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The hadronic k ⊥ -spectrum inside a high energy jet is determined including corrections of relative magnitude O ( √ αs) with respect to the Modified Leading Logarithmic Approximation (MLLA), in the limiting spectrum approximation (assuming an infrared cut-off Q0 = Λ QCD ) and beyond (Q0 = Λ QCD ). The results in the limiting spectrum approximation are found to be, after normalization, in impressive agreement with measurements by the CDF collaboration. A new integral representation for the "hump-backed" plateau is also reported.

Introduction

The production of jets -a collimated bunch of hadrons -in e + e -, e -p and hadronic collisions is an ideal playground to investigate the parton evolution process in perturbative QCD (pQCD). One of the great successes of pQCD is the existence of the hump-backed shape of inclusive spectra, predicted in [1] within MLLA, and later discovered experimentally (for review, see e.g. [2]). Refining the comparison of pQCD calculations with jet data taken at LEP, Tevatron and LHC will ultimately allow for a crucial test of the Local Parton Hadron Duality (LPHD) hypothesis [3] and for a better understanding of color neutralization processes.

The inclusive k ⊥ -distribution of particles inside a jet has been computed at MLLA accuracy in the limiting spectrum approximation [4], i.e. assuming an infrared cutoff Q 0 equal to Λ QCD (λ ≡ ln(Q 0 /Λ QCD ) = 0) (for a review, see also [5]). MLLA corrections, of relative magnitude O √ α s with respect to the leading double logarithmic approximation (DLA), were shown to be quite substantial [4]. Therefore, it appears legitimate to wonder whether corrections of order O (α s ), that is next-to-next-to-leading or Next-to-MLLA (NMLLA), are negligible or not.

The starting point of this analysis is the MLLA Master Equation for the Generating Functional (GF) Z = Z(u) of QCD jets [5], where u = u(k) is a certain probing function and k, the four-momentum of the outgoing parton. Together with the initial condition at threshold, the GF determines the jet properties at all energies. For instance, the single inclusive spectrum can be derived from the GF by differentiating with respect to u = u(k), and the solution of the equations can be written as a perturbative expansion in √ α s . At high energies

Send offprint requests to: Redamy Perez Ramos a Luruper Chaussee 149, D-22761 Hamburg, Germany this expansion can be resummed and the leading contribution be represented as an exponential of the anomalous dimension γ(α s ). Since further details to this logic can be found in [5,6], we only give the symbolic structure of the equation for the GF and its solution, which we write respectively as

dZ dy ≃ γ 0 (y)Z ⇒ Z ≃ exp y γ(α s (y ′ ))dy ′ , (1) 
where γ(α s ) can be expressed as a power series of

√ α s γ(α s ) = √ α s + α s + α 3/2 s + α 2 s + . . . (2) 
In this logic, the leading (DLA, O( √ α s )) and next-to-leading (MLLA, O(α s )) approximations are complete. The next terms (NMLLA, O(α 3/2 s )) are not complete but they include an important contribution which takes into account energy conservation and an improved behavior near threshold. Indeed, some results for such NMLLA terms have been studied previously for global observables and have been found to better account for recoil effects and to drastically affect multi-particle production [7,8].

The equation in (1) applies to each vertex of the cascade and its solution represents the fact that successive and independent partonic splittings inside the shower, exponentiate with respect to the evolution-time parameter dy = dΘ/Θ, where Θ ≪ 1 is the angle between outgoing couples of partons. The choice of y follows from Angular Ordering (AO) in intra-jet cascades. It is indeed the suited variable for describing timelike evolution in jets. Thus, Eq. (1) incorporates the Markov chains of sequential angular ordered partonic decays which are singular in Θ and γ(α s ) determines the real rate of inclusive quantities growth with energy.

While DLA treats the emission of both particles as independent by keeping track of the first term ∼ √ α s in (2) without constraint, the exact solution of the MLLA evolution equation (partially) fulfills the energy conservation in each individual splitting process (z + (1 -z) = 1) by incorporating higher order (α n/2 s , n > 1) terms to the anomalous dimension. Symbolically, the first two analytical steps towards a better account of these corrections in the MLLA, NMLLA evolution, which we further discuss in [9], can be represented in the form

∆γ ≃ (α s + α s ℓ -1 ln z)dz ∼ α s + α 3/2 s , (3) 
where ℓ = ln(1/x) ∼ α -1/2 s with x ≪ 1 (fraction of the jet energy taken away by one hadron), z ∼ 1 for hard partons splittings such as g → q q. . . (this is in fact the region where the two partons are strongly correlated).

Energy conservation is particularly important for energetic particles as the remaining phase space is then very limited. On the other hand, a soft particle can be emitted with little impact on energy conservation. Some consequences of this behavior have also been noted in [10]:

(i) the soft particles follow the features expected from DLA; (ii) there is no energy dependence of the soft spectrum; (iii) the ratio of soft particles r = N g /N q in gluon and quark jets is consistent with the DLA prediction N c /C F = 9/4 (see the measurement by DELPHI [11]).

The present study makes use of this logic (3) to evaluate NMLLA contributions to the single inclusive k ⊥ -distribution. The main results of this work have been published in [9,12]. Experimentally, the CDF collaboration at the Tevatron reported on k ⊥ -distributions of unidentified charged hadrons in jets produced in pp collisions at √ s = 1.96 TeV [13].

MLLA evolution equations

We start by writing the MLLA evolution equations for the fragmentation function D h B x z, zEΘ 0 , Q 0 of a parton B (energy zE and transverse momentum k ⊥ = zEΘ 0 ) into a gluon (represented by a hadron h (energy xE) according to LPHD [3]) inside a jet A of energy E for the process depicted in Fig. 1. As a consequence of angular ordering in parton cascading, par- tonic distributions inside a quark and gluon jet, Q, G(z) = x z D h Q,G x z, zEΘ 0 , Q 0 , obey the system of two coupled equations [6] (the subscript y denotes ∂/∂y) following from the MLLA master equation described by ( 1)

B h Θ Θ C 0 E zE (1 -z)E xE A = (Q, G)
Q y = 1 0 dz α s π Φ g q (z) Q(1 -z) -Q + G(z) , (4) 
G y = 1 0 dz α s π Φ g g (z)(1 -z) G(z) + G(1 -z) -G + n f Φ q g (z) 2Q(z) -G . (5) 
Φ B A (z) denotes the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting functions [5],

Φ g q (z) = C F 2 z + φ g q (z) , Φ g g (z)(1 -z) = 2N c 1 z + φ g g (z) , Φ q g (z) = T R z 2 + (1 -z) 2 ,
where

φ g q (z) = z -2 and φ g g (z) = (z -1)(2 -z(1 -z)) are regular as z → 0, C F = (N 2 c -1)/2N c , T R = n f /2 (N c = 3
is the number of colors for SU (3) c and n f = 3 is the number of light flavors we consider). The running coupling of QCD (α s ) is given by

α s = 2π 4N c β 0 (ℓ + y + λ) , β 0 = 1 4N c 11 3 N c - 4 3 T R and ℓ = (1/x) , y = ln k ⊥ Q 0 , λ = ln Q 0 /Λ QCD ,
where Q 0 is the collinear cut-off parameter. Moreover,

G ≡ G(1) = xD h G (x, EΘ 0 , Q 0 ), Q ≡ Q(1) = xD h Q (x, EΘ 0 , Q 0 ).
At small x ≪ z, the fragmentation functions behave as

B(z) ≈ ρ h B ln z x , ln zEΘ 0 Q 0 = ρ h B (ln z + ℓ, y) ,
ρ h B being a slowly varying function of two logarithmic variables ln(z/x) and y that describes the "hump-backed" plateau. Since recoil effects should be largest in hard parton splittings, the strategy followed in this work is to perform Taylor expansions (first advocated for in [15]) of the non-singular parts of the integrands in (4,5) in powers of ln z and ln(1 -z), both considered small with respect to ℓ in the hard splitting region

z ∼ 1 -z = O (1) B(z) = B(1) + B ℓ (1) ln z + O ln 2 z ; z ↔ 1 -z . (6)
Each ℓ-derivative giving an extra √ α s factor (see [6]), the terms B ℓ (1) ln z and B ℓ (1) ln (1 -z) yield NMLLA corrections to the solutions of (5). Making used of ( 6), after integrating over the regular parts of the DGLAP splitting functions, while keeping the singular terms unchanged, one gets after some algebra

(γ 2 0 = 2N c α s /π) [9,12] Q(ℓ, y)=δ(ℓ) + C F N c ℓ 0 dℓ ′ y 0 dy ′ γ 2 0 (ℓ ′ + y ′ ) 1 -ã1 δ(ℓ ′ -ℓ) +ã 2 δ(ℓ ′ -ℓ)ψ ℓ (ℓ ′ , y ′ ) G(ℓ ′ , y ′ ), (7) 
G(ℓ, y)=δ(ℓ)

+ ℓ 0 dℓ ′ y 0 dy ′ γ 2 0 (ℓ ′ + y ′ ) 1 -a 1 δ(ℓ ′ -ℓ) +a 2 δ(ℓ ′ -ℓ)ψ ℓ (ℓ ′ , y ′ ) G(ℓ ′ , y ′ ), (8) 
with ψ ℓ (ℓ, y) = G ℓ (ℓ, y)/G(ℓ, y). The MLLA coefficients ã1 = 3/4 and a 1 ≈ 0.935 are computed in [6] while at NM-LLA, we get

ã2 = 7 8 + C F N c 5 8 - π 2 6 ≈ 0.42, (9) 
a 2 = 67 36 - π 2 6 - 13 18 
n f T R N c C F N c ≈ 0.06 . ( 10 
)
Defining F (ℓ, y) = γ 2 0 (ℓ + y)G(ℓ, y), we can exactly solve the self-contained equation ( 8) by performing the Mellin transform

F (ℓ, y) = dωdν (2πi) 2 e ωℓ e νy F (ω, ν). (11) 
Inserting ( 11) into ( 8) we obtain, after some algebra, the differential equation

β 0 λF - ∂F ∂ω - ∂F ∂ν = 1 ν + F ων -a 1 F ν -a 2 ω ν F . ( 12 
)
Finally, after inserting the solution of ( 12) into (11), the new integral representation for the inclusive spectrum (hump-backed plateau) with NMLLA accuracy reads

G(ℓ, y)=(ℓ + y + λ) dωdν (2πi) 2 e ωℓ e νy ∞ 0 ds ν + s × ω (ν + s) (ω + s) ν σ0 ν ν + s σ1+σ2 e -σ3 s , ( 13 
)
where

σ 0 = 1 β 0 (ω -ν) , σ 1 = a 1 β 0 , σ 2 = a 2 β 0 (ω -ν), σ 3 = a 2 β 0 + λ.
However, computing (13) numerically is quite a challenging task. As can be seen, the NMLLA coefficient a 2 is very small. This may explain a posteriori why the MLLA "hump-backed plateau" agrees very well with experimental data [1,14]. Therefore, the NMLLA solution ( 13) of ( 8) can be approximated by the MLLA solution of G(ℓ, y) (i.e. taking a 2 ≈ 0), which will be used in the following to compute the inclusive k ⊥distribution. As demonstrated in [6], taking the limits a 2 ≈ 0 and λ ≈ 0 in (13), the integral representation can be reduced to the known MLLA formula [5] 

G(ℓ, y) = 2 Γ (B) β 0 π 2 0 dτ π e -Bα F B (τ, y, ℓ), (14) 
where the integration is performed with respect to τ defined by α = 1 2 ln y ℓ + iτ and with

F B (τ, y, ℓ) =     cosh α - y -ℓ y + ℓ sinh α ℓ + y β 0 α sinh α     B/2 I B (2 Z(τ, y, ℓ)), Z(τ, y, ℓ) = ℓ + y β 0 α sinh α cosh α - y -ℓ y + ℓ sinh α ,
B = a 1 /β 0 and I B is the modified Bessel function of the first kind. To get a quantitative idea on the difference between MLLA and NMLLA gluon inclusive spectrum, the reader is reported to the appendix B of [9]. The magnitude of ã2 , however, indicates that the NMLLA corrections to the inclusive quark jet spectrum may not be negligible and should be taken into account. After solving (8), the solution of (7) reads

Q(ℓ, y)= C F N c G(ℓ, y) + a 1 -ã1 G ℓ (ℓ, y) (15) 
+ a 1 a 1 -ã1 + ã2 -a 2 G ℓℓ (ℓ, y) + O(γ 2 0 ).
It differs from the MLLA expression given in [4] by the term proportional to G ℓℓ , which can be deduced from the subtraction of (C F /N c )×(8) to Eq. ( 7).

Single inclusive k ⊥ -distribution of charged hadrons in NMLLA

Computing the single inclusive k ⊥distribution requires the definition of the jet axis. The starting point of our approach consists in considering the correlation between two particles (h1) and (h2) of energies E 1 and E 2 which form a relative angle Θ inside one jet of total opening angle Θ 0 > Θ [16].

Weighting over the energy E 2 of particle (h2), this relation leads to the correlation between the particle (h=h1) and the energy flux, which we identify with the jet axis (see Fig. 2) [4]. Thus, the correlation and the relative transverse momentum k ⊥ between (h1) and (h2) are replaced by the correlation, and transverse momentum of (h1) with respect to the direction of the energy flux. Finally, we obtain the double differential spectrum d 2 N/dx dΘ of a hadron produced with energy E 1 = xE at angle Θ (or k ⊥ ≈ xEΘ) with respect to the jet axis. As demonstrated in [4], the correlation reads

d 2 N dx d ln Θ = d d ln Θ F h A0 (x, Θ, E, Θ 0 ) , (16) 
where F h A0 is given by the convolution of two fragmentation functions

F h A0 ≡ A=g,q 1 x duD A A0 (u, EΘ 0 , uEΘ) D h A x u , uEΘ, Q 0 , (17) 
u being the energy fraction of the intermediate parton A. D A A0 describes the probability to emit A with energy uE off the parton A 0 (which initiates the jet), taking into account the evolution of the jet between Θ 0 and Θ. D h A describes the probability to produce the hadron h off A with energy fraction x/u and transverse momentum k ⊥ ≈ uEΘ ≥ Q 0 (see Fig. 2). As dis- cussed in [4], the convolution ( 17) is dominated by u ∼ 1 and therefore D A A0 (u, EΘ 0 , uEΘ) is determined by the DGLAP evolution [5]. On the contrary, the distribution D h A x u , uEΘ, Q 0 at low x ≪ u reduces to the hump-backed plateau,

D A 0 D Θ 0 h A A xE h (Jet Axis) Θ A 0 E uE A
Dh A (ℓ + ln u, y) x≪u ≈ ρ h A (ℓ + ln u, Y Θ + ln u), (18) 
with Y Θ = ℓ + y = ln EΘ/Q 0 . Performing the Taylor expansion of D to the second order in (ln u) and plugging it into Eq. ( 17) leads to

xF h A0 ≈ A=g,q du u D A A0 (u, EΘ 0 , uEΘ) Dh A (ℓ, y) (19) 
+ A=g,q du u ln u D A A0 (u, EΘ 0 , uEΘ)

d Dh A (ℓ, y) dℓ + 1 2 A=g,q du u ln 2 uD A A0 (u, EΘ 0 , uEΘ) d 2 Dh A (ℓ, y) dℓ 2 .
Indeed, since soft particles are less sensible to the energy balance, the correlation ( 17) is proved to disappear for these particles, leading to the sequence of factorized terms written in (19). The first two terms in Eq. ( 19) correspond to the MLLA distribution calculated in [4] when Dh A is evaluated at NLO and its derivative at LO. NMLLA corrections arise from their respective calculation at NNLO and NLO, and, mainly in practice, from the third line, which was computed in [9,12]. Indeed, since x/u is small, the inclusive spectrum Dh A (ℓ, y) with A = G, Q are given by the solutions ( 13) and ( 15) of the nextto-MLLA evolution equations ( 7) and ( 8) respectively. However, because of the smallness of the coefficient a 2 (see (10)), G(ℓ, y) shows no significant difference from MLLA to NM-LLA. As a consequence, we use the MLLA expression (14) for G(ℓ, y), and the NMLLA (15) for Q(ℓ, y). The functions F h g and F h q are related to the gluon distribution via the color currents C g,q defined as:

xF h g,q = C g,q N c G(ℓ, y). ( 20 
)
C g,q can be seen as the average color charge carried by the parton A due to the DGLAP evolution from A 0 to A. Introducing the first and second logarithmic derivatives of Dh A ,

ψ A,ℓ (ℓ, y) = 1 Dh A (ℓ, y) d DA (ℓ, y) dℓ = O( √ α s ), (ψ 2 A,ℓ + ψ A,ℓℓ )(ℓ, y) = 1 Dh A (ℓ, y) d 2
DA (ℓ, y)

dℓ 2 = O(α s ).
Eq. ( 19) can now be written as

xF h A0 ≈ A=g,q u A A0 + u ln u A A0 ψ A,ℓ (ℓ, y) + 1 2 u ln 2 u A A0 (ψ 2 A,ℓ + ψ A,ℓℓ )(ℓ, y) Dh A ,
with the notation

u ln i u A A0 ≡ 1 0 du (u ln i u) D A A0 (u, EΘ 0 , uEΘ) ≈ 1 0 du (u ln i u) D A A0 (u, EΘ 0 , EΘ) .
The scaling violation of the DGLAP fragmentation function neglected in the last approximation is a NMLLA correction to < u >. It however never exceeds 5% [9] of the leading contribution and is thus neglected in the following. Using (20), the MLLA and NMLLA corrections to the leading color current of the parton A 0 = g, q read

δ C MLLA-LO A0 = N c u ln u g A0 ψ g,ℓ (21) 
+ C F u ln u q A0 ψ q,ℓ , δ C NMLLA-MLLA A0 = N c u ln 2 u g A0 (ψ 2 g,ℓ + ψ g,ℓℓ ) (22) + C F u ln 2 u q A0 (ψ 2 q,ℓ + ψ q,ℓℓ ).
The MLLA correction, O √ α s , was determined in [4] and the NMLLA contribution, O (α s ), to the average color current is new. The latter can be obtained from the Mellin moments of the DGLAP fragmentation functions

D A A0 (j, ξ) = 1 0 du u j-1 D A A0 (u, ξ), leading to u ln 2 u A A0 = d 2 dj 2 D A A0 (j, ξ(EΘ 0 ) -ξ(EΘ)) j=2 . (23) 
Plugging (23) into the resummed expression < C > g,q of the color current as written in (20), these quantities for gluon and quark jets are determined analytically [9]. For illustrative purposes, the LO, MLLA, and NMLLA average color current of a quark jet with Y Θ0 = 6.4 -corresponding roughly to Tevatron energies -is plotted in Fig. 3 as a function of y, at fixed ℓ = 2 for λ ≈ 0. As discussed in [4], the MLLA corrections to the LO color current are found to be large and negative. As expected, the correction O (α s ) from MLLA to NMLLA proves much smaller; it is negative (positive) at small (large) y. This calculation has also been extended beyond the limiting spectrum, λ = 0, to take into account hadronization effects in the production of "massive" hadrons, m = O (Q 0 ) [18]. We used, accordingly, the more general MLLA solution of ( 8) with a 2 = 0 for an arbitrary λ = 0

G (ℓ, y) = (ℓ + y + λ) dω dν (2πi) 2 e ωℓ+νy ∞ 0 ds ν + s × ω (ν + s) (ω + s) ν 1/β0(ω-ν) ν ν + s a1/β0 e -λs ,
from which an analytic approximated expression was found using the steepest descent method [17]; σ 2 = 0 and σ 3 = λ have been set in (13). However, G(ℓ, y) is here determined exactly from an equivalent representation in terms of a single Mellin transform (which reduces to (14) 

as λ → 0) [18] G(ℓ, y) = ℓ + y + λ β 0 B (B + 1) ǫ+i∞ ǫ-i∞ dω 2πi e ωℓ (24) 
× Φ(-A + B + 1, B + 2, -ω(ℓ + y + λ)) K(ω, λ)
which is better suited for numerical studies. The function K appearing in Eq. (24) reads

K(ω, λ) = Γ (A) Γ (B) (ω λ) B Ψ (A, B + 1, ω λ), (25) 
where A = 1/(β 0 ω), B = a 1 /β 0 , and Φ and Ψ are the confluent hypergeometric function of the first and second kind, respectively. The NMLLA (normalized) corrections to the MLLA result are displayed in Fig. 4 for different values λ = 0, 0.5, 1, by using (24). It clearly indicates that the larger λ, the smaller the NMLLA corrections. In particular, they can be as large as 30% at the limiting spectrum (λ = 0) but no more than 10% for λ = 0.5. This is not surprising since λ = 0 (Q 0 = Λ QCD ) reduces the parton emission in the infrared sector and, thus, higher-order corrections. The double differential spectrum (d 2 N/dℓ dy), Eq. ( 16), can now be determined from the NM-LLA color currents (22) using the MLLA quark and gluon distributions. Integrating it over ℓ leads to the single inclusive ydistribution (or k ⊥ -distribution) of hadrons inside a quark or a gluon jet:

dN dy g,q = k ⊥ dN dk ⊥ g,q = YΘ 0 -y ℓmin dℓ d 2 N dℓ dy g,q , 
(26) where

d 2 N dℓ dy A0 = 1 N c C A0 d dy G(ℓ, y) + 1 N c G(ℓ, y) d dy C A0 (27) 
is the explicit expression of the double differential distribution (16). The MLLA framework does not specify down to which values of ℓ (up to which values of x) the double differential spectrum (d 2 N/dℓ dy) should be integrated over. Since (d 2 N/dℓ dy) becomes negative (non-physical) at small values of ℓ (see e.g. [4]), we chose the lower bound ℓ min so as to guarantee the positiveness of (d 2 N/dℓ dy) over the whole ℓ min ≤ ℓ ≤ Y Θ0 range (in practice, ℓ g min ∼ 1 and ℓ q min ∼ 2). Having successfully computed the single k ⊥ -spectra including NMLLA corrections, we now compare the result with existing data. The CDF collaboration at the Tevatron recently reported on preliminary measurements over a wide range of jet hardness, Q = EΘ 0 , in pp collisions at √ s = 1.96 TeV [13]. CDF data, including systematic errors, are plotted in Fig. 5 together with the MLLA predictions of [4] and the present NM-LLA calculations, both at the limiting spectrum (λ = 0) and taking Λ QCD = 250 MeV; the experimental distributions suffering from large normalization errors, data and theory are normalized to the same bin, ln(k ⊥ /1 GeV) = -0.1. The agreement between the CDF results and the NMLLA distributions over the whole k ⊥ -range is particularly good. In contrast, the MLLA predictions prove reliable in a much smaller k ⊥ interval. At fixed jet hardness (and thus Y Θ0 ), NMLLA calculations prove accordingly trustable in a much larger x interval. Despite this encouraging agreement with data, the present calculation still suffers from certain theoretical uncertainties, discussed in detail in [9]. Among them, the variation of Λ QCD -giving NMLLA corrections-from the default value Λ QCD = 250 MeV to 150 MeV and 400 MeV affects the normalized k ⊥distributions by roughly 20% in the largest ln(k ⊥ /1 GeV) = 3 GeV-bin at Q = 100 GeV. Also, cutting the integral (26) at small values of ℓ is somewhat arbitrary. However, we checked that changing ℓ min from 1 to 1.5 modifies the NMLLA spec- tra at large k ⊥ by ∼ 20% only 1 . Finally, the kt-distribution is determined with respect to the jet energy flow (which includes a summation over secondary hadrons in energy-energy correlations). In experiments, instead, the jet axis is determined exclusively from all particles inside the jet. The question of the matching of these two definitions goes beyond the scope of this letter. The NMLLA k ⊥ -spectrum has also been calculated beyond the limiting spectrum, by plugging (24) into (26), as illustrated in Fig. 6. However, the best description of CDF preliminary data is reached at the limiting spectrum, or at least for small values of λ 0.5, which is not too surprising since these inclusive measurements mostly involve pions. Identifying produced hadrons would offer the interesting possibility to check a dependence of the shape of k ⊥ -distributions on the hadron species, such as the one predicted in Fig. 6. Moreover, 1 The effect of varying ℓmin is more dramatic at MLLA. the softening of the k ⊥ -spectra with increasing hadron masses predicted in Fig. 6 is an observable worth to be measured, as this would provide an additional and independent check of the LPHD hypothesis beyond the limiting spectrum. This could only be achieved if the various species of hadrons inside a jet can be identified experimentally. Fortunately, it is likely to be the case at the LHC, where the ALICE [19] and CMS [20] experiments at the Large Hadron Collider have good identification capabilities at not too large transverse momenta.

Conclusion

To summarize, single inclusive k ⊥ -spectra inside a jet are determined including higher-order O (α s ) (i.e. NMLLA) corrections from the Taylor expansion of the MLLA evolution equations and beyond the limiting spectrum, λ = 0. The agreement between NMLLA predictions and CDF preliminary data in pp collisions at the Tevatron is impressive, indicating very small overall non-perturbative corrections and giving further support to LPHD [3]. The MLLA evolution equations for inclusive enough variables prove once more (see e.g. [5]) to include reliable information at higher orders than MLLA.
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 1 Figure 1: Parton A with energy E splits into parton B (respectively C) with energy zE (respectively, (1 -z)E) which fragments into a hadron h with energy xE.
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 2 Figure 2: Inclusive production of hadron h at angle Θ inside a high energy jet of total opening angle Θ 0 and energy E.
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 3 Figure 3: The color current of a gluon jet (left panel) and a quark jet (right panel) with Y Θ0 = 6.4 as a function of y at fixed ℓ = 2 for λ ≈ 0.
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 4 Figure 4: NMLLA corrections to the color current of a quark jet with Y Θ0 = 6.4 and ℓ = 2 for various values of λ.
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 5 Figure 5: CDF preliminary results for the inclusive k ⊥ distribution at various hardness Q in comparison to MLLA and NM-LLA predictions at the limiting spectrum (Q 0 = Λ QCD ); the boxes are the systematic errors.
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 6 Figure 6: CDF preliminary results (Q = 119 GeV) for inclusive k ⊥ distribution compared with NMLLA predictions beyond the limiting spectrum.