
HAL Id: hal-00311011
https://hal.science/hal-00311011

Submitted on 12 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SystemC/TLM Semantics for Heterogeneous
System-on-Chip Validation

Florence Maraninchi, Matthieu Moy, Jérôme Cornet, Laurent Maillet-Contoz,
Claude Helmstetter, Claus Traulsen

To cite this version:
Florence Maraninchi, Matthieu Moy, Jérôme Cornet, Laurent Maillet-Contoz, Claude Helmstetter,
et al.. SystemC/TLM Semantics for Heterogeneous System-on-Chip Validation. 2008 Joint IEEE-
NEWCAS and TAISA Conference, Jun 2008, Montréal, Canada. �hal-00311011�

https://hal.science/hal-00311011
https://hal.archives-ouvertes.fr

SystemC/TLM Semantics for Heterogeneous

System-on-Chip Validation

Florence Maraninchi and

Matthieu Moy

VERIMAG Laboratory

(UJF, CNRS, Grenoble INP)

firstname.lastname@imag.fr

Jérôme Cornet and

Laurent Maillet-Contoz

STMicroelectronics

Grenoble, France

firstname.lastname@st.com

Claude Helmstetter

INRIA, LIAMA

Beijing, China

claude@liama.ia.ac.cn

Claus Traulsen

Kiel University, Germany

ctr@informatik.uni-kiel.de

Abstract— SystemC has become a de facto standard for the
system-level description of systems-on-a-chip. SystemC/TLM is
a library dedicated to transaction level modeling. It allows to
define a virtual prototype of a hardware platform, on which the
embedded software can be tested.

Applying formal validation techniques to SystemC descriptions
of SoCs requires that the semantics of the language be formalized.
The model of time and concurrency underlying the SystemC
definition is intermediate between pure synchrony and pure
asynchrony.

We list the available solutions for the semantics of Sys-
temC/TLM, and explain how to connect SystemC to existing
formal validation tools.

I. INTRODUCTION

The Register Transfer Level (RTL) used to be the entry point

of the design flow of hardware systems, including systems-on-

a-chip (SoCs). However, the simulation environments for such

models do not scale up well. Developing and debugging em-

bedded software for these low level models before getting the

physical chip from the factory is no longer possible at a rea-

sonable cost. New abstraction levels, such as the Transaction

Level Model (TLM) [1], have emerged. The TLM approach

uses a component-based approach, in which hardware blocks

are modules communicating with so-called transactions. The

TLM models are used for early development of the embedded

software, because the high level of abstraction allows a fast

simulation. This new abstraction level requires that SoCs be

described in some non-deterministic asynchronous way, with

new synchronization mechanisms, quite different from the

implicit synchronization of synchronous circuit descriptions.

SystemC is a C++ library used for the description of SoCs at

different levels of abstraction, from cycle accurate to purely

functional models. It comes with a simulation environment,

and is becoming a de facto standard. SystemC offers a set of

primitives for the description of parallel activities representing

the physical parallelism of the hardware blocks. The TLM

level of abstraction can be described with SystemC.

As TLM models appear first in the design flow, they become

reference models for SoCs. Hence it becomes necessary to

validate TLM models. However, the methods and tools that

have been successful for the formal validation of circuits

described at the RTL level (including model-checking tech-

niques, methods based on SAT solvers, and methods based

on theorem-provers) cannot be applied directly to TLM mod-

els. One reason is that TLM models do not have a simple

synchronous semantics; another reason is that the language

SystemC is defined on top of a general-purpose programming

language (C++), which has no formal semantics definition.

In this paper, we investigate the problem of expressing

the semantics of SystemC for TLM designs (denoted by

SystemC/TLM in the sequel), in such a way that existing

formal validation tools can be exploited. We concentrate on

model-based validation techniques, such as model-checking

and abstract interpretation. Formalizing SystemC for the use

of theorem provers is outside the scope of this paper.

The paper is organized as follows. In section II we briefly

explain what a TLM design is, and how to use SystemC

for such descriptions. In section III we review the main

approaches for the formalization of parallel and timed systems,

among which we would like to find a candidate for the seman-

tics of SystemC/TLM. Section IV reports on three experiments

we made for the formalization of SystemC/TLM. Section V

explains how the semantics can be implemented. Section VI is

the conclusion. Related work is mentioned whenever needed.

II. TRANSACTION-LEVEL MODELING AND SYSTEMC

A. Example SystemC/TLM Design

A TLM model written in SystemC is based on an archi-

tecture, i.e. a set of components and connections between

them. Components behave in parallel. Each component has

typed connection ports, and its behavior is given by a set

of communicating processes that can be programmed in full

C++. For managing the set of concurrent processes that

appear in the components, SystemC provides a scheduler, and

several synchronization mechanisms: the low-level events, the

synchronous signals that trigger an event when their value

changes, and higher level, user-defined mechanisms based on

abstract communication channels.

Figure 1 gives an example of a SystemC program. For

clarity, we only show the body of the processes, and the

methods called to process transactions in the slave modules.

The system contains two master modules and two slave

modules. They are connected through a tac router channel

(a TLM router channel developed in STMicroelectronics). The

program also contains assertions, which shows one possible

way of expressing (safety) properties. The main program is

not detailed here; it builds the architecture by instantiating

components and communication channels. The transaction

mechanism allows a process of a master module to call

methods exported by slave modules.

} == false);

int address = 0;

tlm_status s;

while(true) {

 s = port.write(address, &x);

 ASSERT(!s.is_no_response());

 ASSERT(!s.is_error());

}

int x;

int address = 8;

tlm_status s;

while(true) {

out_bool.write(false);

 s = port.write(addr, &x);

}

tac_router

status_slave signal_slave

if(data == 4322) {

 set_access_error();
 ASSERT(in_bool.read()

int x = 4321;

status_master signal_master

signal

boolean

Fig. 1. An Example Transactional Model

B. The SystemC Scheduler

The SystemC Language Reference Manual [2] describes

the scheduler algorithm. At the end of the initialization phase

(construction of the platform by instantiating components and

communication channels), some processes are eligible, some

others are waiting. During the evaluation phase EV, eligible

processes are run in an unspecified order, non-preemptively,

and explicitly suspend themselves when reaching a wait in-

struction. A process may wait for some time to elapse, or

for an event to occur. While running, it may access shared

variables and signals, enable other processes by notifying

events, or program delayed notifications. An eligible process

cannot become “waiting” without being executed. When there

is no more eligible process, signal values are updated (UP)

and δ-delayed notifications are triggered, which can wake up

processes. A delta-cycle is the duration between two update

phases. Since there is no interaction between processes during

the update phase, the order of the updates has no consequence.

When there is still no eligible process at the end of an update

phase, the scheduler lets time elapse (TE), and awakes the

processes that have the earliest deadline. A notification of a

SystemC event can be immediate, δ-delayed or time-delayed.

Processes can thus become eligible at any of the three steps

EV, UP or TE.

III. MODELS FOR CONCURRENT AND TIMED SYSTEMS

Formalizing the semantics of SystemC requires that we take

into account: the processes written in C++, the behavior of the

non-preemptive scheduler, and the notion of simulation time.

We concentrate on the family of formal models that rely on the

definition of automata to represent basic sequential activities,

and on products to represent parallelism.

A. Basic Interpreted Automata

The basic elements are interpreted automata, or extended

automata. These objects are made of a discrete and finite

C

B
c

A

(x = 10) a

b (x := 0)

(x < 10) a (x + +)

Fig. 2. An interpreted automaton with one numerical variable x.

A B

(b)(a)

21

1’ 2’

12

1’2’

(A,B)

(c)

12

A
B

A
B

1’2 12’

1’2’(d)

Fig. 3. Synchronous (c) and Asynchronous (d) Automata Products

control structure (states and transitions), plus a set of variables

that can be of any type. A transition may test these variables,

and assign new values to them. An interpreted automaton has

the same expressive power as a Turing machine; any general-

purpose sequential programming language can be encoded into

such an automaton (this is more or less what a compiler does).

Figure 2 is an example of such an automaton, in which a, b

and c may represent external abstract events.

B. Synchronous and Asynchronous Products

Two kinds of automata products can be used to represent the

parallel execution of two activities. The synchronous product is

adequate for systems like synchronous circuits, in which the

parallel activities share a common clock. The Asynchronous

product is adequate for representing parallelism when no

common clock exist between the parallel activities. This is

often the case for systems made of several computers.

Figure 3 illustrates the two products. The two activities

are described by finite automata with very abstract transition

labels A and B (see (a), (b)). The synchronous product assumes

a common clock: a transition of the product is made of a

transition in each activity, because they “move” at the same

time. This requires that we define the combination of labels

(see (c)). The pure asynchronous product assumes no common

clock; the system may evolve either because one of the

activities moves, or because the other one does. There is no

need for combining labels (see (d)).

C. Synchronization and Communication Mechanisms

The communication between synchronous activities may be

instantaneous, because the parallel activities have instants in

which they both move (see [3] for a full development on

this subject). On the contrary, the communication between

two asynchronous activities is necessarily asynchronous: since

the two activities are never active at the same time, the only

synchronization is based on shared memory.

Figure 4 illustrates the communication mechanisms in

the two cases. In (a), the two automata will be com-

posed synchronously. The labels may be structured as in

12

1’2’

a/c

(a)

1

1’

a (x := 1)

2

2’

(x == 1) b

(b)

1

1’

a/b

2

2’

a b

1’2’ (x = 1)

12 (x =?)

1’2 (x = 1)

b

b/c

Fig. 4. Communication between Automata in the Synchronous case (a), and
the Asynchronous case (b).

Mealy machines, with an input and an output (we note

input/output). The product will force the transition a/b

in one automaton to be executed “at the same time” (i.e.,

in the same transition of the product) as the transition b/c

in the other automaton; this describes “instantaneous” com-

munication via the signal b. In (b), the two automata will

be composed asynchronously. The labels may explicitly refer

to some common variable x, by assignments and tests. An

assignment to x, in one automaton, can be observed by the

other automaton in the following transitions.

D. Adding Discrete Time

In synchronous models, time is nothing more than an

additional input (like a in Figure 4-(a)), and there may be

several related time scales, like seconds, milliseconds, etc.

In asynchronous models, time cannot be considered as an

ordinary event, because it behaves in a very particular way:

all the parallel entities of a system have the same “real” time:

the two automata should execute their “time” transitions at the

same time, which is not the normal effect of the asynchronous

product. Adding time in the two forms of models described

above can be done with explicit clocks, i.e., numerical vari-

ables representing the counting of time units. When time is

discrete, these variables are very similar to the variables of

the interpreted automata, as shown previously.

E. Existing Formalisms

There are a lot of formalisms for the description of parallel

and timed activities. Most of them can be used as input for

verification tools. Promela is the input language of the SPIN

model-checker [4], and proposes an asynchronous product; the

model-checker SMV [5] has an input language very similar to

a synchronous composition of automata; the IF toolbox [6]

allows to compose interpreted automata in an asynchronous

way, and to express time as in timed-automata [7]; the Lus-

tre toolbox [8] uses the synchronous programming language

Lustre as the input language for a model-checker, an abstract-

interpretation tool, a testing tool, etc.; Uppaal [9] is based on

timed automata and asynchronous products, and has extensions

for probabilistic and hybrid behaviors.

1

2

3

 e:=1

4

 {e=0}

5

 X:=0

 [X<10]

 X++

6

 [X=10]

7

 {x=1}

8

 {not(x=1)}

 Ok Ko

1

2

 call(f)

3

 ret(f)

4

 Y:=0

 [Y<7]

 Y++

5

 [Y=7]

6

 call(g)

7

 ret(g)

Fig. 5. Two micMac Automata

IV. FORMALIZING THE SEMANTICS OF SYSTEMC

The SystemC scheduler describes a situation which is

neither purely synchronous, nor purely asynchronous. We

experimented three ways of formalizing the semantics: 1) by

an encoding into a synchronous formalism; 2) by an encoding

into an asynchronous formalism; 3) by the definition of an

ad-hoc product. For the sequel, we consider a SystemC/TLM

model made of n processes Pi, i ∈ [1, n]; we ignore the

module structure, since all the processes are scheduled by the

same scheduler.

In the synchronous encoding, each process Pi is encoded

into an interpreted automaton, equipped with special synchro-

nizations intended to coordinate it with the scheduler; several

automata that encode the scheduler are added; the scheduler

automata prevent the process automata from executing all at

the same time. The synchronous product of all these objects

behave as the SystemC code. The code of functions is inlined

in the callee.

In the asynchronous encoding, each process is encoded

into an interpreted automaton, simpler than the one used for

the synchronous case, and the scheduler is represented by a

global shared variable that remembers which of the processes

is active; the value 0 means no process is active, and the

scheduler may choose any of the eligible ones. The code of

functions is also inlined in the callee.

In the ad-hoc solution, each process, and each function body,

is encoded into a so-called micMac automaton, and a special

product is defined to represent all the details of the SystemC

scheduler and the function call mechanism.

Figure 5 is an example micMac automaton. The first essen-

tial idea is to distinguish between macro-states, representing

the points of the behavior of one process where the scheduler

may indeed choose another process; and micro-states, rep-

resenting the points where the process does not yield. The

dedicated product considers that branching can be done at

the macro-states (as in a classical asynchronous product) but

not in the micro-states. The dedicated product will produce

branching between processes exactly when there is a choice

in the scheduler.

The second idea is to encode time as it could be done

in discrete timed automata. A micMac automaton has timed

(represented by dashed arrows) and untimed transitions. Timed

transitions may have conditions on variables that behave as the

clocks of timed automata (for instance [X<10] on Figure 5).

The dedicated product will ensure that time evolves in the

same way for all the processes involved.

The third idea is to preserve the function call mechanism

of SystemC, with dedicated labels like call(g), ret(g).

The dedicated product will match the body of a function with

the process that calls it. We have to find statically an upper

bound of the number of simultaneous callees of a function,

to include as many copies of its body as necessary. This

is feasible, assuming that,in SystemC designs, there is no

recursion through communication function calls.

V. IMPLEMENTATION AND RELATED WORK

The implementation of all the proposals described above

relies on the Pinapa [10] SystemC front-end, which parses

the code of the processes with a C++ parser, and executes

the elaboration phase in order to obtain a description of the

architecture; it produces an internal representation from which

all the semantic encodings can be performed.

The encoding into a synchronous formalism has been stud-

ied and fully implemented by M. Moy [11] using Pinapa,

and with connections to several symbolic model-checkers and

an abstract interpretation tool. To our knowledge, this is the

only complete formalization of the SystemC semantics, and

which is connected to a front-end. Other semantics have been

proposed, but some of them are limited to the synchronous

subset of SystemC (used for RTL designs, see [12] for

instance); some others are very abstract TLM-like semantics,

with no direct connections to a SystemC front-end.

In [13] we also investigated partial orders for the semantics

of SystemC. The encoding into an asynchronous formalism has

been described in [14] and experiments have been performed

with Promela/SPIN; this involves manual abstractions between

the SystemC code and the small automata of the model. The

semantics using micMac automata and a dedicated product is

fully described in J. Cornet’s PhD [15].

The essential problem now is the size of the (implicit)

automata produced by the full encoding of the semantics.

The only hope for applying formal verification tools to Sys-

temC/TLM designs of industrial size is to use very aggressive

abstractions and/or component-based verification methods,

that can deduce global properties of a system from local

properties of its components. For the former, the manual

abstractions experimented in the Promela modeling give hints

for a more general, and automatic, method; one important

point is how to identify the participants in a transaction,

although this is specified by C++ ints representing ad-

dresses; since arithmetic on addresses is most of the time very

simple, techniques from abstract interpretation should help

a lot. For the latter, we need a component-based semantics

of SystemC/TLM. This is not possible with our encodings

into a synchronous or asycnhronous framework, because the

scheduler is global. This is possible with the encoding into

micMac automata plus the dedicated product.

VI. CONCLUSION

The complete chain between SystemC and symbolic model-

checkers or abstract interpretation tools has demonstrated what

we can do with SystemC/TLM designs. The development of

the Pinapa front-end allows to take into account real case-

studies from STMicrolectronics.

Further work will be done on TLM components, compo-

sitional verification, and the application of abstract interpre-

tation techniques, in the context of the Minalogic/openTLM

project at VERIMAG. On the other hand, the complete formal

definition of the semantics can also be exploited for runtime

verification, which is not exhaustive, but can accomodate more

complex designs than exhaustive verification.

REFERENCES

[1] F. Ghenassia, Transaction Level Modeling With SystemC: TLM Concepts

And Applications for Embedded Systems. Springer-Verlag, 2005.
[2] IEEE 1666 Standard: SystemC Language Reference Manual, Open

SystemC Initiative, 2005, http://www.systemc.org/.
[3] F. Maraninchi and Y. Rémond, “Argos: an automaton-based synchronous

language,” Computer Languages, no. 27, pp. 61–92, 2001.
[4] G. J. Holzmann, Design and validation of computer protocols. Engle-

wood Cliffs, NJ: Prentice-Hall, 1991.
[5] K. L. McMillan, “The SMV system, symbolic model checking - an

approach,” Carnegie Mellon University, Tech. Rep. CMU-CS-92-131,
1992.

[6] M. Bozga, S. Graf, and L. Mounier, “If-2.0: A validation environment
for component-based real-time systems,” in Proceedings of CAV’02

(Copenhagen, Denmark), ser. LNCS, K. L. Ed Brinksma, Ed., vol. 2404.
Springer-Verlag, July 2002, pp. 343–348.

[7] Alur and Dill, “The theory of timed automata,” in REX: Real-Time:

Theory in Practice, REX Workshop, 1991.
[8] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying

critical systems by means of the synchronous data-flow programming
language LUSTRE,” IEEE Transactions on Software Engineering, Special

Issue on the Specification and Analysis of Real-Time Systems, Sept.
1992.

[9] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” Int.

Journal on Software Tools for Technology Transfer, vol. 1, no. 1–2, pp.
134–152, Oct. 1997.

[10] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa: The extraction
tool for systemc descriptions of systems-on-a-chip,” in Fifth ACM

International Conference on Embedded Software (EMSOFT), New-York,
USA, Sept. 2005.

[11] ——, “LusSy: an open tool for the analysis of systems-on-a-chip at the
transaction level,” Design Automation for Embedded Systems, vol. 10,
no. 2-3, Sept. 2006, special issue on SystemC-based systems. [Online].
Available: http://www-verimag.imag.fr/ moy/publications/springer.pdf

[12] R. Drechsler and D. Große, “CheckSyC: An Efficient Property Checker
for RTL SystemC Designs,” in Proceedings of the IEEE International

Symposium on Circuits and Systems (ISCAS 2005), vol. 4, May 2005,
pp. 4167– 4170.

[13] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy, “Au-
tomatic generation of schedulings for improving the test coverage of
systems-on-a-chip,” in 6th International Conference on Formal Methods

in Computer-Aided Design (FMCAD). San Jose, CA, USA: IEEE, Nov.
2006.

[14] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, “A systemc/tlm
semantics in promela and its possible applications,” in SPIN Workshop,
2007.

[15] J. Cornet, “Separation of functional and non-functional aspects in
transactional level models of systems-on-chip,” Grenoble INP Group,”
PhD, Apr. 2008.

