N

N

Automatic Generation of Schedulings for Improving the
Test Coverage of Systems-on-a-Chip
Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, Matthieu
Moy

» To cite this version:

Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, Matthieu Moy. Automatic Gen-
eration of Schedulings for Improving the Test Coverage of Systems-on-a-Chip. Formal Methods in
Computer Aided Design (FMCAD’06), Nov 2006, San Jose, United States. pp.171-178, 10.1109/FM-
CAD.2006.10 . hal-00311006

HAL Id: hal-00311006
https://hal.science/hal-00311006
Submitted on 12 Aug 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00311006
https://hal.archives-ouvertes.fr

Automatic Generation of Schedulings for
Improving the Test Coverage of Systems-on-a-Chip

C. Helmstettet! , F. Maraninchi, L. Maillet-ContoZ and M. Moy
*Verimag, Centreequation - 2, avenue de Vignate,
38610 GERES — France
fSTMicroelectronics, HPC, System Platform Group.
850 rue Jean Monnet, 38920 CROLLES — France

Abstract—SystemC is becoming a de-facto standard for the SystemC is the following. First, we identify what we want
early simulation of Systems-on-a-chip (SoCs). It is a parallel to test (theSystem Under Tesbr SUT), which is usually
language with a scheduler. Testing a SoC written in SystemC an open system. We make it closed by pluggingut gen-

implies that we executeit, for some well chosen data. We are :
bound to use a particular deterministic implementation of the ©rators and aresult checker called oracle SCV [2] is a

scheduler, whose specification ison-deterministic Consequently, testing tool for SystemC. It helps in writing input gener-
we may fail to discover bugs that would have appeared using ators by providing C++ macros for expressing constraints:
another valid implementation of the scheduler. Current methods SCV_CONSTRAINT((addr()>10 && addr()< 50)||

for testings SoCs concentrate on the generation of the inputs, (addr()>=2 && addr()<= 5)); is an SCV constraint
and do not address this problem at all. We assume that the hat will t d | Har | t existi
selection of relevant data is already done, and we generatet at will generate ran o'm Vf”‘ ues atidr . In most existing)
several schedulings allowed by the scheduler specification. Weapproaches, the SUT writes in memory, and the oracle consists
use dynamic partial-order reduction techniques to avoid the in comparing the final state of the SUT memory to a reference
generation of two schedulings that have the same effect on memory. As usual, the main difficulty is to get a good quality
the system’s behavior. Exploring alternative schedulings during test suite, i.e., a test suite that does not amsitfultests (that

testing is a way of guaranteeing that the SoC description, and . .
in particular the embedded software, is scheduler-independent, may reveal a bug) and at the same time avaitundant

hence more robust. The technique extends to the exploration of t€sts (that can expose the same bugs) as much as possible.
other non-fully specified aspects of SoC descriptions, like timing. Specman [3] is a commercial alternative of SCV which uses

the e language for describing the constraints.

Contributions and Structure of the papeWe assume that
the choice of relevant data for the testing phase has already
The Register Transfer Level (RTL) used to be the entry poibten done: we consider a SoC written in SystemC, including
of the design flow of hardware systems, but the simulatiaghe data generator and the oracle. For each of the test data, the
environments for such models do not scale up well. Devedystem has to beun, necessarily with a particulamplemen-
oping and debugging embedded software for these low levation of the scheduler. Since tlspecificatiorof the scheduler
models before getting the physical chip from the factory is e non-deterministic, this means that the execution of tests
longer possible at a reasonable cost. New abstraction levetgy hide bugs that would have appeared with another valid
such as th@ransaction Level Model (TLM}L], have emerged. implementation of the scheduler. Moreover, the scheduling is
The TLM approach uses a component-based approach,dire to the simulation engine only, and is unlikely to represent
which hardware blocks are modules communicating with sanything concrete on the final SoC where we have true paral-
called transactions The TLM models are used for earlylelism. We would like the SoC description, and in particular the
development of the embedded software, because the high lesabedded software, to be scheduler-independent. Exploring
of abstraction allows a fast simulation. This new abstractiaiternative schedulings is a way of validating this property.
level comes with new synchronization mechanisms whichWe present an automatic technique for the exploration of
often make existing methods for RTL validation inapplicableschedulings in the case of SystemC. It is an adaptation and
In particular, recent TLM models do not have clock anymorapplication of the method fadynamicpartial order reduction
SystemC is a C++ library used for the description of SoCs ptesented in [4]. This method allows to explore efficiently
different levels of abstraction, from cycle accurate to purelhe states of a system made of parallel processes (given as
functional models. It comes with a simulation environmentbject code) that execute on a preemptive OS and synchro-
and is becoming @e factostandard. As TLM models appeamize with a lock mechanism. We show here that it can be
first in the design flow, they become reference models fapplied to SystemC too. Adaptations are needed because: the
SoCs. In particular, the software that is validated with the TLIystemC scheduler is not preemptive; SystemC programs use
model should remain unchanged in the final SoC. Here, wen-persistent event notifications instead of locks; evaluation
concentrate on testing methods for SoCs written in Systemg@hases alternate with update phases; an eligible process cannot
The current industrial methodology for testing SoCs ibe disabled by another one.

I. INTRODUCTION

Our tool is based on forking executions: we start executing ELAB E}J;'t?oﬂrf

the system for a given data-input, and as soon as we suspect
that several scheduler choices could cause distinct behaviors,
we fork the execution. We use approximatecriterion to EV elect@
decide whether to fork executions. The idea is to look at the @r“” it
actions performed by the processes, in order to guess whether —

a change in their order (as what would be produced by distinct 3 eligible process
scheduler choices) could affect the final state. This criterion up g%?]%ﬁevalues
is approximate in the following sense: we may distinguish

between executions that in fact lead to the same final state; no eligible process

no eligible process

3 eligible process

but we cannot consider as equivalent two executions that lead = advance
to distinct final states. The result is a complete, but not always simulation time
minimal, exploration of the scheduling choices for the whole END
data-input. 3 eligible process no eligible process
The paper is structured as follows: section Il presents
an overview of SystemC. Section Il is the formal setting; Fig. 2. Automaton of the SystemC Scheduler

Section IV explains the algorithms and section V proves the
properties of the method. We present our implementation al¢éhile running, it may access shared variables and signals,
evaluate it in section VI, related work in section VII, and w&nable other processes by notifying events, or program delayed
conclude with section VIII. notifications. An eligible process cannot become *“waiting”
without being executed. When there is no more eligible
I. SYSTEMC AND THE SCHEDULING PROBLEMS process, signals values are updatedP) and 5-delayed no-

A TLM model written in SystemC is based on amchi- tifications are triggered, which can wake up processes: A
tecturg i.e. a set of components and connections betweeycle is the duration between two update phases. Since there is
them. Components behawe parallel. Each component hasno interaction between processes during the update phase, the
typed connectiorports and its behavior is given by a setorder of the updates has no consequence. When there is still
of communicatingprocesseshat can be programmed in full no eligible process at the end of an update phase, the scheduler
C++. For managing the set of concurrent processes thets time elapseTE), and awakes the processes that have the
appear in the components, SystemC providestedulerand earliest deadline. A notification of a SystemC event can be
several synchronization mechanisms: the low-lexaintsthe immediate,f-delayed or time-delayed. Processes can thus be
synchronoussignals that trigger an event when their valuebecome eligible at any of the three steps EV, UP or TE.
changes, and higher level, user-defined mechanisms based on

abstract communication channels. B. Examples
| ELAB; EV ;UP; EV ;UP;TE; EY void top::A() { void top::B() {
time wait(e); e.notify();
9-cycle wait(20,SC_NS); X = 0;
Fig. 1. Diagram of an execution if (x) cout << " Ok\T; wait(20,SC_NS);
else cout << "Ko\n";} x = 1}

The static architecture is built by executing the so-called Fig. 3. Thefoo example

elaboration phase(ELAB), which creates components and To illustrat ibl N N f scheduling choi
connections. Then the scheduler starts running the proceﬁs Y .uf ‘Ze potss € ccl)l seque lces ?SSC te UC g choices,
of the components, according to the informal automaton us introduce two small examples of Systemt. programs.

figure 2. Simulations of a SystemC model look like sequenc gure 3 shows the ex_ampfeo ”_"ade of two processe
of evaluation phase¢EV). Signalsupdate phasgUP) and andB. It has three possible executions according to the chosen

. ! heduling, leading to very different results:
time elapseTE te th figure 1). s¢
ime elapse(TE) separate them (see figure 1) « A;B;A;[TE];B;A: This scheduling leads to the printing of

A. The SystemC Scheduler the string “OKk”".
According to the SystemC Language Reference Manual [5],* ABIAJ[TELA;B: The string “Ko” is printed. It is a
the scheduler must behave as follows. At the end of the typical case ofdata-race x is tested before it has been

elaboration phas&€LAB, some processes agdigible, some set to 1.

others arewaiting. During the evaluation phaseV, eligible « BIA|[TE];B: The execution ends after three steps only.
processes are run in amspecified ordernon-preemptively The “wait(e) " statement has been executed before any
and explicitly suspend themselves when reachingait in- notification of evente. Since events are not persistent
struction. There are two kinds efait instructions: a process ~ in SystemC, procesé has not been woken up. It is a

may wait for some time to elapse, or for an event to occur. Particular form ofdeadlock

void top::AQ) void top::C() { Definition 1 (Schedulings)Let M be a SUTD.P,, is the

voizls tlgpg.xBa(r)nplefoo \?VCEE&?)? T(20.SC_NS); set of its processess,, is the set of its reachable full states;
e ' Fur: (P * risi i ion F
as in exampldoo) v (Pa U {0, x})* — Su is its associatedunction Fyy

_ is partial. A schedulingis an element of Pyy U {4, x})*; a
Fig. 4. Thefoobar ~example valid schedulingis an element of the definition domain of
Fai: Di,, © (Par U6, x1)*
It is useful to test all executions of thibo example F(I;Jr tthpro(grfms{ofx}gection I-B, we havedy

because they lead to different final states. But CO”Sid«FhBAXBA ABAYAB, BAYB} and Fromar (ABC) =
now the foobar example defined in figure 4foobar . (ACJB) —F ,(CAB). oover

has 30 possible executions, but cinly 3 different f'naIHStateS'Definition 2 (Transitions):A transitionis one execution of

12 “execunons are eqL,!NaIent to F;A;B;A;[TE];C;”B;A’ 126ne process in a particular scheduling. Each transition of a
to "CABAI[TEL,CIAB" and 6 t0 "CBIA[TELCB". The goneqyling is identified by its process identifier indexed by the
method we present generates only 3 executions, one for €3¢, rrence number of this process identifier in the scheduling.

final state (or equivalence class). _ _ For example, in the schedulingyp there are 3 transitiong
In general testing techniques, the idea of generating o eandp2 in that order

. 1
representative in each class of an equivalence relation is cal

o) s) efinition 3 (Permutations)Let u = vp;wg; be a valid
partition-based testing6]. It is not always formally defined. scheduling where the transition (resp.q;) corresponds to the

C. Communication Actions i-th (resp.j-th) execution of procegs (resp.q). Permuting the

We call communication actionall actions that affect or use ansitionsp; andg; means generating a new valid scheduling

a shared object. We consider only two kinds of shared objeci’s/:SUCh thatu’ begins byv and thej-th transition ofg in ’

events and variables. All other synchronization structures Cgpbefore thei-th transition ofp: there exists, y, z such that

be modeled using these two primitives. U= vrq;Ypiz. u’ is called apermutation ofp; andg; for w.
There are two operations on eventgait and notify; and Ve Will use lettersp, ¢, to denote processes, b,c, ...
two operations on variablesead andwrite. In the sequel we to denote transitions and,_v, - 10 ‘?'e”"te sub-seql_Jences
will distinguish caught notifications (those that have wokerf Schedulings. Indexes will be omitted when obvious by
up a process) fronmissednotifications, andwrites that have CONtEXt. An equivalence on the set of schedulings is needed
modified the current value from non-modifying ones. ol determine whether two schedulings lead to the same final

course, theses distinctions can only be done dynamically Sfte- We first define the relation:
the general case. Yuabv € Dp,,, uabv ~ ubav &

(ubav € Dp,, N Fpr(uabv) = Fyr(ubav))
lll. FORMAL SETTING Definition 4 (Equivalence of Schedulingsfhe

We will now explain how we generate schedulings for multiequivalence of schedulings is the reflexive and transitive
threaded models written in SystemC. In the whole sectioplosure of the relation-. It is noted=.
the SUT is a SystemC program. We suppose that we haveTdns definition complies with the propertyu,v € Dp,,,u =
independent tool for generating test cases that only contair> F(u) = F(v). Therefore, if we generate one element of
the data. We call SUTD the object made of the SUT plus o®@ch equivalence class ef, we will have all possible final
particular test data We have to generate a relevant set ditates. It allows to detect all property violation as soon as the
schedulings for this data. corresponding output checker has been included into the SUT

Most of the definitions in this section are quite standard @nd drives it to a special final state when it detects an error.

the literature on partial order reduction techniques. " . .
P a B. Transition Dependency and Permutation Choice

A. Representation of the SUTD We produce alternative schedulings by permuting some
When data is fixed, a SUT execution is entirely defined kyansitions of a given scheduling, but only when this can lead
its scheduling; a scheduling is entirely defined by an elemest a non-equivalent scheduling. For example, suppose that
of (PU {4, x})* whereP is a process identifier anil x are we are executing a SUTD and we have just executed the

special symbols used to mark tlecycle changes and time processp and then the procesg (u = uip;q;). If there is
elapses respectively. We consider full states of a SUTD to he causal reason why the transitignwas after the transition

full dumps of the SUTD memory, including the position in the), (process; was not waiting for an event notified j»), then
code of each process. The SUTD can be seen fameion we can permute these two transitions. In that case, executing
from the schedulings to the full states. It is partial: not all thg instead ofp in the stateF,;(u;) can be a divergent path as
elements of(P U {4, x})* represent possible schedulings ofilustrated on figure 5. The question we have to answer is: “Do
the SUTD (because of the synchronization constraints betwafase two schedulings lead to the same state?” or formally:
processes). “Fuyr(uipg) = Far(ui1gp)?”. Note that we may not be able

to prove thatF (u = Fy(u because we want to
1strictly speaking, the SUT includes a data generator, not a single piece P M(1pq) M(1qp)

of data. But the generator does not depend on the scheduling, hence dsWer this queSt|OW|thOUt_ executingu, gp entirely. Hence
distinction is not necessary here. we rely on the common objects accessed by the transitions to

guess whether a permutation has some effect on the final stat&.he causal orderspecifies which transitions can be per-
This is incomplete. If we cannot prove that the final states amguted in a particular scheduling without permuting dependent

equal, we generate the new scheduling. transitions, including themselves. All schedulings of the same
equivalence class have the same causal order. Unlike the
u1 P q permutability relationship, the causal order is a partial order.
® ° ° tat P » P
q\ -7) Definition 8 (Causal Order):The transitionsae and b are
)j ‘:?\A /_/J:' causally orderedin the valid schedulingu = wujausbus,
3 ® noteda <, b, if and only if (a,b) € transitive closure of
Fig. 5. A Potential Divergent Path, black circles represent global states {)W’ y) € D|x <u y}
the model IV. ALGORITHMS
A. Computation of the Commutativity Relationship
A tjo 77777 D t7—72707” The first step is to detect pairs of transitions which are
L not commutative. We compute here a relationstigor all
5 ’ pairs of transitions. This computed relationship is correct for

permutable transitions, which is sufficient for our problem.
Two transitions may be non-commutativie(b) ¢ C) only if
Fig. 6. Dynamic Dependency Graph they contain hon-commutativeommunication actionsn the
same shared object (see section 1I-C). Note that the order of
We now study the two questions: which transitiocsn these actions within a transition is irrelevant. We examine all
we permute? which transition permutations arsefuP The cases below.
answer to the first question is given by tipermutability For shared variables there are three cases of non-commutative
relationship the answer to the second gquestion is giveactions (since operations on variables have no effect on process
by the commutativityrelationship (it is useless to permuteeligibility, we just need to check whether the equality of
commutative transitions). resulting states is still verified after permutation):
The Dynamic Dependency Graph (DDGgpresents the 1) aread followed by amodifying write
synchronizations that occur for a particular scheduling. Fig-2) a modifying writefollowed by aread
ure 6 represents the schedulinbzyba of the foo program 3) awrite followed by amodifying write
of figure 3. Each horizontal line is a process. New cyclds all other cases, the transitions are commutative, as in
(6 or x) are represented by vertical lines. Each box is example 2. Note that the nature ofvaite depends on the
process transition. Dashed arrows (resp. plain lines) betwessieduling we consider. fodifying writecan become aon-
boxes indicate that the two transitions are dependent but maedifying writefor another scheduling, and reciprocally.
permutable (resp. non commutative). We may move someExample 1:Variablex initially set to 0. The first transition
transitions on the horizontal axis, remaining amongyhid executes the actior=x+2 . The second executes=4-x . It
and equivalent schedulingprovided we do not permute twois a modifying writefollowed by aread so we consider that
boxes linked by an arrow or line. the two transitions are not commutative (point 2 above).
Definition 5 (Permutability): The transitionsa and b are Example 2:Variablex initially set to 2. The first transition
causally permutablén the valid scheduling:; ausbusz, noted executes the actior=4. The second transition also executes

time

(a,b) € P, if and only if: {ujviba € Dp,,|Jvs, uiviabvy = this instruction. It is amodifying write followed by anon-
ujaugbuz} = 0. modifying write
In other words, two transitions are not permutable if: Note thatC' is symmetric, which may not be obvious from
1) there is an equivalent scheduling in which they angoint 3 above. But permutatingraodifying writewith a non-
consecutive; modifying writeis still a modifying writefollowed by anon-
2) the second transitiob can be elected in place of the firstmodifying write except if there is another pair of dependent
transitiona in this equivalent scheduling. actions. Example 2 also illustrates this remark.
Definition 6 (Commutativity of Transitions)fhe non- For events, there are three cases of non-commutative actions:
causally ordered transitions and b are commutativein the 1) a notificationfollowed by await
valid schedulingu;ausbus if and only if: 2) await followed by anotification
Yuqviabvs = uiausbus, uiviabve = uqvibave 3) a caught notificatiorfollowed by anotification

Commutativityis not defined for causally ordered transitionsThe dependency betweenait and anotify is quite obvious:
The theory of partial order reduction relies on the definitioif the wait comes first, then the corresponding process is woken
of dependenttransitions [7]. In our work, we define theup by thenotify, otherwise it remains sleeping. Example 3
dependency relationship as follows: illustrates the third case.
Definition 7 (Dependency of TransitionsJhe transitions Example 3:Suppose one runs this three-process model:
a andb aredependentf and only if they are not permutable, « Initial state: proces# waiting for e, B and C eligible.
or permutable but not commutative. o ProcessA: cout <<’a’; x = 1;

e ProcessB: cout <<’b’; x = 2; e.notify(); D. Generation of a full schedulings suite

« ProcessC: cout <<'c’; e.notify(); We start by executing the SUTD with a random scheduling.
There is exactly one transition per process, naie® and |n parallel with the SUTD execution, we run a checker:
andbca, b is dependent witlu (2 modifying write} but they builds the Dynamic Dependency Graph.
are causally ordered (proceAswas enabled by the transition it it discovers two non-commutative transitiopsandag;,

b). However if we permuté andc, b is no longer causally with p; beforeq;:
resulting state of the SUTD, but modifies the computed causal gpgye: the constraintgt beforep,” is saved with the
B. Computation of the Causal Partial Order same transitions.

. — it continues the current execution, adding the opposite
In order to compute the permutability, we need to compute o ” . .
the causal order. We denote pre@) the set{a, b € ula < b} constraint *h; beforegq;” to all of its further children.

) ’ Then we replay the SUTD with each generated scheduling

obtained after the execution of the scheduling . \When we reach the end af we continue the SUTD execution
We compute the causal order step by step. Obviously, for

e ety Scheduing e e pre— . Let 1 andy b (10 S 00T SCUeRung. 1 preiet we somoute e e,
two transitions, we have < b and so(a,b) € D at least in 9 g

the three following cases: pair of transiti_ons, as for _the previous schedulings: Thanks
« a or b indicate a news-cycle or time-elapsed. to the constraints saveq Wlt_h the generatec_l schedullngs, each
. a andb belong to the same process (by definition) new generated scheduling is more constrained than its fa_ther
. the process of transitioh has been woken up by, scheduh.ng apd so there are fewer and fewer new schedulings

In these cases, we note: < b. The rest of the paragraphat each iteration. When the checker does not generate any new

below is adapted from [4]. Having prec), we compute scheduling, we have a complete test suite.

prequb) as follows:

Trace:
preg (ub) = predu) U {a <g bla € u}

N A wait(e)
prec,(ub) = preg (ub) U{(a,b) € Cla € u} ?A(-:hBe-dxl-mB?-SA B notify(e), modify(x)
prequb) = transitive closure of pregub) B: A, T A
. - . . ' A read(x)
Finally, we have(a, b) € P in ujausbug if and only if: (a,b) € B modify(x)

transitive closure of pre€u;ausbd).

The following property is useful to optimize the Implemenfzig. 7. First iteration of the analysis for thieo example. The first execution

tation: Letwu;ausbuzcuy be a scheduling. Then procéss= activates processes and B in the orderABAAB. The checker generates
proces(sb) Ab<c = a<c. owing to this property, we can two new schedulings. One to permute; and B; (unordered accesses to

represents the causal order with an aﬂagf sizep x s where evente) and the other to permutds and By (unordered accesses to shared

! . variablez).
s is the number of steps andis the number of processes.
The elementl'[q, g] is the last transition of processwhich
is causally before; i.e.: a < b < num(a) < T'[b, process(d) V. PROPERTIES
Some other optimizations are well explained in [4]. The algorithm guarantees that we generate at least one
. : : element of each equivalence class (for the equivalence of
C. Generation of one alternative scheduling definition 4)

We are now able to determine if two transitions are not Theorem 1:Let G, be the set of all generated schedulings
commutative (hence should be permuted). Now we explai a modelM. For any scheduling: € Dy,,, there exists a
how we treat such a pair of transitions. Letwb be a schedulingy € G, such thatu = v.

scheduling such thei,b) € DN P. Letv =v;...v, Where There are two useful and direct corollaries. First, if a local

v1,...,vn are transitions. The goal is to generate a new valigtocess state is present in a schedulingldf,,, it is also
scheduling withb beforea. We proceed as follows: present in a scheduling @ ,;. Furthermore, we generate all
« The first partu is unmodified. the final states, including all deadlocks.
« We execute alb; such thata £ v;. To prove the property, we need the definition=of-prefix
« We executeb and thena (unlike some other concurrentand=—dominant for schedulings, directly adapted frpnefix
languagesb cannot disable: in SystemC). and dominantproperties of Mazurkiewicz traces [7].

« Then, since two dependent transitions have been perpefinition 9: Let p,d € Dy,, be two schedulingsy is an
muted, we do not know whether the non-executed trag-_prefix of d andd an =—dominant ofp if and only if there

sitionsv; such thata < v; are still defined. We are then exists a Schedu"ngt c DFM such thatu = d andp is a
free to choose the rest of the scheduling. string-prefix ofuw.

Proof: We proceed by contradiction, and assume that sysemC | o™ | | Raw Trace Checked
there exists a schedulinge Dp,, which breaks the property. | Model + mapping (XML) (XML)

We can writeu in the formu = wjaus Whereu, is the longest
prefix of v such that:

Juyuy € Dp,, andv € G such thatu;uf, = v
This decomposition is unique so we just have to prove that
uia has are—dominant inG to get the wanted contradiction.

N/ [\

Patched
SystemC
Kernel

\
Style—Sheet
N/

Pinapa
Analyzer

. Static Dynamic
Let v € G be a generated completed scheduling such that Dependency New DZpendency
. o . . . Schedulings .
uy is a=—prefix of v. As a consequence, there exists a valid Graph (DOT) Graph

schedulinguju) such thatuyu, = v If there is no non-
determinism when we are in the stafg;(u;), then we must

haveu), = auf and sov would be a=—dominant ofu,a. X.e

Consequentlya is neithero nor x and the process of @ — . @
is defined and eligiblg inU'M.(u). Since -an-e"gible pr-oceSSFig 9. Static Dependency Graph for tfewbar example. Nodes represent
cannot become “sleeplng" without running/s present Im/Q prolce'sses. Arrows represent possible communications Between processes. An
souf, = wyaws. Sincea is eligible in Fi;(u), itis not causally arrow goes from the master (i.e. the notifier for a SystemC event, the writer
after any element ofv,. There are three cases: for a shared variable) to the slave.

o if wy is empty then we get the needed contradiction

o if w; = 2b with b | a then there exists another possibl@) adding code to record the communication actions that
schedulingu;u4 = v such thatuj = wjabw, with w| cannot be detected in the code of the processes, and their
shorter thanw;. consequences (e.g., enabling of a process). When we execute

o if wy = zb with (b,a) € D then: the instrumented platform with the patched SystemC kernel,
— Transitionb is beforea in v but they are permutable. We can detect dependencies dynamically or save a detailed

— So we have generated a schedulidgvith « beforeb, trace and run the checker afterwards. In both cases, we get

Fig. 8. The Prototype’s Architecture

using the algorithm described in section IV-C. a list of new schedulings to be executed, and a record of the
— There exists a possible schedulinguy = v’ such as computed dependencies, usable as input for other checkers
ul = w)abwl, with w’ shorter thanw;. or visualization tools, like the production of the dynamic

Consequently, by induction on the length ©f, we get the dependency graph (DDG).

needed contradiction. B 5 Evaluation

VI. PROTOTYPEIMPLEMENTATION AND EVALUATION In order to validate our tool and to evaluate the quality of the
A. The prototype test suites produced, we studied several industrial SoC models.
Figure 8 is an overview of the tool. Tleleckerimplements Assume that running one test-case takes some’finia order

the checking algorithm of section IV-D. It has to be awarl® Cover the scheduling choices, we have tq run more.than one
of all communication actions. Some of them can be detectipt-¢ase- Let us denote the_number oivalid schedulmgs,

by instrumenting the SystemC kernel, some other canncﬁndG the number of schedulm_@nerateoby our tool. It_|s
(like accesses to a shared variable, that are invisible from {hieresting to compard” x T with G xT+0, whereQ IS
SystemC kernel). We choose to instrument the C++/Systenq€ Qverhead due to the computation c_>f.new schedulings.
source code. For each communication action in the code %N'th a real application, it is often difficult to evaluaté.

a SystemC process, we add an instruction that notifies t & chose to evaluate our method on three examples. First,

operation to a global recorder. For example, consider the con5|de_red a System(_l _encodmg of the indexer problem
instruction x=y where x andy are shared variables. Thepresented in [4) because it is easy to evaludte However,

two following instructions are added close to the assignmer;]tP:e indexer is not representative of the typical SystemC code

recorder->read(&y);recorder->write(8x) ound in industry. We then looked at two industrial case-

strumentation is based on the open-source SystemC front-éﬁtéd'es: the first one has about 50 000 lines of cgde but only
Pinapa [8], and is compositional. 4 processes, and it does not model a full SoC; the second

Another solution would have been to interpret or instrumef{'® has about 250 000 lines of code and 57 processes, and it

the binaries. However, using a SystemC front-end has soﬁ?%rejc‘rimsl a dfuII SOEC' leTh N d
benefits: it allows to generatestatic dependency graph (SDG)) | g Inlggerl xampie.there aC:en comhpor;]en sblan Each
which represents a superset of the communications that globa -element array used as a hash table. Eac

occur between processes (see Figure 9). Moreover, it is ea&fé’?‘pone“t IS composed of 2 threads which communicate
to link the observed behavior to the source code using a shared variable and a SystemC event. Each component

The instrumented SystemC program is compiled with writes 4 messages in the global hash table. This corresponds to
patched SystemC kernel The patches are: 1) replacing the’schedulmgs of length1 x n. Forn < 11, there is no collision

e_leCtion _algorit_hm of the_ SystemC scheduler by an_int_eraC'ZFor the SystemC version sedttp://www-verimag.imag.fr/
tive version, still complying with the SystemC specificatiormhelmstet/indexer.cpp

in the hash table and all schedulings lead to the same finaB) A Complete SoC:Complete models of Socs are typi-
state. Forn > 12 there are collisions hence non-equivalentally 3 to 6 times bigger than the MPEG decoder. We are
schedulings. Our prototype generates valid schedulings leadougrently evaluating our tool on a model —let us call it XX—
to distinct states of the hash table. In this example, we generateresponding to a full SoC: it has about 250 000 lines of
exactly one scheduling per equivalence class. The numbercofle and 57 processes. At the moment we are limited by the
generated schedulings is far smaller than the number of vatiodde instrumentation tool which still requires some manual
schedulings (at least.35E11 for n = 2, and 2.43E25 for work, so we looked at only one case study of this type, but
n = 3). Results are summarized in table I. Time is given onlthe instrumentation tool will soon be fully automatic. For tests
to help estimating the curve, not as an absolute measure. of length around 200 transitions, we expect the tool to behave
well on XX: the ability to cope with this number of processes

components| generated schedulings _ time has been tested with the indexer example, and the ability to
1...11 1 <11 ms
15 8 60 s cope .Wl_th the complexity of a large and realistic SystemC
13 64 Zs description has been tested with the MPEG example.
1‘; 50156 35 S The interesting point with XX is thegranularity of the
mn transactions. With the MPEG decoder, the granularity cor-
TABLE | responds to an algorithm that takes one line of the image
RESULTS FOR THE INDEXER EXAMPLE at a time. Something interesting can be observed by a test

oracle after 150 transitions only (three images have already
een decoded). XX corresponds to an algorithm that takes
ne pixel of the image at a time. It may be the case that the
st oracle has to observe thousands of transitions. XX is a
ry good case-study for observing the combined influence of

e test length and the granularity on the performances of our
technigue. One phenomenon we can expect, and that we have
to validate with the case-study, is the following: very abstract
TLM descriptions have large-grain transactions, but loose
synchronisations; while the more detailed TLM descriptions
have finer-grain transactions, but stronger synchronizations. If
the number of alternative schedulings decreases (because of
stronger synchronizations) when the granularity of a descrip-
tion increases (and thus the length of the interesting test-cases),
the method may still be applicable. We also comment on this
Fig. 10. Architecture of the MPEG decoder system point in the conclusion.

2) The MPEG Decoder Systeriihis system has 5 compo-
nents: a master, a MPEG decoder, a display, a memory an
bus model. There are about 50 000 lines of code and onI)P
processes. This is quite common in the more abstract mod&
found in industry, because there is a lot of sequential codf
and very few synchronizations. We added 340 instrumentati
lines to detect communication actions.

LCMPEG DISPLAY

The test is stopped after the third decoded image, which
corresponds to 150 transitions. One simulation takes 0.39 s.
Our tool generate428 schedulingsn 1 mn 08 s No bug is Existing work (see, for instance [9]) addresses formal ver-
found, which guarantees that this test-case will run correctbcation for TLM models. The idea is to extract a formal
on any SystemC implementation. Running the model 128odel from the SystemC code, and to translate it into the
times takes more time than generating the schedulings (#gut format of some model-checker. In such an approach,
haveG x T = 128x0.39 s~ 50 s andO ~ 1 mn 08—50 S~ the complete model that is model-checked has to include a
18 s). Thus the overhea@ remains acceptable. representation of the scheduler. It is sufficient to use a non-

On this example, we noticed that the number of generatgéterministic representation that reflects the specification of
SChedulingS could be improved. This MPEG decoder, as magystemc, and then a property that is proved with this non-
other TLM models, uses a pair (event, variable) to implemeggterministic scheduler is indeed true for any deterministic

VIl. RELATED WORK

a persistent everas follows & is initially 0): implementation. Model-checking is likely to face the state-
ProcessP runs:x=1; e.notify(); explosion problem, so testing methods are still useful. But we
ProcesQruns:if (1x) wait(e); x=0; need the same guarantee on the results of the test being valid

The two valid scheduling®; Q andQ; P; Q lead to the for any implementation of the simulation engine.

same final state, but our tool currently generates both schedulPartial order reduction techniques are quite old, but their
ings because it cannot prove it. The intuition is that theslynamicextension is quite recent. As far as we know, it is
schedulings are not equivalent according to the dependemot included in \ERISOFT[10] yet. Partial order reduction is
relationship as computed in section IV. Detecting this kind afsed in many model checkers for asynchronous concurrent
structures in the source code and taking them into account fsograms such as Spin [11] o PATHFINDER [12].

the computation of the dependency relationship would alloMowever, since we use testing, our work is more related with
to generate less schedulings. tools which work directly on the program without abstractions,

such as ¥ERISOFTor CMC [13]. The main difference is that properties of the components, in order to estimate the timing
our tool is adapted to the TLM SystemC constructs. properties of the SoC early. In this case, the timings should not

To get a complete validation environment, one need t® taken as fixed values. The embedded software will be more
include a test case generator and an output checker. Fabust if it works correctly for slightly distinct timings. In the
the latter,assertion-based verificatiofi4] proposes to derive testing process, it is useful to explore alternative timings, with
monitors from assertion languages. However, these languatfes same idea of generating only those timings that are likely
are often based on the notion of clocks which are absenttonchange the global behavior of the SoC. An overview of the
TLM. If ABV is extended to TLM, it will become useful in method can be found in [15].
our framework. We also started working on efficient implementations of
the SystemC simulation engine, by exploiting multi-processor
machines. Here, the difficulty is to guarantee that a multi-

We presented a method to explore the set of valid schedptocessor simulation does not exhibit behaviors that are not
ings of a SystemC program, for a given data input. This &lowed by the non-deterministic reference definition of the
necessary because the scheduling is a phenomenon due testheduler. The formal setting we described here is appropriate
simulation engine only, and is unlikely to represent anythinfgr defining the set of behaviors that the multi-processor
concrete on the final SoC. Exploring alternative schedulinggnulation may produce, without changing the behavior of the
during testing is a way of guaranteeing that the SoC descrggmbedded software.
tion, and in particular the embedded software, is scheduler-
independent, hence more robust. By using dynamic partial or-
der reduction, we maximize the coverage and keep the numbd} F- Ghenassia, EdJransaction-Level Modeling with SystemC. TLM

. Concepts and Applications for Embedded Syste8winger, June 2005,
of tests as low as possible. Our tool also produces several ggy 0-387-26232-6.
graphical views that help in debugging SoCs. With the protof] J. Rose and S. Swan, “SCV Randomization,” Cadence Design Systems,
type tool, we have highlighted unwanted non-determinism in Inc., 2003, o
. . www.testbuilder.net/reports/scv _randomization.pdf .
a bus arbiter for a transaction-accurate protocol. Also, SOMS&| T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel, M. Edwards, and
SoC descriptions are scheduler-dependent because they exploity. Kashai, “A framework for object oriented hardware specification,
the initial state of the most used implementation. In this case, Verification, and synthesis,” iDAC '01: Proceedings of the 38th
. . . conference on Design automationNew York, NY, USA: ACM Press,

covering the valid schedulings reveals deadlocks. Our tool 5091, pp. 413-418.

is already mature enough to be used for industrial Systemf@] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
descriptions of SoCs. model checking software,” iSymposium on Principles of programming

. . languages (POPL) New York, NY, USA: ACM Press, 2005, pp. 110-
There are at least two ways of improving the prototype 1219_ ges () PP

performances. The first is to reduce the number of branch¢s SystemC v2.0.1 Language Reference ManDakn SystemC Initiative,

explored. A promising solution is to use partial state mem-_ 2003,http://www.systemc.org/ -
.p . .p I'g . Il th P d r[éi] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data
orization. It is unrealistic to save all the states and compa selection,” inProceedings of the international conference on Reliable

the new state at each step due to the size and complexity of software 1975, pp. 493-510.

a SystemC model state. However. we can save some stat@sA. Mazurkiewicz, “Trace theory,” iPAdvances in Petri nets 1986, part
’ Il on Petri nets: applications and relationships to other models of

and compare only particular new states. We plan to compare concurrency New York, NY, USA: Springer-Verlag New York, Inc.,
each forked execution every new delta-cycle. The second way 1987, pp. 279-324.

is to reduce the time overhead needed for runtime checkin§] M: Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa,” 2005,
http://greensocs.sourceforge.net/pinapa/

Some _CheCk resu_lts arg predlctablg. Cons_equently dom_g Sta@ﬂ: M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Luséy: A toolbox
analysis before simulation can avoid runtime computation. for the analysis of systems-on-a-chip at the transactional level,” in

Further work on testing SoCs is threefold. First, the algo- International Conference on Application of Concurrency to System
) ' Design June 2005.

rithm that fully explores_ alternative SChedu"ngS_ can be Usedh p. Godefroid, “Model checking for programming languages using
on large platforms only if the length of the test is reasonable. VeriSoft,” in Symposium on Principles of Programming Languages

A promising idea for very long tests is to use the method (';gpl'-geACM- Ed. New York, NY, USA: ACM Press, 1997, pp.
locally on the TLM description: a first execution of the wholg11) . 3. Holzmann, “The model checker SPINSoftware Engineering

platform P is used to record the output transactions of some vol. 23, no. 5, pp. 279-295, 1997.

sub-system S of P. Then, our method is applied on a platfoftg] W- Visser, K. Havelund, G. Brat, and S.-J. Park, *Model checking
y PP P programs,” in Proc. of the 15th IEEE International Conference on

P’ obtained by substituting S’ with S in P. S’ is a sequential Aytomated Software Engineering000.
algorithm that plays the recorded transactions. It does rio¢] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill, “CMC: A

introduce scheduling choices. The idea is that the method then Pragmatic Approach to Model Checking Real Code,Pinceedings of
the Fifth Symposium on Operating Systems Design and Implementation

concentrates on the schedulings due teSP forgetting the Dec. 2002
schedulings due to S. [14] “Assertion-based verification,” Synopsis, 2003,

Second, the whole approach and the SystemC prototype is ttP://www.synopsys.com/products/simulation/
assertion _based _wp.html .

peing adapted to the exploration of non-fully specified timinQ[§5] C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz, “Test coverage
in the TLM models. Indeed, TLM models are not cycle- for loose timing annotations,” ii1th International Workshop on Formal

accurate, but people use to label them by approximate timing Methods for Industrial Critical Systemaugust 2006.

VIIl. CONCLUSION AND FURTHERWORK

REFERENCES

