, y) =
1

2τ 2
my2 −

1

2
kx2.
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Its embedding, L̂n(x)(u) = 1
2τ2 m (dα/duα x(u))2 − 1

2
kx(u)2 leads to the following Euler-

Lagrange equation:

∀u ∈ [ã, b̃],
m

τ 2

d2α

du2α
x(u) + k x(u) = 0.

With the usual notation ω =
√

k/m, we obtain

∀u ∈ [ã, b̃],
d2α

du2α
x(u) + (ωτ)2x(u) = 0.

The (nondimensionalized) solution, denoted xn, is given by

∀u ∈ [ã, b̃], xn(u) = xn(ã)E2α

(

−(ωτ)2(u − ã)2α
)

,

where, for λ > 0, Eλ is the Mittag-Leffler function defined on C by

∀z ∈ C, Eλ(z) =
∞
∑

k=0

zk

Γ(λk + 1)
.

The dimensionalized solution, denoted xd, is hence

∀t ∈ [a, b], xd(t) = xn(
t

τ
) = xd(a)E2α

(

−ω2τ 2(1−α)(t − a)2α
)

.

One verifies that the argument of the Mittag-Leffler function is dimensionless.

5.2.2. Homogeneous fractional derivative. The embedded Lagrangian L̂h, given by

L̂h =
1

2
mτ 2(α−1)

(

dα

dtα
x(t)

)2

− k x(t)2,

provides the equation

∀t ∈ [a, b], mτ 2(α−1) d2α

dt2α
x(t) + k x(t) = 0. (23)

Introducing ω, we obtain

∀t ∈ [a, b],
d2α

dt2α
x(t) + ω2τ 2(1−α)x(t) = 0,

which admits the solution xh defined by

xh(t) = xh(a)E2α

(

−ω2τ 2(1−α)(t − a)2α
)

.

One verifies that xn = xh.
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5.2.3. With fractional constants. The Lagrangian (22) can be written as (15), with

• a0 = k, f0(x, t) = 1
2
x2,

• a1 = 0,
• a2 = m, f2(x, t) = 1

2
,

• ai = 0 for i ≥ 3.

The fractional constants are given by

• ā0 = k,
• ā2 = a2 τ 2(α−1) = m τ 2(α−1).

The associated fractional Lagrangian, Lf , is

Lf (x, v) =
1

2
mτ 2(α−1)v2 −

1

2
k x2.

We obtain the Euler-Lagrange equation,

∀t ∈ [a, b], mτ 2(α−1) d2α

dt2α
x(t) + k x(t) = 0,

which is similar to equation (23).

5.2.4. Comparison with the inhomogeneous fractional embedding. If we directly apply the
fractional embedding presented in [4] to the Lagrangian (22), we obtain

d2α

dt2α
x(t) + ω2x(t) = 0. (24)

The temporal dimension of d2α/dt2α x(t) is T−2α, whereas for ω2x(t), it is T−2.
The solution xi of (24) is

xi(t) = xi(a)E2α

(

−ω2(t − a)2α
)

.

The argument of the Mittag-Leffler function is T 2(α−1), whereas it should be dimension-
less.

6. Conclusion

With the first two embeddings presented above (temporal nondimensionalization and
homogeneous fractional derivative), it becomes possible to preserve homogeneity of em-
bedded equations. Both of them lead to the same fractional equation. Therefore, from
any Lagrangian system, it is possible to construct a fractional equation which respects two
fundamental physical principles: homogeneity and least action principle.

To do so, a time constant τ has to be introduced. Similarly to the fractional exponent α,
this parameter is not defined by the equation itself. Contrary to the nondimensionalization
of classical equations, fractional solutions depend on τ (see the example of the harmonic
oscillator). This time constant is hence more than a calculus intermediary: it conditions the
dynamcis of the system. Its physical relevance seems as much important as the constants
of the initial equation. To sum up, a fractional equation should be characterized by two
parameters: the fractional exponent α and the time constant τ .
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So as to understand the physical meaning of this characteristic time, it may be useful
to set the context in which such equations arise. In [5, 13], the fractional aspect of the
dynamics appears only on long time scales. At a microscopic level, the dynamics is classical
and evolves according to a microscopic time, but when one zooms out at a macroscopic
level, ruled by a new macroscopic time, the fractional aspect may emerge. It might be
through the relation between these two time scales that the time constant τ may appear.
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